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Objective. To develop an artificial intelligence method predicting lymph node metastasis (LNM) for patients with colorectal cancer
(CRC). Impact Statement. A novel interpretable multimodal AI-based method to predict LNM for CRC patients by integrating
information of pathological images and serum tumor-specific biomarkers. Introduction. Preoperative diagnosis of LNM is
essential in treatment planning for CRC patients. Existing radiology imaging and genomic tests approaches are either
unreliable or too costly. Methods. A total of 1338 patients were recruited, where 1128 patients from one centre were included
as the discovery cohort and 210 patients from other two centres were involved as the external validation cohort. We developed
a Multimodal Multiple Instance Learning (MMIL) model to learn latent features from pathological images and then jointly
integrated the clinical biomarker features for predicting LNM status. The heatmaps of the obtained MMIL model were
generated for model interpretation. Results. The MMIL model outperformed preoperative radiology-imaging diagnosis and
yielded high area under the curve (AUCs) of 0.926, 0.878, 0.809, and 0.857 for patients with stage T1, T2, T3, and T4 CRC, on
the discovery cohort. On the external cohort, it obtained AUCs of 0.855, 0.832, 0.691, and 0.792, respectively (T1-T4), which
indicates its prediction accuracy and potential adaptability among multiple centres. Conclusion. The MMIL model showed the
potential in the early diagnosis of LNM by referring to pathological images and tumor-specific biomarkers, which is easily
accessed in different institutes. We revealed the histomorphologic features determining the LNM prediction indicating the
model ability to learn informative latent features.

1. Introduction

Colorectal cancer (CRC) remains the third most common
malignancy and is a leading cause of cancer-related mortal-

ity in the world, despite the improvement in the overall out-
comes due to the development of new cancer treatments and
management [1]. Preoperative neoadjuvant chemoradio-
therapy (nCRT) followed by total mesorectal excision
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(TME) significantly reduces local recurrence and shows
favourable prognosis; thus, it has become the standard ther-
apeutic regimen for locally advanced rectal cancer (clinically
staged as N1-2) [2, 3]. Moreover, for patients with node neg-
ative T1 lesions (N0 staging), endoscopic submucosal exci-
sion is recommended, and no additional surgery is
required [4]. Thus, preoperative clinical nodal staging is crit-
ical to determine the treatment strategy. However, the pre-
diction of lymph node metastasis (LNM) status before
surgery remains challenging for CRC.

Preoperative imaging such as computed tomography
(CT) and magnetic resonance imaging (MRI) is currently
the most common approach for assessing LNM, which is
considered the gold standard for node staging. Node size,
border, shape, and intensity are the main criteria for evaluat-
ing whether the node has metastatic lesions [5]. Kim et al.
found that the accuracy rates of MRI and CT for LMN of
rectal cancer were 63% and 56.5%, respectively [6]. The cri-
teria of diagnosing metastasis are mainly based on the size
and shape of lymph nodes, where micrometastasis may be
filtered out. The guideline varies from institution to institu-
tion. For instance, others employ size criteria with cutoff
values for nodal positivity that range from 3 to 10mm [7].
A meta-analysis reported that the sensitivities and specific-
ities of these imaging tests were 53-88% and 60-97%, respec-
tively, and the area under curve (AUC) ranged from 0.66 to
0.79 [8]. In addition to imaging approaches, molecular tests
have been reported for LNM prediction. Ozawa et al. identi-
fied 5 microRNAs (MIR32, MIR181B, MIR193B, MIR195,
and MIR411) and showed that these microRNAs were sig-
nificantly changed in T1 and T2 CRC patients, and the
AUC value was 0.77 for biopsy serum samples [9]. However,
the high testing expenses and instability of microRNAs in
serum hinder their widespread application.

Deep learning, as one of the most advanced machine-
learning methodologies, has recently shown record-
breaking performance in many challenging medical tasks,
including disease diagnosis, treatment, and prognosis [10,
11]. Different from conventional machine-learning methods
that mainly rely on handcrafted features, deep learning has
the advantage of being able to learn latent features automat-
ically and effectively [10]. Recent studies have shown the
potential success of deep learning in achieving competitive
and even superior performance compared to human experts
on multiple tasks in medical image analysis. For example,
Esteva et al. demonstrated that the classification of skin
lesions using a single deep convolutional neural network
(CNN) achieved a level of diagnostic capability comparable
to that of expert dermalogists [12]. Similarly, Hannun et al.
proposed an end-to-end deep learning method that could
achieve cardiologist-level arrhythmia detection and classifi-
cation using ambulatory electrocardiograms [13]. Recently,
deep learning has also shown its potential in digital pathol-
ogy for tasks such as histopathology diagnosis [14], progno-
sis [15], gene mutation [16], and the origin prediction for
cancers of unknown primary [17]. Although deep learning
is rapidly advancing, to the best of our knowledge, it has
not been applied in the prediction of LNM from CRC.
Besides, most current deep learning-based methods for

pathology analysis employ only a single data modality (i.e.,
histopathological images) [14–18]; however, the combina-
tion of multiple complementary data modalities showed
superiority when addressing biomedical challenges [19].

In this study, we developed a Multimodal Multiple
Instance Learning (MMIL) model based on the deep neural
network for predicting LNM. We integrated the information
of both the blood biomarker alterations in the serum and the
tumor microenvironment in histopathological images into
the MMIL model to predicate the LNM status of patients
with colorectal cancer. Moreover, we explored and visualized
the deep learning features that are most salient to LNM pre-
diction to provide clinicians with an intuitive interpretation
of our MMIL model, improving the model transparency and
interpretability.

2. Results

2.1. Study Design and Methodological Development of MMIL.
This is a retrospective, multicentre study that recruited
CRC patients from three hospitals specializing in gastroin-
testinal disease in China [the Sixth Affiliated Hospital of
Sun Yat-sen University (SYSU6), the First Affiliated Hos-
pital of Sun Yat-sen University (SYSU1), and the Fourth
Hospital of Harbin Medical University (HMU4)]. A total
of 1338 CRC patients with different T stages (T1 to T4)
were recruited and divided into two cohorts: the discovery
cohort, including 1128 patients (T1: 58, T2: 114, T3: 846,
and T4: 110) from SYSU6; and the external validation cohort,
composed of 210 patients (T1: 24, T2: 31, T3: 141, and T4: 14)
from SYSU1 and HMU4. The patient inclusion and exclusion
criteria are illustrated in Figure 1. The discovery cohort was
used to develop and evaluate the MMIL model (Figure 2),
and external validation was applied to evaluate its generaliza-
tion performance. Based on the tumor-node-metastasis
(TNM) staging information, the patients were categorized into
two groups: without LNM (patients with N0 stage, denoted as
LNM-) and with LNM (patients with N1 and N2, denoted as
LNM+). The N stage was pathologically diagnosed after radi-
cal TME surgery. A more detailed information in the study is
summarized in Table 1.

2.2. Performance Evaluation in the Discovery Cohort. The
cross-validation procedure (6-fold for T1, T2, and T4, as
well as 10-fold for T3 and T1) was used to proof the concept
and evaluate the MMIL model on the discovery cohort. The
MMIL model achieved LNM prediction with AUCs of 0.926
(95% CI: 0.864-0.988), 0.878 (95% CI: 0.824-0.933), 0.809
(95% CI: 0.775-0.843), and 0.857 (95% CI: 0.799-0.915) for
stage T1, T2, T3, and T4, respectively (Figures 3(a) and 3(b),
Supplemental Table 1). Furthermore, we also evaluated the
performance of the MMIL method for all patients mixed
with different T stages (denoted as Tall), and the model
showed an average AUC of 0.719 (95% CI: 0.694-0.744)
(Figures 3(a) and 3(b)).

Our results showed that MMIL had superior predictive
value compared with CT-based diagnosis. Taken T1 stage
for example, the sensitivity and specificity (88.9% and
91.1%, respectively) of the MMIL model were higher
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compared to CT-based diagnosis (77.8% and 85.7%, respec-
tively, Figures 3(c)–3(f), Supplemental Table 1). Similar
results were found in the other T stages, MMIL
outperformed CT-based diagnosis by at least 7.3% in the
sensitivity/specificity of patients with stage T2, T3, and T4,
and the performance difference ranged from 7.3% to 32.3%
(Figures 3(c)–3(f)).

To evaluate the contribution of each data modality, we
employed the multiple instance learning network individu-
ally using the single image-based feature extraction channel
to evaluate the performance of leveraging histopathological
images only. Meanwhile, Extreme Gradient Boosting
(XGBoost) [20] was employed to combine four serum
tumor-specific biomarkers (CEA, CA125, CA19-9, and
AFP) to evaluate the performance of leveraging blood bio-
marker only. The performance comparison between our
proposed MMIL method, using histopathological image only
and using blood biomarkers only, illustrated the benefit of
combining multimodality data in the LNM prediction task.
To be specific, the MMIL achieved 0.076 (T1), 0.177 (T2),
0.193 (T3), 0.094 (T4), and 0.087 (Tall) higher average
AUC than the case only relying on the imaging modality
(P value: T1 0.261, T2 0.015, T3 1:554 × 10−5, T4 9:443 ×
10−6, Tall1:145 × 10−6). Meanwhile, it also achieved 0.363
(T1), 0.206 (T2), 0.124 (T3), 0.101 (T4), and 0.037 (Tall)
higher average AUC compared to leveraging tumor bio-
marker only (P value: T1 0.005, T2 2:548 × 10−4, T3 4:258
× 10−4, T4 0.005, and Tall 0.002, Figure 3(b), Supplemental

Table 1). For most T stages, the prediction performance of
histopathological-image-only model was better than blood-
biomarker-only model. However, in the T3 stage, the
biomarker-only model was superior to image-only model
(0.685 vs. 0.616, Figure 3(b), Supplemental Table 1).

2.3. Performance Evaluation in the External Validation
Cohort. MMIL model was further validated in an external
validation cohort with 210 subjects from two centres. Our
model achieved AUC values of 0.855 (95% CI: 0.678-
1.000), 0.832 (95% CI: 0.628-1.000), 0.691 (95% CI: 0.602-
0.780), and 0.792 (95% CI: 0.538-1.000) for T1, T2, T3 and
T4, respectively (Figure 4(a), Supplemental Table 2), which
were slightly inferior compared to the performance in the
discovery cohort. Furthermore, we conducted a cohort
study, where patients enrolled before 2019 (2013-2018)
were utilized for fine-tuning the MMIL model and patients
enrolled in 2019 were utilized for the test. Generally, the
MMIL model resulted in slightly better AUC compared to
the direct test for T1, T3, and T4 with values of 0.857
(95% CI: 0.578-1.000), 0.700 (95% CI: 0.603-0.797), and
0.800 (95% CI: 0.753-1.000), but relative significant
performance increase at T2 stage with AUC of 0.893 (95%
CI: 0.726-1.000) compared to 0.832 (95% CI: 0.628-1.000)
(Figure 4(b), Supplemental Table 3). Simultaneously, we
found relative salient sensitivity or specificity increase
comparing the performance in the cohort study with the
direct test (Supplemental Table 3). These results showed

Assessed patients
(n = 1718)

Inclusion Criteria (n = 1338)
(i) Patients with stage I-III CRC underwent
radical resection
(ii) Available H&E-stained biopsy slide
before surgery
(iii) Biopsy was pathologically diagnosed as
adenocarcinoma

(i) Patients with other tumors (n = 25)
(ii) Neoadjuvant treatment before surgery
(n = 335)
(iii) Insufficient quality of biopsy WSI (n = 20) 
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Figure 1: STARD diagram of participants in the study.
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that the model trained with collected data can be employed
to predict LNM on future unseen data, indicating its
potential in the prospective experiment. And at the same
time, the results also suggested that utilizing collected data
to fine-tune the MMIL model allowed the model to learn
domain bias of each medicine centre to potentially further
improve its performance.

2.4. Model Interpretation. To illustrate the decision mecha-
nism of the developed MMIL model, we evaluated the
LNM prediction probability distribution in each WSI, where
the LNM probability of each subregion (tile) was calculated
and visualized. Figure 5 shows the LNM probability histo-
grams of tiles from sample WSIs in the discovery cohort.
Those tiles with high LNM probability scores (near 1) and
those with low LNM probability scores (near 0) had distin-
guishable features supporting LNM prediction.

To make it easier for pathologists to understand the charac-
teristics of the tiles with the most importance, we used human-
understandable histomic features to characterize these tiles. As
shown in Supplemental Figure 1, features such as “Density_
distance_for_neighbors_1_means,” “Shape.Solidity_eosin,”
“Nucleus.Haralick.SumAverage.Mean_eosin,” and “Size.Area_
eosin” represented the histomic features with significant
alterations between LNM+ and LNM- WSIs in different T
stages. Supplemental Figure 1A shows that the tumor cells of
LNM+ patients were denser than those of LNM- patients,
which was consistent with the finding of the previous study

showing that cell density modulates metastatic aggressiveness
in colorectal cancer [21]. Supplemental Figures 1B and 1C
shows enhanced texture, abnormal shape, and enlarged size of
aggressive tumor cell nuclei in LNM+ patients, indicating
increased cell division and increased heterogeneity.

3. Discussion

In the present study, we developed and validated a multi-
modal system that incorporated features of pretreatment
digitalized histopathological images and tumor-specific bio-
markers for predicting LNM status in patients with CRC.
Our model could predict LNM status and attained robust
performance exceeding previously reported performance.
More importantly, we provided a novel and easy-to-use
model based on biopsy-acquired H&E slides and tumor-
specific biomarkers that are routinely examined before treat-
ment, making it well suited for routine clinical practice and
assisting treatment decision for individualized CRC patient.

Moreover, we demonstrated that MMIL model outper-
formed each of the individual features alone (digital patho-
logical image or tumor-specific biomarkers). Additionally,
we believed there was significant biological rationale for
individual component: (1) pretreatment H&E image reflects
the tumor cell features and relationship between tumor cell
and environment directly, and recent advances in AI have
driven digitalized pathology to be a novel and efficient way
to solve challenging clinical tasks; (2) pretreatment tumor-
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Figure 2: The overall framework of the proposed Multimodal Multiple Instance Learning (MMIL) AI system for predicting lymph node
metastasis (LNM). Our system is composed of two feature extraction channels and an information fusion module, i.e., an image-based
feature extraction channel that generates a representation of histopathological images via multiple instance learning (MIL), a biomarker-
based feature extraction channel that generates a representation of serum tumor-specific biomarkers based on a fully connected network,
which are followed by an information fusion module to integrate the obtained features from both channels via a gating-based attention
mechanism as well as tensor fusion and to perform the final classification. The MIL method in the image-based feature extraction
channel consists of instance-level feature extraction, instance-level feature selection, and bag-level representation generation. ResNet-18
works as an instance-level feature extractor. The feature selection procedure selects discriminative instance-level features. The attention-
based deep multiple instance learning model is used to synthesize instance-level features and generate bag representations.
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Figure 3: Performance evaluation of LNM prediction by different methods evaluated in the discovery cohort. (a) ROC curves of MMIL in
different stages. (b) Area under curves of different methods. (c) Sensitivities obtained by different methods. (d) Specificities obtained by
different methods. (e) CT-testing positive LNM were predicted negative using the MMIL model and finally confirmed as negative. (f)
CT-testing negative LNM were predicted positive using the MMIL model and finally confirmed as positive. The detailed numbers of (a–
c) are given in Supplemental Table 1. Abbreviations: ROC = receiver operating characteristic; AUC = area under the curve; MMIL:
multimodal multiple instance learning.
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related biomarkers had been reported to significantly corre-
late with LNM and served as important markers for progno-
sis in patients with CRC [22]. Therefore, we combined
histopathological images and tumor-specific biomarkers,
including CEA, CA125, CA19-9, and AFP through deep
learning to develop an automatically predictive model. Our
study showed that the combined model had a higher predic-
tive power compared to image-only model and biomarker-
only model (Figure 3). Furthermore, we found that image-
only model outperformed the biomarker-only model in
most T stages except T3 stage (Figure 3). The potential rea-
son was that most of the biomarkers, i.e., CEA, CA125, and
CA19-9 had significant alternations between LNM-/LNM+
patients in T3 stage which could not be observed in other
stages (Table 1). Meanwhile, for T3 stage, CA19-9 was the
most distinguished biomarker between LNM-/LNM+
patients (P value < 0:0001) and made the greatest contribu-
tion in biomarker-only classifier (Table 1, Supplemental
Figure 2).

Our MMIL model has multiple advantages for the LNM
status predication compared to previous methods [23].
Imaging tests and related radiomics were the most common
approaches used to predict LNM status [24]. Two meta-
analyses reported suboptimal sensitivities and specificities
in the range of 55-78% for predicting LNM with MRI [25].
Huang et al. developed a prediction nomogram including
radiomic signature, CT-reported LN status, and CEA level,
the C-index were 0.736 and 0.778 in internal and external
validation cohort, respectively [26]. Different from prior
studies, our method automatically learned latent distin-
guishable features and therefore avoided the effort of making
handcrafted features. Besides, different from most existing
MIL methods, which mainly rely on local tile information
for inference based on the standard multiple instance
(SMI) assumption [27], the MMIL method comprehensively

extracts information from the whole WSI. Furthermore, we
developed our proposed MMIL model using a large dataset,
which is beneficial for the learning-based method since the
diversity and heterogeneity of the patient data are consid-
ered. In addition, the MMIL method was able to integrate
the information of different modalities, which was proven
to be more accurate than only referring to the information
of one modality (Figure 3 and Supplemental Table 1).

Compared with other T stages, the accurate prediction of
LNM status for patients in the T1 stage played a more
important role in clinical practice, since the treatment solu-
tions for LNM+ and LNM- patients in this stage greatly dif-
fer. Interestingly, the MMIL model had the highest
performance for stage T1 compared to the other T stages
(Figure 3). Besides, we found that compared to the perfor-
mance of Tall, substages including T1, T2, T3, and T4 pos-
sessed higher AUC during discriminating LNM+ and
LNM- [Figure 3(a), AUC: 0.719 (Tall) vs. 0.926 (T1), 0.878
(T2), 0.809 (T3), and 0.857(T4)]. The potential reason may
be that the underlying features were more similar in specific
substage and made them easier to generalize.

We evaluated the generalization of the MMIL model in
an external validation dataset consisting of subjects from
two different centres. Considering that there is a data gap
between different centres, directly applying the pretrained
AI models trained on the data set of one centre to the data
set of other medical centres normally causes performance
degradation. The data gap might be staining heterogeneity
between different centres due to the protocol differences in
H&E staining, different scanning devices, and individual
operational variations. However, the performance degrada-
tion of the proposed MMIL model in the external validation
was limited, which indicated the generalization ability of our
model and its ability to learn domain-invariant features
(Protocol differences of discovery cohort and external

T1 T2

(a) (b)

T stage
T3 T4

0.0

0.2

0.4

0.6

0.8

1.0

T1 T2

T stage

T3 T4
0.0

0.2

0.4

0.6

0.8

1.0

AUC
Accuracy

Sensitivity
Specificity

Figure 4: The performance of the MMIL model evaluated in the external validation dataset with different T stages (T1, T2, T3, and T4). (a)
The performance of the MMIL model directly tested in external validation cohort. (b) A cohort study, where patients enrolled before 2019
(2013-2018) were utilized for fine-tuning the MMIL model and patients enrolled in 2019 were utilized for the test. The detailed numbers are
given in Supplemental Table 2 and Table 3.
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validation cohort are given in the supplement section). In
practice, transfer learning by fine-tuning the developed
MMIL model on one centre’s own dataset to familiarize
the AI model with the specialization of data from this centre
is a possible way to further improve the performance [28]. In
our cohort study, the fine-tuning technology brings slight

improvement to external validation dataset except T2
cohort. One of the possible reasons is that, compared to
other T stages, T2 cohort has more difference between the
internal dataset and external dataset. On the external cohort,
T2 differences are due mainly to the inappropriate histolog-
ical heterogeneity of several case series and the uneven

Figure 5: Visualization of the LNM probability of the subregions (tiles) of sample WSIs. (a) The example histograms of the LNM probability
scores of WSIs from LNM+ and LNM- patients with different T stages. (b) Examples of LNM probability heatmaps showing the probability
distribution on WSIs. The colors reflect LNM probabilities.
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distribution between groups. Therefore, fine-tuning strategy
brings more performance enhancement.

Recently, concerns have been raised regarding the inter-
pretation of deep learning methods. To illustrate the deci-
sion mechanism of the established MMIL model, we
developed a visualization method to assess the LNM proba-
bilities of the subregions (tiles) of WSIs. Figure 5 shows sam-
ples of LNM probabilities heatmaps to provide a better
visualization. The features of deep learning are claimed to
be not easy to be understood by human. In the present
study, we tried to characterize the high-value tiles (tiles with
top LNM+ probabilities and LNM- probabilities) with his-
tomic features, which are easier to be understood. Supple-
mental Figure 1 shows the histomic features with
significant alterations between LNM+ and LNM- patients
in top-value tiles, which have potential as a signature to
divide LNM+ and LNM- patients.

One limitation of this study is that we trained our model on
one centre currently. Training themodel on datasets of multiple
different centres may allow the network to learn domain-
invariant features more effectively and enhance its generaliza-
tion ability. To this end, we are collecting more subjects from
other data centres and will evaluate the performance of our
model trained on multiple centres after receiving sufficient data
from other medical centres. Another limitation is that our study
was a retrospective study, and the quality of H&E-stained
images was inconsistent across hospitals, which limited the per-
formance improvement of the MMIL model. Satisfactorily,
external validation in independent hospitals shows that the pre-
diction model should be reliable, robust, and generalizable in
clinical practice. Additionally, we currently focus on triaging
patients into two groups: LNM+ vs. LNM-. However, patients
with LNM belong to different N stages (without LNM: N0 stage
and with LNM: N1 and N2 stages). One valuable future work
can be the fine-grained prediction of the N substage as a multi-
class classification task. However, a much larger dataset would
be necessary.

4. Conclusion

In conclusion, we proposed an AI system based on a deep
neural network and MIL for predicting LNM status before
treatment. The model that integrated digital biopsy images
and tumor-specific biomarkers showed superior predictive
power compared to individual modality. Our AI system
has clinical value to guide preoperative decision-making
based on H&E image and tumor-specific biomarkers in
CRC patients.

5. Method

5.1. Whole-Slide Images Preparation, Annotation, and
Preprocessing. All slides were made by staining a 3-μm
formalin-fixed paraffin-embedded (FFPE) biopsy section with
H&E and then digitized using an Aperio (Leica Biosystems,
Buffalo Grove, Illinois, USA) AT2 whole-slide scanner. Tumor
cells and glands were manually delineated using the ASAP
software (version 1.9, https://computationalpathologygroup
.github.io/ASAP/) at 20x magnification (0:5 μm/pixel) by

two expert pathologists (Dr. Hailing Liu and Dr. Xinjuan
Fan) who have been engaged in digestive pathology for at least
five years. In this work, the pathologists first manually anno-
tated the cancer regions on each WSI and used them as ROIs
for the following processing step. The ROIs were divided into
a set of patches with a size of 512 × 512 pixels. Patches with
less than 20% overlap with the ROIs were excluded before fur-
ther analysis.

5.2. Blood Biomarker Preprocessing. It has been reported that
biomarker in the blood can indicate LNM in patients [29];
thus, we collected serum tumor-specific biomarkers such as
CEA, CA125, CA19-9, and AFP as the input of the bio-
marker channel of the MMIL model. Considering the lack
of some biomarkers in some patients in the discovery cohort
and external validation cohort, we performed multivariate
imputation via chained equations to impute the missing bio-
markers [30]. As the biomarkers are numeric features, the
predictive mean matching method was applied for each bio-
marker. After data imputation, we normalized the biomark-
ers using min-max normalization. The distribution of these
biomarkers in LNM- and LNM+ patients after data imputa-
tion is shown in Supplemental Figure 3.

5.3. MMIL System. The framework of the proposed MMIL
model is illustrated in Figure 2, which consists of two feature
extraction channels (i.e., an image-based feature extraction
channel and a biomarker-based feature extraction channel)
and an information fusion module. In the image-based fea-
ture extraction channel, a MIL method was designed to gen-
erate a WSI-level representation vector from the
histopathological image. In the biomarker-based feature
extraction channel, a fully connected feedforward network
was developed to generate a molecular-level representation
vector. Then, the information fusion module integrated the
two obtained representation vectors via a gating-based atten-
tion mechanism and tensor fusion [31] to formulate the final
distinguishable information including the representation
and the conduct of the classification. The tensor fusion mod-
ulated the pairwise feature interactions across modalities by
taking the Kronecker product of the feature representations,
and the gating-based attention mechanism was able to con-
trol the expressiveness of each representation. More specifi-
cally, the proposed MIL in the image-based feature
extraction channel consisted of three steps: instance-level
(tile-level) feature extraction, instance-level (tile-level) fea-
ture selection, and bag-level (WSI-level) representation gen-
eration [32]. The details of the components are illustrated in
the remainder of this section. In the formalization of the
MIL, each WSI is regarded as a bag and the patches tiled
from the WSI are regarded as instances inside the bag. Dur-
ing the training phase, we chose to use the categorical cross-
entropy loss, which is defined as

L = −
1
N
〠
N

i=1
〠
C

c=1
δ yi = cð Þ log P yi = cð Þð Þ, ð1Þ

where N denotes the number of samples and C represents
the number of categories. The term δðyi = cÞ is the indicator
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function of the ith observation belonging to the cth category.
Pðyi = cÞ is the predicted probability by the model.

5.4. Instance-Level Feature Extractor. In our AI system, we
employed the ResNet-18 model [33] as the instance-level
feature extractor, which aimed at automatically learning use-
ful features from patches. From another perspective, this
component played the role of information compression,
and each inputted patch was transformed into a low-
dimensional feature space, which facilitated the following
classification stage. In this work, we used a pretrained
ResNet-18 model (trained on ImageNet) after removing
the final fully connected layer to extract distinguishable
features.

5.5. Feature Selection Strategy. The feature selection proce-
dure chose the most discriminative instance-level features
for generating the bag representation. Removing redundant
or irrelevant features can also simplify the following learning
task. Since, multiple instance learning is a typic weakly
supervised learning scheme, we utilized a weakly supervised
instance-level feature selection method proposed in our pre-
vious work [34] to conduct the feature selection, which is
based on histogram [35] and maximum mean discrep-
ancy [36].

5.6. WSI-Level Representation Generator. The WSI-level rep-
resentation generator in our pipeline generates the bag rep-
resentation by integrating the extracted and selected most
discriminative instance-level features. The attention-based
deep MIL method [35] was applied, which made the WSI-
level representation generator able to adaptively adjust the
contribution of each tiled patch for the final decision. After
iteratively and incrementally adjusting the attention weights
on the feature of each patch during the training phase, the
attention-based operator increased the contribution of the
instances that were more related to the corresponding bag
label and vice versa.

5.7. Network Training Setting. We implemented all the com-
ponents of the MMIL system including ResNet-18 and the
attention-based MIL network in the image-based feature
extraction channel, the fully connected feedforward network
in the biomarker-based feature extraction channel, the
gating-based attention mechanism, tensor fusion, and
classification-aimed fully connected layer in the information
fusion module [35] with Python and PyTorch [37] frame-
work. The Adam optimizer [38] was used to train the MMIL
model. To address the class imbalance problem during the
bag-level classification stage, we employed the ‘weighted
random sampler’ strategy in the PyTorch to prepare each
training batch.

5.8. Model Interpretability and Feature Visualization. To
explore the distribution of biomarkers in patients with or
without LNM, we applied hierarchical clustering to visualize
the pattern of tumor-specific biomarkers in CRC patients
with LNM using the pheatmap package. We also measured
the feature importance of each biomarker in the XGBoost
classifier by its contribution to the final prediction of LNM.

We assigned the LNM probability score to different tiles
as the measure of the usefulness of these tiles for the LNM
prediction. Heatmaps were generated by referring to the
assigned LNM probability to reflect the determination of
each subregion of the WSI. The histomic features such as
cellular morphological features corresponding to nucleus
size, shape, and texture, and the spatial relationship between
nuclei were also extracted to characterize the high-value
regions (with top LNM+ or LNM- probability scores) in
the WSI.

5.9. Statistic Analysis. The ROC curves of the results from
cross-validation were calculated and plotted using the sci-
kit-learn [39] in Python. The optimal cutoff point of the
ROC curves was determined by referring to the Youden
Index [40]. The Wilcoxon rank-sum test was used to com-
pare the two paired groups for each clinical information.
Three other standard metrics, i.e., sensitivity, specificity,
and accuracy, were also employed in this work to illustrate
the performance of the AI system, and the confidence inter-
vals were calculated using the bootstrap method. All statisti-
cal tests were two sided and P values less than 0.05 were used
to indicate statistical significance.
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