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Objectives: To establish a radiomic algorithm based on grayscale ultrasound images

and to make preoperative predictions of microvascular invasion (MVI) in hepatocellular

carcinoma (HCC) patients.

Methods: In this retrospective study, 322 cases of histopathologically confirmed HCC

lesions were included. The classifications based on preoperative grayscale ultrasound

images were performed in two stages: (1) classifier #1, MVI-negative and MVI-positive

cases; (2) classifier #2, MVI-positive cases were further classified as M1 or M2 cases.

The gross-tumoral region (GTR) and peri-tumoral region (PTR) signatures were combined

to generate gross- and peri-tumoral region (GPTR) radiomic signatures. The optimal

radiomic signatures were further incorporated with vital clinical information. Multivariable

logistic regression was used to build radiomic models.

Results: Finally, 1,595 radiomic features were extracted from each HCC lesion. At the

classifier #1 stage, the radiomic signatures based on features of GTR, PTR, and GPTR

showed area under the curve (AUC) values of 0.708 (95% CI, 0.603–0.812), 0.710 (95%

CI, 0.609–0.811), and 0.726 (95% CI, 0.625–0.827), respectively. Upon incorporation of

vital clinical information, the AUC of the GPTR radiomic algorithm was 0.744 (95% CI,

0.646–0.841). At the classifier #2 stage, the AUC of the GTR radiomic signature was

0.806 (95% CI, 0.667–0.944).

Conclusions: Our radiomic algorithm based on grayscale ultrasound images has

potential value to facilitate preoperative prediction of MVI in HCC patients. The GTR

radiomic signature may be helpful for further discriminating between M1 and M2 levels

among MVI-positive patients.
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KEY POINTS

- A radiomic algorithm based on grayscale ultrasound images
has potential value to facilitate preoperative prediction of MVI
in HCC patients.

- Gross-tumoral region (GTR) and peri-tumoral region (PTR)
signatures were combined to generate gross- and peri-tumoral
region (GPTR) radiomic signatures.

- The GTR radiomic signature may be helpful for further
discriminating between M1 and M2 levels among MVI-
positive patients.

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
type of liver malignancies all over the world and exhibits
aggressive malignant behavior and a high mortality rate (1, 2).
For HCC patients, hepatic surgery is the primary treatment, but
5-years recurrence rates after hepatic surgery could be as high
as 50% (1, 2), which varies from 20 to 44% (3). Therefore, it
is important to make pre-operative risk stratification of early
recurrence for optimizing patient management.

In recent years, microvascular invasion (MVI) has been
proved to be an independent predictor of poor outcomes
subsequent to surgical hepatic resection (4–6). Currently,
MVI status cannot be adequately determined or predicted
preoperatively, and the only method to determine MVI status
is via postoperative histopathology (4). Therefore, to make non-
invasive and accurate identification of MVI preoperatively would
be of great benefit for stratifying HCC patients before surgery
(4, 7, 8).

Preoperative serum tumor markers and gene signatures have
been investigated as possible approaches for the prediction of
MVI (5, 9). However, such methods are relatively complicated
and the prediction results are indirect, which have not yet been
validated or routinely applied in daily clinical practice (10).
Extensive studies have been proposed to use various imaging
methods to predict MVI in HCC. Current reports of MVI
classification have been mainly based on computed tomography
(CT) (11–13), magnetic resonance imaging (MRI) (14–16), and
contrast-enhanced ultrasound (CEUS) (17, 18). Several imaging
features have been proposed as predictors of MVI, such as the
status of tumor-internal arteries, hypodense halos on CT scans,
arterial peritumoral enhancements, non-smooth tumor margins,
and peritumoral hypointensities on gadoxetic-acid-enhanced
MRI (16). In combination with the numbers and sizes of
tumors, CEUS washout rate may have a role in identifying HCC
patients with MVI (17). However, such qualitative radiological
characteristics have been based on subjective evaluation by
individual radiologists and lack high-dimensional features from
different frequency scales. Unfortunately, no current imaging

Abbreviations: HCC, Hepatocellular carcinoma; MVI, Microvascular invasion;

GTR, Gross-tumoral region; PTR, Peri-tumoral region; GPTR, Gross- and peri-

tumoral region; mRMR, Minimum redundancy maximum relevance; RF, Random

forest.

methods could make a direct and accurate diagnosis of MVI
based on imaging features (19, 20).

The radiomic method is a brand new imaging technique with
the assistance of artificial intelligence software in performing
high-throughput extraction of advanced quantitative features
(21–23). By extracting high-dimensional features to quantify
tumor heterogeneity from radiological images, preoperative MVI
assessment in HCC can be hopefully realized (22, 24–27).
Previous studies have shown that radiomics may potentially be
applied via CT and MRI in classification of HCC grades, early
recurrence prediction, and evaluation of biological characteristics
in HCC patients (15, 18, 21, 28–30). Ma et al., established
radiomic signatures based on contrast-enhanced CT to predict
the status of MVI (11). Yang et al., constructed radiomic
signatures based on MRI for prediction of MVI (14). However,
CT and MRI still have limitations, such as CT having a potential
risk of radiation exposure, and MRI being relatively expensive
and time consuming.

Grayscale ultrasound is the most commonly used first-line
imaging method of HCC lesions before operation, which has
unique advantages in terms of being a non-radiation, easy-to-
perform, and cost-effective imaging method. Recent studies have
shown that radiomic analysis can also be applied to ultrasound
images (11, 14). Radiomic scores based on ultrasound images
have potential to non-invasively predict the MVI status in HCC
patients (18). In a previous study, the imaging features of CEUS
for assessment of MVI were evaluated preoperatively. However,
none of the qualitative CEUS features were proved to be directly
associated with MVI (18).

Preoperative assessments of MVI via various imaging
modalities mainly focused on features inside of tumor, while the
peri-tumoral areas have been less explored. Pathologically, peri-
tumoral areas is the first area of incidence of MVI. It acts as the
main blood dissemination path to portal venous thrombosis, as
well as metastases in both intrahepatic and extrahepatic areas
(31). Therefore, comparing to the tumor area, imaging features
involving peri-tumoral areas may reveal a more direct association
with MVI (23).

In our present study, we aimed to establish a radiomic
algorithm based on grayscale ultrasound in both tumoral and
peri-tumoral areas and to make preoperative predictions of MVI
in HCC patients.

MATERIALS AND METHODS

Institutional Board Approval
This retrospective study was approved by the institutional review
board of our institution. Informed consent was waived before
ultrasound examination. All procedures were in accordance with
the Declaration of Helsinki.

Patients
The inclusion criteria were as follows: (1) grayscale ultrasound
imaging was performed preoperatively in each patient; (2) no
prior surgical or medical treatment was administered for the
suspected HCC lesions; (3) hepatic resection was performed
within 2 weeks after preoperative ultrasound imaging; and (4)
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TABLE 1 | Baseline characteristics of patients.

Characteristic HCC MVI (-)

(n = 178)

HCC MVI (+)

(n = 144)

P-value

Age (year) 0.304

Mean ± SD 58 ± 11 57 ± 9

Range 20–81 29–74

Male/female 143/35 129/15 0.037

Etiology of liver disease

Hepatitis B 137 120

Hepatitis C 3 5

Alcohol 1 0

NAFLD 12 5

Absence 25 14

AFP (ng/l) 28 ± 10 506 ± 8 <0.001*

CA 19-9 38 ± 7 425 ± 19 0.784

CEA 4.8 ± 1.3 9.7 ± 5.5 0.635

Tumor size (mm) <0.001*

Mean ± SD 32.3 ± 23.3 48.4 ± 30.6

Range 9–144 6–176

HCC, hepatocellular carcinoma; MVI, microvascular invasion; AFP, Alpha-fetoprotein;

CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; NAFLD, non-

alcoholic fatty liver disease.

diagnoses of HCC were confirmed by surgical resection and
histopathological results.

The exclusion criteria were: (1) patients received locoregional
therapy (i.e., radiofrequency ablation or trans-arterial
chemoembolization) before ultrasound imaging; (2) Focal
cystic liver lesion; (3) unclear or unsatisfied ultrasound images of
focal liver lesions.

Following screening based on inclusion and exclusion criteria,
322 patients were enrolled from January 2016 to December
2018. The mean time interval between ultrasound imaging
and surgery was 10 ± 1 days. The clinical characteristics
of patients—such as patients’ age, gender, tumor maximum
diameter, serum carcinoembryonic antigen (CEA) values, alpha-
fetoprotein (AFP) values, and carbohydrate antigen 19-9 (CA19-
9) values—are recorded [Table 1]. Differences in variables were
assessed by using the independent Wilcoxon rank-sum test for
continuous variables. For categorical variables, the chi-square test
was performed. The statistical significance set at 0.05 (two-sided).

Ultrasound Examination Procedure
Grayscale ultrasound examinations were performed by three
experienced radiologists (more than 10 years of experience
in liver ultrasound scans) who were aware of the patients’
clinical histories. Standardized ultrasound image acquisition
procedure were performed 2 weeks before operation. The
imaging parameters were adjusted and optimized for each image,
including (1) brightness gain set between 80 and 90%; (2) depth
set between 10 and 15 cm; (3) dynamic range set between 65 and
80 dB; (4) the HCC lesion was set in the center of field of view
during ultrasound scan; and (5) the focal zone was set in the
bottom area of image.

Ultrasound examination was performed by using one of
the following ultrasound machines: LOGIQ 9 (GE Healthcare,
United States; C1-5 convex array probes, 1–5 MHz); LOGIQ
E9 (GE Healthcare, United States; C1-5 convex array probes,
1–5 MHz); Acuson Sequoia 512 (Siemens Medical Solutions,
United States; 6C1 convex array probes, 3.5 MHz); S2000 HELX
OXANA unit (SiemensMedical Solutions, Germany; 6C1 convex
array probes, 3.5 MHz); S3000 HELX unit (Siemens Medical
Solutions, Germany; 6C1 convex array probes, 3.5 MHz); Philips
IU 22 (Philips Bothell, United States; C5-1 convex array probes,
1–5 MHz); EPIQ7 unit (Philips Bothell, United States; C5-1
convex array probes, 1–5 MHz); Aplio XV (Toshiba Medical
systems, Japan; PV1-475BX probe, 1–8 MHz); and Aplio i900
series diagnostic ultrasound system (Cannon Medical systems
Corporation, Japan; PV1-475BX probe, 1–8 MHz).

For each HCC lesion multiple slices were acquired and
recorded, among which the best one was selected for further
radiomics analysis. The criteria of ultrasound image selection
were as follows: (1) maximum diameter of the lesion; (2)
the margin of the lesion was clear and (3) the surrounding
liver parenchyma of the lesion was clearly scanned. In order
to reduce the influence of image acquisition variants, two
radiologists withmore than 10 years of liver ultrasound operating
experience reviewed all ultrasound images and excluded
unqualified slices.

Histopathologic Examination of MVI
All hepatic specimens were reviewed by a hepatic pathologist
with more than 15 years of experience in hepatic pathology. The
pathologist was blinded to clinical information or preoperative
ultrasound findings. The histopathological diagnosis of MVI was
made according to the Practice and Guidelines of the Chinese
Society of Pathology. Three subgrades of MVI included the
following: M0, no MVI; M1 (the low-risk group), ≤ 5 MVI in
adjacent liver tissue and ≤ 1 cm from the tumor; and M2 (the
high-risk group), > 5 MVI or MVI in liver tissue and > 1 cm
from the tumor (32).

Workflow of Radiomic Analysis
The workflow of radiomic analysis included the following: (1)
tumor segmentation; (2) feature extraction; (3) feature selection;
(4) radiomic model establishment; and (5) model evaluation
(Figure 1).

In our present study, the classification was performed in
two stages. MVI-negative and MVI-positive cases were classified
during the classifier #1 stage. MVI-positive cases were further
classified as either M1 or M2 at the classifier #2 stage.
For the classifier #1 stage, 221 cases were examined via six
different ultrasound machines and were used as the training
cohort, and the remaining 101 cases were examined via three
other ultrasound machines and were selected as the validation
cohort. For the classifier #2 stage, 107 cases were examined
via four different ultrasound machines and were used as the
training cohort, and the residual 37 cases were examined via
three other ultrasound machines and were selected as the
validation cohort.
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FIGURE 1 | Workflow of radiomic analysis. The workflow of radiomic analysis included the following: (a) tumor segmentation; (b) feature extraction; (c) feature

selection; (d) radiomic model establishment; and (e) model evaluation.

FIGURE 2 | Two regions of interest (ROIs) were defined in grayscale ultrasound images (a). The red area shows gross-tumor region (GTR) signatures, and the blue

area shows peri-tumoral region (PTR) signatures (b).

Step 1: Tumor Segmentation
For each HCC lesion, the segmentation of the gross-tumor
region (GTR) was accomplished by an experienced ultrasound
radiologist (with 15 years of experience) using the Medical
Imaging Interaction Toolkit (MITK; version 2013.12.0; http://
www.mitk.org/), which was confirmed by another radiologist
(with 8 years of experience). The uniform dilated half of the
tumor radius served as the peri-tumoral region (PTR) along the
border of GTR (Figure 2).

Step 2: Feature Extraction
Since nine ultrasound machines were involved in this study,
imaging normalization calculated by z-scores was applied to
achieve a zero mean and unit variance based on each ultrasound
machine. The radiomic features of both GTR and PTR at the
classifier #1 stage and classifier #2 stage were extracted using
PyRadiomic radiomic toolbox (33). The full intensity range of
each region of interest (ROI) was quantized to 32 gray levels,
and the normalization scale was set as 255. The radiomic features

were divided into three classes: 14 morphological features,
306 first-order statistical features, and 1,275 textural features.
The radiomic features were further extracted based on five
gray matrices that included the gray-level co-occurrence matrix
(GLCM), gray-level size-zone matrix (GLSZM), gray-level run-
length matrix (GLRLM), gray-level dependence matrix (GLDM),
and neighborhood gray-tone difference matrix (NGTDM). In
addition, seven imaging filters were applied to the original
imaging datasets in order to extract high-dimensional features
from different frequency scales and included the following:
wavelet, square, square root, logarithm, exponential, gradient,
and local binary pattern (LBP) filters. Finally, 1,595 quantitative
radiomic features were extracted from each ROI. A detailed
description of radiomic features is provided in Supplement A.

Step 3: Feature Selection and Classifier Modeling
In order to eliminate redundant features, Pearson correlation
analysis was performed to calculate the pair-wise feature
correlation (34). The features with a mean absolute correlation
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higher than 0.9 were considered to be redundant and were thus
eliminated (35). After the elimination of redundant features,
we used a feature-ranking algorithm (minimum redundancy
maximum relevance, mRMR) (36) to select the most important
features based on a heuristic scoring criterion. Ultimately, the top
ranked features were selected.

Step 4: Radiomic Model Establishment
A random forest (RF) (37) was employed to establish radiomic
signatures using the top-ranking radiomic features from both
GTR and PTR in our present study. Subsequently, GTR and PTR
radiomic signatures in two classifier stages were generated.

In addition, classifiers were trained using 10-fold cross-
validation to determine the optimal parameter configuration
on the training cohort. The GPTR signatures were developed
on features extracted from the combined region of GTR and
PTR. Finally, an integrated signature denoted as the gross-
and peri-tumoral volume (GPTR) signature was generated by
logistic regression using GTR and PTR signatures. The optimal
radiomic signature with the highest area under the curve (AUC)
was selected.

The radiomic algorithm was built by multivariable logistic
regression, which incorporated the optimal radiomic signatures
and clinical factors as input in the training cohort. The optimal
combinations of the radiomic signature and clinical factors were
determined by using the Akaike information criterion (AIC) and
the associations with the outcome of MVI status.

Step 5: Radiomic Model Evaluation
The radiomic signatures and models were further tested
on the independent validation cohort. Receiver operating
characteristic (ROC) curve analysis was used to evaluate
discriminative performance, and the AUC was used to quantify
the discriminative efficacy of all models that were established.
Multiple ROC curves were compared by DeLong test. The
95% CI, sensitivity, specificity, and accuracy of each AUC
was calculated.

Feature selection, classifier modeling, and statistical analysis
were conducted by R software (3.5.2), The mRMR algorithm and
RF classifier are described in Supplements B,C.

RESULTS

Feature Selection and Classifier Modeling
From each ROI, a total of 1,595 radiomic features were extracted.
Pair-wise Pearson correlation coefficients were calculated at both
the classifier #1 stage and classifier #2 stage. The threshold for
identifying highly correlated feature pairs was set at 0.9. As a
result, 311 and 331 features from GTR and PTR remained at
the classifier #1 stage. Subsequently, 282 GTR features and 107
PTR features were selected as input for the classifier #2 stage.
The remaining features were ranked by mRMR. As a result, the
top-100 features were selected for the classifier.

Radiomic Model Establishment
By using the top-ranked features, the RF classifiers were trained
on the training cohorts, which ranked from 2 to 100 with

TABLE 2 | The performance of radiomic signatures.

Classifier stage Signature AUC 95%CI ACC SEN SPE

Classifier #1 GTR 0.708 0.603, 0.812 0.624 0.784 0.531

PTR 0.710 0.609, 0.811 0.653 0.757 0.594

GPTR(1) 0.726 0.625, 0.827 0.663 0.838 0.562

GPTR(2) 0.680 0.574, 0.786 0.634 0.811 0.531

Classifier #2 GTR 0.806 0.667, 0.944 0.730 0.333 0.800

PTR 0.752 0.583, 0.921 0.757 0.333 0.929

GPTR(1) 0.770 0.616, 0.923 0.730 0.667 0.750

GPTR(2) 0.742 0.578, 0.906 0.649 0.778 0.607

AUC, area under the curve; CI, confidece interval; ACC, accuracy; SEN, sensitivity; SPE,

specificity; GTR, gross tumor region; PTR, peritumoral region; GPTR, Gross and peri

tumoral volume.

GPTR(1), the GPTR signature developed by logistic regression using GTR and

PTR signatures.

GPTR(2), The GPTR radiomic signature developed by radiomic features extracted from

GTR and PTR combination region.

increments of 1 via mRMR to develop ultrasound radiomic
signatures. The discriminative abilities of the ultrasound
radiomic signatures were tested on independent validation
cohorts, and the optimal signature with the best AUC
was selected.

For the classifier #1 stage, the optimal signatures were
obtained by combining the top-44 features selected for GTR
(AUC = 0.708), and the top-25 features were selected for PTR
(AUC= 0.710). The GPTR radiomics features extracted from the
combined region of GRT and PTR showed AUC value of 0.680.
The ultimate GPTR radiomic signature developed by logistic
regression showed an increased AUC value of 0.726.

For the classifier #2 stage, the optimal signatures were
obtained by combining the top-65 features selected for GTR
(AUC = 0.806), and the top-80 features were selected for PTR
(AUC = 0.752). The GPTR radiomics features extracted from
the combined region of GRT and PTR showed AUC value of
0.742. The ultimate GPTR radiomic signature showed an AUC
value of 0.770. The performances of all radiomic signatures are
shown in Table 2. The formulas of GPTR signatures are shown in
Supplement D.

Radiomic Model Evaluation
The radiomic algorithm incorporating the optimal radiomic
signatures and clinical factors showed better AUCs in
comparison with those from radiomic signatures in the
validation cohort. For the classifier #1 stage, after adding the
AFP value, the AUC of the radiomic nomogram that combined
the GPTR signature and the AFP value had an improved
AUC of 0.744. The GTR and PTR radiomic nomograms that
combined the radiomic signature and AFP were also evaluated,
as shown in Table 3. The ROC curves in the training and
validation cohorts—including those for GTR, PTR, and GPTR
radiomic signatures of the GPTR algorithm— were shown
in Figures 3A,B.

However, for classifier #2, none of the clinical factors were
independently associated with MVI status. Figures 3C,D show
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TABLE 3 | Formulas and performances of the models.

Classifier stage Formulas AUC 95%CI ACC SEN SPE

Classifier #1 0.327*GTR+0.375*AFP-0.043 0.723 0.622, 0.825 0.564 0.919 0.359

0.271*PTR+0.368*AFP-0.044 0.739 0.642, 0.836 0.554 0.946 0.328

0.334*GPTR+0.355*AFP-0.044 0.744 0.646, 0.841 0.634 0.892 0.484

AUC, area under the curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; GTR, gross tumor region; PTR, peritumoral region; GPTR, Gross and peri

tumoral volume.

FIGURE 3 | The receiver operating characteristic (ROC) curves of radiomic signatures and optimal nomograms. The following are shown: training cohort at the

classifier #1 stage (A); validation cohort at the classifier # 1 stage (B); training cohort at the classifier #2 stage (C); and validation cohort at the classifier #2 stage (D).

the ROC curves for GTR, PTR, and GPTR radiomic signatures
in both training and validation cohorts. The corresponding
sensitivity, specificity and accuracy values for each classifier
stages were calculated. The AUC of various radiomic models
at classifier #1 and #2 stages were compared and the result
of the DeLong test for the two-stage classifier is shown in
Supplement E.

DISCUSSION

Successful preoperative assessment of MVI may facilitate patient
management and improve survival (6, 9). Currently, assessment
of MVI can only be achieved by histopathological examination
after surgery. Subjectivity and sampling error are proved to be

potential problems in accurately evaluating MVI (5). A non-
invasive imaging method which could accurately diagnosing
MVI preoperatively would be help to better stratify HCC patients
for clinical management (38). Extensive studies have shown that
radiomics have great potential in predicting tumor biology and in
improving implementation of precisionmedicine (18, 23, 28, 29).
Previously, some studies have established radiomic signatures for
detecting the presence of MVI based on CT and MRI (11–14).
Radiomic signatures based on arterial phase and delay phase of
contrast-enhanced CT have yielded AUCs of 0.684 and 0.490,
respectively (11). Additionally, radiomic signatures based on
hepatobiliary-phase T1-weighted MRI have yielded an AUC of
0.705 in predicting MVI (14). A recent study incorporating
clinical risk factors into ultrasound radiomic scores yielded
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efficacious performance inMVI prediction, with an AUC of 0.731
(18). Similarly, in our present study, based on a feature-ranking
algorithm and classifier, we successfully established six grayscale
ultrasound radiomic signatures to predict MVI status in HCC
patients. The radiomic signatures based on features of GTR,
PTR, and GPTR showed AUC values of 0.708, 0.710, and 0.726,
respectively. When these radiomic signatures were combined
with clinical factors in the radiomic algorithm, the performances
of the GTR, PTR, and GPTR signatures at the classifier #1
stage were significantly improved, which demonstrated the added
value of clinical factors in grayscale-ultrasound-based radiomic
algorithms for individualized MVI prediction in HCC. On the
training cohort, a model based on AFP values was further
obtained by logistic regression. The model was tested on the
validation cohort with an AUC value of 0.585. The GPTR
signature showed an AUC of 0.726, which demonstrated that the
classifier performance of the radiomic signature was better than
that of a model built on AFP values. As a result, the nomogram
built on both radiomic signatures and AFP values showed
the highest AUC of 0.744. Hence, AFP and machine-learning-
derived knowledge were mutually complementary. Comparing
with CT or MRI imaging modalities, ultrasound is the most
widely used first line imaging modality for diagnosis of focal
liver lesions, with advantages as real time, no radiation exposure
or nephrotoxicity. Meanwhile, the radiomics model based on
ultrasound images also faces some challenges, such as limited
resolution, relatively lower accuracy, highly operator dependent
and flexible image scanning and record protocol.

Previously, various research on preoperative identifying MVI
by imaging modalities has been mainly focused on inside tumor
features. In recent years, imaging features of peri-tumoral area
have been proved to be more accurate (18), since peri-tumoral
tissue is the first area to be invaded by MVI (31). A high level
of placental growth factor (PlGF) and expression of vascular
endothelial growth factor receptor (VEGFR-1) in peri-tumoral
tissue has been associated with peri-tumoral MVI pathological
angiogenesis and potential vascular invasion (39). Therefore,
imaging features involving peri-tumoral area may reveal a more
direct association with MVI. A recent meta-analysis focused
on the association between peri-tumoral MRI features and
MVI, which revealed a significant association between MVI
and peri-tumoral enhancement and peritumoral hypointensity
on hepatobiliary-phase MRIs. However, the diagnostic accuracy
analysis of this previous study showed relatively high specificity
(0.90–0.94), low sensitivity (0.29–0.40) in assessing MVI (31). In
another study, three radiomic models were built by extracting
radiomic features from both intra-tumoral and peri-tumoral
regions of Gd-EOB-DTPA-enhanced MRI images, which yielded
an AUC value of 0.83 in predicting MVI (23). Until now,
no study has ever extracted PTR radiomic signatures based
on grayscale ultrasound for predicting MVI status. In our
current study, we made a further comparison between intra-
tumoral and peri-tumoral radiomic signatures. As our results
showed at the classifier #1 stage, the grayscale-ultrasound-
based radiomic features of GTR and PTR were both able to
discriminate MVI status in HCC patients. The performance of
the PTR signature was superior than that of the GTR signature.

By combining the PTR and GTR radiomic signatures, the
final GPTR radiomic signature performed better than GTR or
PTR radiomic signatures in discriminating MVI-negative and
MVI-positive cases. Additionally, at the classifier #2 stage, the
GTR signature performed better than the PTR signature in
further discriminating between M1 and M2 levels. By analysis
of grayscale ultrasound radiomic signatures on peri-tumoral
tissue in HCC patients, preoperative MVI assessment may
become more accurate and reliable. Numerous methods could
be used to develop GPTR signature. In our results, GPTR
signatures obtained by logistic regression performed better than
those obtained by radiomic features. Since different application
scenarios will apply to different methods, in our future study,
we will compare different methods in obtaining GPTR signatures
based on larger image data.

Radiomic features based on imaging reflect the microscopic
structure and biological behavior of the tumor, which has a direct
relation to intra-tumoral heterogeneity (18, 40). Intra-tumoral
heterogeneity may be associated with early microvascular
invasion or a worse prognosis (41, 42). The trends of precision
medicine in treatment of HCC are determined by genomic and
biological characteristics of tumors, various imaging modalities
represents a solution to elucidate these characteristics (4, 42, 43).
It is difficult to clarify the correlation between a single radiomic
feature with biological MVI behavior by selecting signatures
from thousands of radiomic features. The common approach is
to build a multi-feature parameter for radiomic analysis (44).
Several studies have indicated that adding of mRMR can improve
the performance of radiomic models (38, 45, 46). In our present
study, the mRMR feature-ranking algorithms were added before
the generation of radiomic signatures. The wavelet features
showed strong abilities to predict other factors based on different
modalities (47). Wavelet features were the primary method used
in our study in optimizing GTR and PTR radiomic signatures
at the two classifier stages (Supplement F), which can quantify
potential heterogeneity at different scales of HCC lesions.

The present study has several limitations. First, the possibility
of a selection bias cannot be excluded due to the retrospective
nature of our present study. Secondly, our study was performed
in a single center, although nine ultrasound machines were
employed and distributed among the training and validation
cohorts in our study, further multicenter validation might be
necessary to evaluate the reliability and verify the generalization
ability of our model. In addition, the number of patients with
MVI-positive HCC lesions was relatively small. In the future,
multimodality ultrasound imaging—including color Doppler-
flow imaging, ultrasound elastography, and CEUS imaging—
will be combined to improve the performance of MVI
classification. We will also directly establish a three-classification
radiomics model to distinguish the MVI-negative, M1, and
M2 groups.

In conclusion, GTR and PTR radiomic signatures based
on grayscale ultrasound imaging have potential value to
facilitate preoperative prediction of MVI in HCC patients.
Additionally, the GTR radiomic signature may be helpful for
further discriminating between M1 and M2 levels among MVI-
positive patients.
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