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Preoperative Prediction of Axillary 
Lymph Node Metastasis in Breast 
Cancer Using Mammography-
Based Radiomics Method
Jingbo Yang1, Tao Wang2, Lifeng Yang1, Yubo Wang1, Hongmei Li3, Xiaobo Zhou4, 

Weiling Zhao4, Junchan Ren1, Xiaoyong Li3, Jie Tian1 & Liyu Huang1

It is difficult to accurately assess axillary lymph nodes metastasis and the diagnosis of axillary lymph 
nodes in patients with breast cancer is invasive and has low-sensitivity preoperatively. This study 

aims to develop a mammography-based radiomics nomogram for the preoperative prediction of ALN 

metastasis in patients with breast cancer. This study enrolled 147 patients with clinicopathologically 
confirmed breast cancer and preoperative mammography. Features were extracted from each patient’s 
mammography images. The least absolute shrinkage and selection operator regression method was 

used to select features and build a signature in the primary cohort. The performance of the signature 

was assessed using support vector machines. We developed a nomogram by incorporating the signature 

with the clinicopathologic risk factors. The nomogram performance was estimated by its calibration 

ability in the primary and validation cohorts. The signature was consisted of 10 selected ALN-status-
related features. The AUC of the signature from the primary cohort was 0.895 (95% CI, 0.887–0.909) and 
0.875 (95% CI, 0.698–0.891) for the validation cohort. The C-Index of the nomogram from the primary 
cohort was 0.779 (95% CI, 0.752–0.793) and 0.809 (95% CI, 0.794–0.833) for the validation cohort. Our 
nomogram is a reliable and non-invasive tool for preoperative prediction of ALN status and can be used 

to optimize current treatment strategy for breast cancer patients.

Breast cancer is among the most common cancer worldwide and the second cancer-related cause of death in 
women1. Axillary lymph node (ALN) status is one of the most important prognostic and diagnose factor for dis-
ease free survival and overall survival in patients with breast cancer2. Accurate preoperative identi�cation of ALN 
status can provide clinicians with important information about their treatment decisions, such as whether axillary 
lymph node dissection (ALND) in surgery and postoperative adjuvant therapy are needed2. Currently, the intra-
operative ALN status in patients with breast cancer is determined by the sentinel lymph node biopsy (SLNB)3. 
Although the accuracy of SLNB is higher, SLNB is an invasive procedure and has some complication, such as 
damage of blood vessels, nerve, incision infection and lymphedema4. Clinical investigations show that more than 
50% of early-stage invasive breast cancer patients have no ALN metastasis, so any type of axillary surgeries can 
be considered overtreated in these cases3. In addition, the exact status of the dissected lymph nodes was veri-
�ed by pathological examination. But reliable pathological results usually require a period of time a�er surgery. 
�erefore, there is no doubt that a non-invasive method of ALN metastasis prediction is valuable preoperative.

At present, imaging examination is used as non-invasive method to con�rm the status of ALN metastasis in 
preoperative, such as ultrasonography, computed tomography, mammography and magnetic resonance imaging. 
However, imaging examination has a low diagnostic sensitivity, which may lead to a considerable proportion 
of ALN metastasis positive patients to be missed5. Lately, Dong and their colleagues have used radiomics of 
magnetic resonance imaging to predict sentinel lymph node metastasis in breast cancer6. However, magnetic 
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resonance imaging is cost than mammography. At present, there are no study published regard to use magnetic 
resonance imaging or mammography to predict the status of ALN metastasis in breast cancer patients. �erefore, 
there is an increasing need for the development of reliable, accurate and non-invasive methods base on mammog-
raphy image to predict ALN metastasis preoperatively.

Radiomics, an emerging and promising �eld, which is a �eld of medical study to convert medical images 
data into mineable and developable high-dimensional data via high-throughput extraction of large numbers of 
quantitative imaging features, and subsequently developing and analyzing these data with other patients’ char-
acteristics to increase the power of decision support. Radiomics has been proved to be an accurate, quantitative 
and non-invasive method used to improve the accuracy of cancer diagnosis, prognosis and prediction6,7. Several 
recent studies have shown that radiomics has been used for the preoperative diagnosis of lymph node metastasis 
in some types of cancers6–9. Compared with magnetic resonance imaging, mammography is the most commonly 
used imaging examination method for the patients with breast cancer. A mammography-based radiomics tool 
may improve the evaluating accuracy of patients’ ALN status.

�e aim of this study was to develop a mammography-based radiomics nomogram by combining radiomics 
signatures with clinicopathologic and immunohistochemical risk factors for the preoperative prediction of ALN 
metastasis in patients with breast cancer.

Patients and Methods
Patients. Our Institutional Review Board (Shaanxi People’s Hospital Medical Ethics Committee) approved 
this study and waived the need to obtain informed consent from the patients. And we con�rmed that all meth-
ods were performed in accordance with the relevant guidelines and regulations. A total of 147 consecutively 
patients who underwent surgical treatment between January 2016 and January 2017 were included in this study. 
�e inclusion and exclusion criteria of patients are listed in the Supplementary Data. In total, 152 patients were 
clinicopathologically con�rmed with breast cancer, and �ve patients were excluded due to the indistinguishable 
boundary of tumor area on the mammography. Due to the 5 patients is extremely dense breast and the tumor 
located in the dense breast may result in indistinguishable boundary or invisible with the use of mammogra-
phy10. �erefore, the clinical radiologists excluded the 5 patients. We randomly divided the 147 patients into pri-
mary cohort (110 patients; mean age, 55.89 ± 10.63) and validation cohort (37 patients; mean age, 50.49 ± 11.84) 
according to the ratio of 3:1. �ere are 83 ALN positive patients (61 patients in primary cohort and 22 patients 
in validation cohort) and 64 ALN negative patients (49 patients in primary cohort and 15 patients in validation 
cohort). Some studies have proved that tumor size is one of the most important factor of axillary lymph nodes 
metastasis in patients with breast cancer11. Since the research is a retrospective study, the data were all diagnosed 
and the tumor size of patients were most greater than 2 cm. Clinical T stage show the tumor size of patient and the 
total number of T2 and T3 stage is 97 (65.89%, T2: the long diameter of the cancer is greater than 2 cm and less 
than or equal to 5 cm; T3: the long diameter of the cancer is greater than 5 cm) in this study.

All mammography images were obtained from the Picture Archiving and Communication System (PACS), a 
comprehensive system providing services with image acquisition, display, storage, transmission and management. 
Clinicopathologic and immunohistochemical factors were acquired from the Hospital Information System (HIS), 
an integrated system with powerful clinical decision-support capabilities in a wide variety of clinical areas such as 
radiology, nurse station and so on. We know that clinical pathological factors such as human epidermal growth 
factor receptor (her-2), Estrogen Receptor (ER), Progesterone Receptor (PR), and ki-67 are important factors in 
the diagnosis of ALN metastasis status of breast cancer. Because of our research is a retrospective study, the result 
of ki67 is not contained in every patient in this study, so this study selected ER and PR as pathological factors. 
�erefore, baseline clinicopathologic and immunohistochemical data, including age, preoperative histological 
TNM stage, tumor location, ER status and PR status was acquired from HIS records. �e �owchart of this study 
is shown in Fig. 1. In order to compare the accuracy of the prediction of ALN metastasis in this study with the 
accuracy of ALN metastasis diagnosed by ultrasound, the ALN status of ultrasound diagnosed also added in the 
nomogram as a clinical factor (US ALN status). �ere are 72 ALN negative patients (55 patients in primary cohort 
and 17 patients in validation cohort) and 75 ALN positive patients (55 patients in primary cohort and 20 patients 
in validation cohort) diagnosed by ultrasound.

Mammography acquisition and segmentation. In our study, all patients were undergoing mammog-
raphy examination within 10 days prior to surgery using Hologic Mammography system (Selenia, US Hologic), 
which is equipped with molybdenum gold metal ball hall and DR amorphous selenium direct digital plate detec-
tor. �e acquisition parameters included detector size (24 × 29 cm), matrix (3328 × 4096), limit spatial resolution 
(7.14 LP/mm), standard pixel size (70 µm), and automatic exposure control. We used mammography Digital 
Imaging and Communications in Medicine (DICOM) for further feature extraction in the craniocaudual and 
mediolateral oblique positions12.

Mammography images were analyzed by two radiologists (a young radiologist who had 6 years of experience, 
a senior radiologist who had more than 10 years of experience). Both of the reviewing radiologists were blinded 
to the pathological results of ALN metastasis. �e region of interest (ROI) covered the whole tumor region and 
was segmented by the 3D Slicer so�ware using the image intensity-based semi-automatic threshold segmentation 
method13–16. �e intensities of the tumor area were signi�cantly di�erent from the normal area on the mammog-
raphy. �erefore, the intensity of the tumorous boundary area was selected as the threshold of the semi-automatic 
threshold segmentation. ROI was used as the input to extract quantitative radiomics features a�er segmentation

Feature extraction. Four groups of radiomics features were extracted from the segmented ROIs of tumors 
using Matlab R2016b so�ware17,18, including �rst-order, texture, shape and wavelet features19. �e formula of 
feature calculation is shown in the Supplementary Data.
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Feature selection, radiomics signature construction and statistical analysis. Radiomics features 
for each patient were normalized with Min-max normalization method so as to acquire the same distribution of 
features prior to feature selection. Feature selection was required to reduce over-�tting, redundancy or any other 
type of bias in our radiomics analysis. All the extracted features and ALN status were used as the input vectors 
of feature selection and were divided into the independent variable X (radiomics features) and the dependent 
variable Y (ALN status). �e least absolute shrinkage and selection operator (LASSO) regression method was 
used to select features20 and in the meanwhile we carried out bootstrapping method to reduce the estimated bias 
of feature selection21. �en, a radiomics signature was constructed for each patient based on the selected features 
and their corresponding coe�cients obtained by the LASSO regression method.

For the statistical analysis, the correlation between ALN status and radiomics signature, age, T stage, tumor 
location, US ALN status, ER and PR status was analyzed using SPSS so�ware. Due to non-standard normal 
distribution of the radiomics features, Spearman correlation analysis was applied. �e correlation between each 
variable and ALN status was observed (p < 0.01, p < 0.05, p > 0.05 indicate signi�cant correlation, general corre-
lation and non-correlation, respectively). In addition, the univariate analysis was used to ascertain a balanceable 
distribution across all factors of the patients8.

Evaluation of radiomics signature. First, we evaluated the association of the radiomics signature with 
ALN status in the primary cohort �rst, and then validated them in the validation cohort. In this study, the support 
vector machine (SVM) method was used to discriminate the ALN status of each patient in both cohorts22,23. �e 
SVM classi�cation method with Gaussian kernel was applied to calculate the area under the receiver operating 
characteristic curve (AUC) of the radiomics signature. Ten-fold cross-validation was employed to determine the 
optimal regularization parameter, which is the maximized AUC. A�er regularization parameter was selected, 
the AUC of radiomics signature from the validation cohort was calculated using the same method. In addition 
to AUC, classi�cation accuracy, true positive rate (TPR) and true negative rate (TNR) were also calculated as 
metrics to assess the quantitative discrimination performance of the radiomics signature in both the primary and 
validation cohorts23,24.

Development of the radiomics nomogram. First, we conducted a multivariable logistic regression anal-
ysis of the clinicopathologic and immunohistochemical factors, including age, T stage in the pathological TNM 
stage, tumor location in breast quadrant, the status of ER and PR from immunohistochemical results, US ALN 
status and radiomics signature. We then used the Backward step-wise selection method as the stopping rule via 
the likelihood ratio test with Akaike’s information criterion25,26. Moreover, the multivariable logistic regression 

Figure 1. �e �owchart of this study. �is study includes image segmentation, feature extraction, feature 
selection, radiomics analysis and clinical application. �e ROIs of mammography images were segmented 
and then 299 quantitative radiomics features extracted from post-segmentation images of individual patients. 
�e least absolute shrinkage and selection operator (LASSO) was then used to feature selection. �erea�er, 
a radiomics signature was constructed and validated using the Gaussian kernel support vector machine. A 
radiomics nomogram was developed by incorporating the radiomics signature with clinical factors. Finally, the 
calibration and decision curves were used as the evaluative criteria of the radiomics nomogram. Preoperative 
Ultrasound-Guided Needle Biopsy of Axillary Nodes in Invasive Breast Cancer: Meta-Analysis of Its Accuracy 
and Utility in Staging the Axilla.
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analysis was subjected ten-fold cross-validation to achieve a comparatively corrected performance. Based on the 
results from the multivariable logistic analysis, a radiomics nomogram was constructed8,27,28.

Evaluation of the radiomics nomogram performance. The predictive accuracy and discrimina-
tive ability of the radiomics nomogram were determined by the calibration curve29,30 and Harrell’s C-index. 
Calibration curve shown the di�erence between actual rate of ALN metastasis and predicted probability from 
radiomics nomogram. Calibration curve is closer to the diagonal dotted line represent a better prediction e�ect.

C-index refers to the consistency Index, which is generally used to evaluate the predictive power of the model, 
and the e�ect in the model can be equal to AUC. C-Index is calculated by (the number of consistency pairs/useful 
pairs). Consistency pairs refer to the combination that actual observed value are in accordance with the category 
of the predicted results. Useful pairs refer to the combination that excludes the combination of unreasonable pre-
diction results or actual observation fails to reach the observation point (In the calculation of C-Index, all subjects 
are required to combine pairs at random). �e model was subjected to a ten-fold cross validation to achieve a 
comparatively corrected performance.

Next, we used the validation cohort to test the performance of the radiomics nomogram. �e multivariable 
logistic regression analysis of the nomogram was applied to the patients in the validation cohort. We compared 
the performance of the estimated probability of ALN metastasis with the actual outcomes (the ALN metastasis 
rate) by nomogram calibration curves in both the primary and validation cohorts.

Decision curve analysis. Decision curve analysis was used to determine the performance and signi�cance 
of the radiomics nomogram in clinical use by quantifying the net bene�ts at di�erent threshold probabilities in 
the validation dataset8,19. Assuming that there is a threshold probability pt, if the positive probability is greater 
than pt for clinical treatment, less than pt is to avoid the treatment. And according to the decision theory that pt 
is great signi�cance for accepting the necessary clinical treatment and avoiding unnecessary clinical operations. 
Net Bene�ts = [TPN − FPN * pt/(1 − pt)]/sample size.

Results
Analysis software. We choose the simple randomization method to divide cohort by using the “sample (X, 
size, replace = FALSE)” function in R so�ware (“X” is the set contain the serial number of all patients; “size” is 
the number of random sampling). �e function show that “size” patients were selected from X as primary cohort 
and the remaining patients is divided as validation cohort. Since 147 patients were included in this study and 
we set “size” equal to “0.75 * X”, 110 and 37 patients were random assigned to primary and validation cohort, 
respectively. MG segmentation was conducted with 3D slicer so�ware(https://www.slicer.org/). Features extrac-
tion was used Matlab R2016b so�ware (A data analysis tool so�ware; the MathWorks, Natick, Massachusetts, 
https://mathworks.com/products/matlab.html). Statistical analysis was analyzed by SPSS so�ware(A platform 
o�ers advanced statistical analysis, a vast library of machine learning algorithms, text analysis, open source exten-
sibility, integration with big data and seamless deployment into applications; https://www.ibm.com/analytics/
data-science/predictive-analytics/spss-statistical-so�ware). �e feature selection method of LASSO was used the 
“glmnet” package with the “cv.glmnet” of R so�ware(a free so�ware environment for statistical computing and 
graphics, https://www.r-project.org/). �e building of Signature and histogram was done using the “ggplot2”, 
“gcookbook” package with the method of “ggsave” and “ggplot”. Nomogram plotting, Nomogram evaluation and 
plotting of calibration curves was used the “rms” package with the method of “nomogram”, “validate”, “calibrate”. 
�e SVM classi�er was used “kernvk” package with the method of “kvcv”, classi�er evaluation of ROC curve and 
AUC calculation was used the “pROC” package with the methods of “predict” and “auc”.

Clinical factors. We assessed the correlation of ALN status with age, T stage, tumor location, ER and PR 
status in the primary and validation cohorts, as shown in Table 1. In the primary cohort, US ALN status had the 
signi�cant correlation with ALN status (p = 0.002); T stage and ER status had the generally correlations with 
ALN status (p = 0.038–0.043); age, tumor location and PR status had not signi�cant correlations with ALN status 
(p = 0.275–0.310). �e correlation was assessed by Spearman’s two-tailed signi�cance test.

Feature extraction, features selection and radiomics signature construction. As shown in the 
method, we extracted 22 �rst-order features, 11 shape features, 28 gray level co-occurrence matrix (GLCM) fea-
tures from the segmented mammography image and 238 wavelet features were extracted via wavelet decompose 
in 7 wavelet channels. A total of 299 features were extracted from the mammography images.

We conducted regularized regression to the extracted features from the primary cohort using LASSO and 
reduced the feature numbers from 299 to 10 including one non-wavelet feature and nine wavelet features, which 
were signi�cantly related to ALN metastasis. Figure 2(a) shows the result of the feature selection according to the 
parameter log(λ) and the mean absolute error. In addition, the corresponding coe�cients of individual features 
were also exported from the LASSO analysis.

�e selected ten features were used to build the radiomics signature. Radiomics score (Rad-Score) is a man-
ifestation of radiomics signature and contains all the information of the selected features. �e Rad-Score was 
calculated for each patient as a linear �tting of selected features that were weighted by their respective coe�-
cients. �e Fig. 2(b,c) show the Rad-Score of the patients in the primary and validation cohorts, respectively. �e 
patients’ ALN metastasis statuses were also indicated with colored bars. �e correlation between Rad-Score and 
ALN status is shown in Table 1.

The predictive accuracy of the radiomics signature. �ere was a signi�cant di�erence in radiom-
ics scores between ALN metastasis and non-ALN metastasis patients in the primary (p < 0.01) and validation 
(p < 0.01) cohorts. Table 2 shows the performance details of radiomics signature. �e AUC and classi�cation 

https://doi.org/10.1038/s41598-019-40831-z
https://www.slicer.org/
https://mathworks.com/products/matlab.html
https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statistical-software
https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statistical-software
https://www.r-project.org/


5SCIENTIFIC REPORTS |          (2019) 9:4429  | https://doi.org/10.1038/s41598-019-40831-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

accuracy of the radiomics signature from the primary cohort were 0.895 (95% con�dence interval [CI], 0.887–
0.909) and 84.0% (95% CI, 83.8–84.8%), respectively. �e AUC and classi�cation accuracy of radiomics signature 
from the validation cohort were 0.875 (95% CI, 0.698–0.891) and 80.0% (95% CI, 66.4–83.2%), respectively. �e 
ROC curves of the primary and validation cohorts with AUC values are shown in Fig. 3(a,b). Furthermore, the 
TPR and TNR of the radiomics signature were 83.6% (95% CI, 82.0–85.2%) and 83.7% (95% CI, 79.5–85.7%) in 
the primary cohort, 81.8% (95% CI, 72.7–84.9%) and 80.0% (95% CI, 66.7–82.2%) in the validation cohort.

The radiomics nomogram and its performance. We develop a radiomics nomogram for predicting the 
patients’ ALN status by incorporating radiomics signature with age, T stage, tumor location, US ALN status, ER 
and PR status using multivariable logistic regression analysis (Fig. 4). �e calibration curve was used to estimate 
the consistent between the radiomics nomogram-predicted probability of ALN metastasis and the actual out-
comes. As shown in the Fig. 5(a), the predicted probability of ALN metastasis status is consistent with the actual 
lymph node metastasis outcomes. �e C-index of the radiomics nomogram for the primary cohort was 0.779 
(95% CI: 0.752–0.793) and 0.809 (95% CI: 0.794–0.833) for the validation cohort. Good performance was also 
shown for the probability of ALN metastasis in the validation cohort (Fig. 5(b)).

Clinical use. �e decision curve evaluated the performance for the radiomics nomogram in terms of clinico-
pathologic application, thereby, re�ecting its clinical usefulness. Within the probability of predicting ALN status 
ranges of 10% to 100%, more bene�t was added from the radiomics nomogram than either the treat-all-patients 
scheme or the treat-none scheme. Decision curve is shown in Fig. 6. Moreover, although the accuracy of SLNB 
is higher than this study, the radiomics model have some advantage over SLNB. SLNB is invasive and has some 
complication. What’s more, sentinel lymph node (SLN) is negative in patients with early breast cancer31. �is radi-
omics model is non-invasive and higher sensitivity (83.6% vs 77.1%) and the result of axially lymph nodes metas-
tasis is con�rmed by clinical gold standard in this study32. In addition to SLNB, there are also several methods in 
current standard of practice in clinically, including image evaluation, needle aspiration biopsy and pathological 
biopsy. Ultrasonography and mammography were used for image evaluation in breast cancer before surgery. 
However, the accuracy of this study is higher than both ultrasonography alone and mammography alone (80.9% 
vs 71.9% vs 78.4%)33. �e sensitivity of needle biopsy is lower than this radiomics model (83.6% vs 79.6%)34. And 
this study is non-invasive. Pathological biopsy is the gold standard for clinical diagnosis of axially lymph node 
metastasis, but the result cannot obtain until postoperative35. �e process of radiomics model is non-invasive 
and was completed in preoperative. In short, each step re�ects the strengths of our radiomics prediction model.

Factors

Primary Cohort

P(*p < 0.05)

Validation Cohort

P(*p < 0.05)LN Metastasis (+) LN Metastasis (−) LN Metastasis (+) LN Metastasis (−)

Age(mean ± SD) 55.83 ± 11.26 55.93 ± 10.21 0.400 55.68 ± 10.15 52.93 ± 13.99 0.523

T 0.043* 0.021*

T1 25 (40.98) 13 (26.53) 8 (36.36) 4 (26.67)

T2 32 (52.46) 28 (57.14) 12 (54.55) 7 (46.67)

T3 4 (6.56) 5 (10.20) 2 (9.09) 2 (13.33)

T4 0 (0) 3 (6.13) 0 (0) 2 (13.33)

Location 0.275 0.960

UIQ 14 (22.95) 11 (22.45) 5 (22.73) 3 (20)

UOQ 33 (54.1) 28 (57.14) 12 (54.55) 9 (60)

LIQ 5 (8.2) 4 (8.17) 2 (9.08) 1 (6.67)

LOQ 9 (14.75) 6 (12.24) 3 (13.64) 2 (13.33)

ER 0.038* 0.043*

+ 20 (32.79) 14 (28.57) 7 (31.81) 3 (20)

− 41 (67.21) 35 (71.43) 15 (68.19) 12 (80)

PR 0.310 0.26

+ 26 (42.62) 24 (48.98) 9 (40.91) 7 (46.67)

− 35 (57.38) 25 (51.02) 13 (59.09) 8 (53.33)

US_label 0.002* 0.026*

+ 35 (57.38) 14 (28.57) 19 (86.36) 8 (53.33)

− 26 (42.62) 35 (71.43) 3 (13.64) 7 (46.67)

RadScore (median 
(interquartile range))

−0.147 (−0.669 to 
−0.210)

−0.054 (−0.321 to 
0.074)

<0.01*
−0.370 (−0.539 to 
−0.116)

−0.208 (−0.441 to 
0.007)

<0.01*

Table 1. Characteristics of Patients in the Primary and Validation Cohorts. NOTE: P value is calculated from 
the univariable association analyses between each of the Factors with the LN metastasis status. �e factors 
mainly includes age, T stage, tumor location, ER and PR status of immunohistochemical results. Abbreviations: 
LN, lymph node; SD, standard deviation; T, T stage; UIQ, upper inner quadrant; UOQ, upper outer quadrant; 
LIQ, lower inner quadrant; LOQ, lower outer quadrant; ER, estrogen receptor; PR, progesterone receptor. (*P 
value < 0.05).
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Discussion
ALN status is an important factor in developing a personized treatment plan for patients with breast cancer3. 
Currently, SLNB is used as a standard tool to assess the risk of preoperative ALN in clinically node-negative 
patients with breast cancer. Prior to the American College of Surgeons Oncology Group (ACOSOG) Z0011 trial, 
patients with 1 or 2 positive SLN via SLNB were considered to be high-risk grade, who would be treated with 
ALND. However, the ACOSOG Z0011 trial reported that equivalent overall survival for 1 or 2 SLN-positive 
patients with SLNB alone and SLNB + ALND, both of them all undergoing breast-conserving surgery, 
whole-breast radiotherapy, and systemic therapy36–38. �e result supports the notion de�ning 1 or 2 SLN-positive 
patients via SLNB as low-risk grade. In addition, the majority of breast cancer patients are SLN negative. �ere 
was low incidence of ALN metastases because the size of detected primary tumors has decreased since the public 
screening mammography programmer was introduced39. Furthermore, SLNB is an invasive examination and 
some studies have also begun to dispute the application of SLNB in the evaluation of preoperative ALN status in 
patients with breast cancer40.

Some related research show that pathological features of primary tumor can predict axillary lymph nodes 
metastasis in breast cancer41. Radiomics features of biomedical images contain information that re�ects underly-
ing pathophysiology and these relationships can be revealed via quantitative image analyses42. So that quantitative 

Figure 2. �e parameter selection for feature selection is show in (a), the radiomics score histogram of primary 
cohort and validation cohort is shown in (b) and (c) respectively. �e mean absolute error was plotted versus 
log(λ) in (a). �e positive of ALN metastasis was indicated by red bar, and the negative of ALN metastasis was 
indicated by blue bar. �e y-axis denoted the value of radiomics score in (b) and (c).

Index

SVM Classi�cation Nomogram

Primary Cohort Validation Cohort Primary Cohort Validation Cohort

ACC 0.840 [0.838,0.848] 0.800 [0.664,0.832] 0.745 [0.709,0.764] 0.730 [0.702,0.810]

AUC/C-Index 0.894 [0.887,0.909] 0.875 [0.698,0.891] 0.820 [0.752,0.845] 0.809 [0.794,0.833]

TPR 0.836 [0.820,0.852] 0.818 [0.727,0.849] NA NA

TNR 0.837 [0.795,0.857] 0.800 [0.667,0.822] NA NA

Table 2. Performance of the SVM classi�cation model and nomogram. NOTE: ACC, accuracy; AUC, area 
under ROC curve; TPR, True Positive Rate; TNR, True Negative Rate.
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image features of primary tumor can also use to predict axillary lymph nodes metastasis. Second, according to 
Huang’s and Dong’s study6,8, a radiomics signature was concluded by radiomics features that extracted from 
primary tumor, which used to predict lymph nodes metastasis and show a great performance. �erefore, it is 
reasonable that we choose the primary tumor as the segmentation region.

�ere is a great advantage to develop a tool that accurately and non-invasively predict ALN metastasis pre-
operatively. Establishing prognosis models with clinical factors is a feasible method to evaluate the likelihood of 
ALN metastasis. For example, Klar et al. developed a MSKCC nomogram from 3786 patients undergoing lymph 
nodes biopsy in a retrospective analysis. �is nomogram obtained an AUC of 0.754 in predicting the possibility of 
lymph node metastasis43. In addition, several previous studies have used clinicopathologic, immunohistochem-
ical and genetic factors as independent predictors of ALN metastasis44, such as lymphovascular invasion, Ki-67 
index, histological grade, molecular subtypes and miRNA. However, the clinicopathologic data are available only 
a�er surgery and immunohistochemical examinations. Although genetic analysis had proven to be a reliable 
method for predicting preoperative ALN status in patients with breast cancer, there are still some limitations 
such as more expensive and more complex of data acquisition. In clinically, a reliable, accurate, quanti�able and 
non-invasive methods to predict preoperative ALN status in breast cancer is exactly what doctor need.

Radiomics is a powerful method and has been proved to be able to improve the performance of cancer diagno-
sis, prediction and decision making6–8. In this study, we developed and validated a mammography-based radiom-
ics nomogram for the preoperative prediction of ALN status in patients with breast cancer. For the construction 
of this radiomics signature, the ROI containing the whole tumor area of the mammography image was segmented 

Figure 3. �e ROC curves for the primary (a) and validation (b) cohorts. �e AUC for the primary cohort is 
0.895 and 0.8725 for the validation cohort.

Figure 4. �e developed radiomics nomogram by multivariable logistics regression analysis.
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and processed, and then a total of 299 features were extracted and reduced to 10 features by the LASSO. �ose 
10 features that correlated signi�cantly with ALN metastasis were used to construct the signature. �e radiomics 
signature has a favorable discrimination with an AUC of 0.895 in the primary cohort and 0.875 in the validation 
cohort. In order to allow the clinician to evaluate the risk of ALN metastasis using the radiomics signature, the 
nomogram was developed by combining the radiomics signature with clinicopathologic and immunohistochem-
ical risk factors, including T stage, age, tumor location, ER and PR status, US ALN status. �is nomogram showed 
an excellent predictive and discrimination power with a C-Index of 0.779 (95% CI, 0.752–0.793) in the pri-
mary cohort and 0.809 (95% CI, 0.794–0.833) in the validation cohort. �is nomogram provides an accurate and 
non-invasive tool in predicting the risk of preoperative ALN metastases in patients with breast cancer. Moreover, 
textural biomarkers objectively re�ect the heterogeneity of tumor, and quanti�able features of the radiomics sig-
nature have the potential to be ideal true biomarkers45. �erefore, this radiomics nomogram may be used as a 
reliable predictive tool for the ALN status in patients with breast cancer.

Figure 5. Calibration curves of the radiomics nomograms generated from the primary (a) and validation 
cohorts (b). �e goodness of �ts of predicted probability from radiomics nomograms with the actual outcomes 
of the ALN metastasis was assessed. �e y-axis represents the actual rate of ALN metastasis while the x-axis 
represents the calculated probability of ALN metastasis. �e dashed lines represent the actual diagnosis and the 
solid line represents the performance of the radiomics nomogram without removed the bias.

Figure 6. Decision curve analysis for the radiomics nomogram. �e x-axis shows the threshold probability and 
y-axis measures the net bene�t. �e red line represents the radiomics nomogram. �e blue line represents the 
assumption that all patients showed ALN-positive �e black line represents the assumption that no patients 
showed ALN-positive.

https://doi.org/10.1038/s41598-019-40831-z


9SCIENTIFIC REPORTS |          (2019) 9:4429  | https://doi.org/10.1038/s41598-019-40831-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

At present, there are few studies have predicted lymph node status in breast cancer via radiomics analysis 
method7,45,46. In recently study, Dong and their colleagues used radiomics of T2-weighted fat-suppression and 
di�usion-weighted MRI to preoperatively predict SLN metastasis with an AUC of 0.863 in primary cohort and 
0.805 in the validation cohort in breast cancer. In addition, ultrasound-guided biopsy can play a very important 
role in preoperative evaluation, but low sensitivity a�ects its assessment. In the study of Nehmat Houssami47 and 
the study of V. Kuenen-Boumeester48, ultrasound-guided lymph node biopsy has the limitation of low sensibility 
in diagnosis lymph node metastasis. �is study is even more prominent than previous studies because the radi-
omics nomogram that we developed was based on the mammography data. On the one hand, mammography is 
widely used for breast cancer diagnosis in clinically, which can o�er su�cient data to meet the requirement of 
radiomics analysis. On the other hand, mammography-based radiomics study has a lower cost than other radi-
omics studies, e.g. MRI-based radiomics. In addition, our mammography-based radiomics nomogram can help 
clinicians to evaluate the risk of ALN metastasis easily. With this radiomics nomogram tool, the patients with low 
risk of ALN metastasis can avoid ALND and SLNB. Oppositely, the patients with high risk of ALN metastasis, 
ALND should be conducted directly and SLNB is no longer necessary.

�is study has several limitations. First, a larger number of patients are needed to acquire more reliable evi-
dence for clinical application. Second, the data of our radiomics model established and validated in our study 
were all from the same hospitals of China, so that still need a multiple center to carry out external validation for 
the model. �ird, studies indicate that genomic factors have a good association with lymph nodal metastasis46. 
�erefore, the integration of genomics signatures may further enhance the ability of radiomics nomograms to 
predict ALN status in patients with breast cancer in future. On the one hand, the further research of this study is 
�rstly increase the number of patients. On the other hand, we will add an independent validation cohort com-
prises the patients of several di�erent hospital or di�erent complexion to further validate the performance of 
this radiomics model. Moreover, due to this study was selected the primary tumor area as region of interest, it 
was demonstrated that the features of primary tumors also a�ect ALN metastasis in patient with breast cancer. 
�erefore, we think that using the tumor microenvironment as region of interest may develop a great perfor-
mance in clinical research. Finally, when the performance of the radiomics model meets the accreditation criteria: 
accuracy conform to 94–98.6%, Sensitivity conform to 77.1–93.3%, the clinical application and decision making 
will start49.

In summary, our radiomics nomogram is a reliable and non-invasive predictive tool for preoperative predic-
tion of ALN status and can be conveniently used to optimize current treatment strategy for breast cancer patients.
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