
Materials 2013, 6, 2989-3006; doi:10.3390/ma6072989 

 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Article 

Preparation and Characterization of New Geopolymer-Epoxy 

Resin Hybrid Mortars 

Francesco Colangelo *, Giuseppina Roviello, Laura Ricciotti, Claudio Ferone  

and Raffaele Cioffi 

Department of Engineering, University of Naples „Parthenope‟, INSTM Research Group Naples 

Parthenope, Centro Direzionale Naples, Isola C4, 80143 Naples, Italy;  

E-Mails: giuseppina.roviello@uniparthenope.it (G.R.); laura.ricciotti@uniparthenope.it (L.R.); 

claudio.ferone@uniparthenope.it (C.F.); raffaele.cioffi@uniparthenope.it (R.C.) 

* Author to whom correspondence should be addressed; E-Mail: colangelo@uniparthenope.it;  

Tel.: +39-081-5476727; Fax: +39-081-5476777. 

Received: 21 June 2013; in revised form: 29 June 2013 / Accepted: 9 July 2013 /  

Published: 17 July 2013  

 

Abstract: The preparation and characterization of metakaolin-based geopolymer mortars 

containing an organic epoxy resin are presented here for the first time. The specimens have 

been prepared by means of an innovative in situ co-reticulation process, in mild conditions, 

of commercial epoxy based organic resins and geopolymeric slurry. In this way, 

geopolymer based hybrid mortars characterized by a different content of normalized sand 

(up to 66% in weight) and by a homogeneous dispersion of the organic resin have been 

obtained. Once hardened, these new materials show improved compressive strength and 

toughness in respect to both the neat geopolymer and the hybrid pastes since the organic 

polymer provides a more cohesive microstructure, with a reduced amount of microcracks. 

The microstructural characterization allows to point out the presence of an Interfacial 

Transition Zone similar to that observed in cement based mortars and concretes. A 

correlation between microstructural features and mechanical properties has been  

studied too. 

Keywords: geopolymer mortar; epoxy resin; hybrid composites; metakaolin; interfacial 

transition zone 
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1. Introduction 

The term “geopolymer” was first used by J. Davidovits in the late 1970s and nowadays identifies a 

family of amorphous alkali or alkali-silicate activated aluminosilicate binders of composition 

M2O·mAl2O3·nSiO2, usually with m ≈ 1 and 2 ≤ n ≤ 6 (M usually is Na or K) [1]. 

The synthesis of geopolymers takes place starting from reactive precursors such as metakaolin 

(kaolinite calcined at 600–700 °C) or many other natural and artificial silico-aluminates, which are 

mixed with alkali metal (Na or K) hydroxide and/or silicate solutions [2–8]. When in contact with a 

high pH alkaline solution, aluminosilicate reactive materials release free SiO4 and AlO4 tetrahedral 

units which afterwards condensate to form a rigid network. 

Geopolymer based materials are attractive because excellent mechanical properties, high early 

strength, freeze-thaw resistance, low chloride diffusion rate, abrasion resistance, thermal stability and 

fire resistance, can be achieved [9–12]. Due to their lower calcium content, they are more resistant to 

acid attack than Portland cement based materials [13]. In addition, geopolymer based materials are of 

great interest because of the reduced energy requirement for their manufacture. In fact, the reaction 

pathway requires either metakaolin or raw silico-aluminates so that greenhouse gas emissions can be 

reduced up to 80% in comparison to traditional cement based materials [11,14]. In fact, even if natural 

aggregates are substituted by sustainable artificial ones, manufactured by using industrial wastes [15–19], 

the emissions of CO2 in concrete industry is mainly linked to the use of ordinary Portland  

cement as a binder. 

Applications of geopolymer-based materials in the fields of new ceramics, binders, matrices for 

hazardous waste stabilization, fire-resistant materials, asbestos-free materials, and high-tech materials 

have been documented [20–24]. 

In order to improve several properties of geopolymer materials, such as their brittle behavior and 

their low flexural strength, which usually limit their extensive applications as a structural material, 

geopolymer composites have been introduced in the last years. Geopolymer based composites are 

usually obtained by incorporation of organic polymers [25–30], such as polyvinyl acetate, 

polypropylene, polyvinyl alcohol, or water-soluble organic polymers [31–35]. 

Recently [36], the authors have prepared novel organic-inorganic hybrid composites, adding epoxy 

resins to geopolymer, through an innovative synthetic approach based on a co-reticulation in mild 

conditions of organic and inorganic components, producing an intimate and homogeneous dispersion 

of the organic phase into the inorganic one. Through this novel synthetic approach, polymeric 

composites are not obtained by simply adding the organic polymer as fibers or emulsion as usually 

reported in the literature, but the resin is allowed to crosslink in situ during the geopolymerization 

reaction. In this way, the use of compatibilizers is fully avoided [37–40]. These new materials, highly 

homogeneous up to micrometric level even at appreciable concentration of resin (up to 20% w/w), 

show good technological properties: in particular, in respect to the neat geopolymer, they present 

significantly enhanced compressive strength and toughness, suggesting their possible practical 

applications in the manufacture of high durability composites (e.g., thermo-resistant), in the field of 

restoration and repairing of damaged concrete and masonry. 

Another common problem of geopolymer based pastes representing an important barrier to their 

structural application is the high shrinkage that is observed during the curing process and the cracking 
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of specimens caused by water loss under normal environmental conditions [41,42]. These phenomena 

may be strongly reduced by adding filler to the geopolymer. The addition of sand also contributes to 

the reduction of the cost of the final product. 

Geopolymeric mortars are usually prepared by mechanically mixing alumino silicate materials, i.e., 

metakaolin (MK) or fly ash, with standard sand and an alkaline activating solution in appropriate 

proportions. However, addition of sand significantly alters the pore structure of the material, which in 

turn strongly influences the properties of the geopolymeric mortar [43]. In addition, the workability of 

the fresh mixture is greatly influenced by the addition of sand [44]. 

In order to face the issues previously described and, at the same time, to improve the technological 

properties of the geopolymeric mortars, in this paper novel geopolymeric mortars containing epoxy 

resins with different sand content have been produced. Their physical and mechanical performances 

have been compared with neat geopolymer MK-based mortar and pastes. Moreover, a detailed 

microstructural analysis has been performed in order to investigate the morphology and the interfacial 

interactions between the geopolymeric-organic matrix and the fine aggregates. 

Finally, it is worth pointing out that, to the best of our knowledge, this paper represents the first 

attempt to produce and characterize hybrid geopolymer-epoxy resin mortars. 

2. Results and Discussion 

2.1. Preparation Method 

Novel hybrid geopolymeric mortars containing Epojet
®

 and EpojetLV
®

 resins were prepared, and 

their physical-mechanical properties were compared with the geopolymeric mortar specimen and with 

the corresponding pastes. Epojet
®
 is a two-component epoxy adhesive for injection, which, after 

mixing, becomes a low viscosity liquid. According to the producer technical data sheet [45], it is 

usable for 40 min at room temperature. EpojetLV
®

 is a highly low-viscosity two-component epoxy 

adhesive for injection in microcracks which, after mixing, becomes a fluid liquid. With respect to 

Epojet
®

, EpojetLV
®

 takes a longer time to harden, since it is usable for approximately 70 min. 

Three sets of mortars with different sand content were prepared and have been indicated with a 

letter (G for Geopolymer, E for the composite geopolymeric mortar/Epojet, L for the composite 

geopolymeric mortar/EpojetLV), and a number indicating the percentage of sand employed (no 

number to indicate 0% sand content, that is the paste [46]; 33 indicating 33.3% by weight of sand in 

respect to the total mass; 66 indicating 66.6% by weight of sand in respect to the total mass). 

The hybrid mortars were prepared by adding the epoxy resin into the geopolymeric mortar under 

mechanical stirring, when both geopolymerization and organic polycondensation were initiated but not 

completed yet. This innovative approach, only very recently introduced [36], enables the production of 

hybrid materials characterized by a homogenous microdispersion of the resin particles into the 

inorganic matrix. 

The incorporation of the resins into the geopolymeric mixture when both were partly reacted but 

still easily workable represents the key step of the procedure: in fact the addition of the unreacted 

components of the resins to the inorganic suspension produce an undesirable phase segregation 

phenomenon. On the contrary, a late mixing of the two components (the cured organic resin and the 
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geopolymer mortar) strongly reduces the compatibility and the homogeneity of the dispersion of the 

two phases. For this reason, a careful execution of the synthetic procedure is essential in order to 

produce new materials with desirable properties. 

In this experimental program, different amounts of epoxy resins into the geopolymeric mortar have 

been considered. Only the results obtained with a 20% of organic resin in respect to the paste weight 

are here reported, since a lower amount does not significantly affect the mechanical properties of the 

final material, while a larger amount produces relevant segregation phenomena [36,38]. 

2.2. Characterization 

In the following sub-sections, the microstructural, thermal and physico-mechanical characterizations 

are reported and discussed. As far as X ray Diffraction (XRD) and Fourier Transformed Infra Red 

Spectroscopy (FT-IR) analyses, usually performed on inorganic polymer materials [47], are not here 

reported since the presence of crystalline silica masks the characteristic bands and signals of the 

amorphous material. However, in our previous work [36], a deep characterization of an analogous 

system without sand has been reported. 

2.2.1. Microstructural Analysis 

The effect of the addition of the organic resin on the morphology of the geopolymeric mortar and 

on the interfacial zone between the matrix and the aggregate was investigated by means of optical and 

electronic microscopy. The microstructural analysis here discussed, refers to the specimens containing 

66.6% by weight of sand. Different sand contents do not significantly alter the morphology of  

the samples. 

Systems containing organic resins do not show evident cracks, which are on the contrary present in 

the geopolymeric mortar prepared without resins. In Figure 1, optical microscope images of systems 

G66 (A) and E66 (B) are reported. The former is taken on the plane specimen to better observe the 

actual fractured external surface, while the latter is taken on a polished surface to check the textural 

homogeneity of the mortar. As shown in the figure, the organic phase plays an important role in 

producing compact geopolymer mortar. In fact, the visible microcracks of the resin-free mortar (with a 

maximum width of 90 μm, (see Figure 1A) are completely absent in the case of the hybrid mortars, 

which appear completely crack free and compact. All the mixtures show a very similar texture, as 

observed under the optical microscope (L66 and G66 not shown). 

Figure 2 shows SEM micrographs of freshly obtained fracture surfaces of the neat geopolymer 

mortar G66 (A), and of the specimens E66 (B) and L66 at different magnifications (C,D). In particular, 

Figure 2A shows the microstructure of the neat geopolymer mortar, in which the amorphous 

geopolymer phase incorporates the sand particles. The microstructure is dense and compact and is 

characterized by the presence of a glassy geopolymeric matrix. A few pores are visible, due to air 

bubbles incorporated during the mixture preparation. The geopolymer glassy matrix shows some minor 

crystals likely due to unreacted metakaolinite or residual kaolinite already present in the  

starting metakaolin. 
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Figure 1. Crack Measurement Microscope images for (A) G66 (external surface);  

and (B) E66 (polished surface). 

  

Figure 2. SEM micrographs of the neat geopolymer mortar (A) G66; (B) E66;  

and (C,D) L66.  

  

  

The microstructure of E66 and L66 samples are very similar to each other and show that the organic 

phase is very homogeneously distributed in the geopolymer matrix (Figure 2D), as micrometric 

spherical particles of various sizes up to 50 μm. For both specimens, no agglomeration phenomena 

A B 

C D 

A B 
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were observed. In all the cases, there is a good adhesion between the geopolymeric paste and the small 

size aggregate particles. For example, the strong adhesion is evidenced in Figure 2B, by the presence 

of some residual of the geopolymeric binder remained adhered on the sand particle when the 

specimens were broken to prepare the SEM samples, or in Figure 2D where no discontinuity is 

observable between the sand particle and the composite matrix. 

The simultaneous presence of aggregates and organic resin within the specimens is expected to 

produce a sort of crack deflection mechanism typical of particle reinforced ceramic matrix composites, 

preventing the crack growth and propagation [36,46,48,49]. In this way, the mechanical properties and 

the fracture toughness of the geopolymer mortar are enhanced (see next sections). 

2.2.2. Thermal Analysis (TGA/DSC) 

Simultaneous thermogravimetric and differential scanning calorimetry analyses were performed on 

the geopolymer mortar composites. In Figure 3 the weight loss and the thermogram for L66 are 

reported. Similar behavior has been found for E66 and L33/E33 (not shown) with the only difference 

being in the total weight loss. 

Figure 3. TGA (continuous line) and DSC (dashed line) curves of L66 mortar cured at 

room temperature for 7 days in >95% relative humidity conditions. 

 

The TGA and DSC curves show two principal degradation steps. The first one starts at about 30 °C 

and finishes at ≈180 °C and corresponds to a weight loss of ≈5%. This loss can be attributed to the 

removal of adsorbed water molecules or differently linked in the geopolymeric phase [50]. The second 

degradation process is completed at about 550 °C and corresponds to a further weight loss of ≈7%. 

This weight change corresponds to the degradation of the dispersed organic phase. As shown by the 

DSC curve, the two degradation steps are accompanied by a complex thermal behavior which main 

feature is an exothermic peak, centered at 450 °C. 

2.2.3. Water Absorption 

The water absorption capacity of the three hybrid mortars G66, L66 and E66 are reported in  

Table 1. The addition of the resins causes a considerable decrease of WAC, even if all the mixtures 
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show a WAC value, which is extremely low. The reduction of porosity results in lower total water  

absorption capacity. 

Table 1. Water absorption capacity of tested mortars. 

Mixtures WAC (%) Decrease 

G66 2.45 1 

L66 1.34 0.45 

E66 1.05 0.22 

2.2.4. Pore Structure Characterization 

In Figure 4 the cumulative pore volume versus pore radius of the hybrid mortar specimens G66, 

E66 and L66 are reported, together with the analogous curves relative to the corresponding paste 

specimens G, E and L [46]. It is possible to observe that the curves do not have a sigmoidal shape, but 

show several steps. This shape indicates that the specimens are characterized by the presence of 

different kind of pores, according to the following classification: micropores (<0.1 μm), mesopores 
(0.1–1 μm) and macropores (>1 μm) [51]. Comparing G66, L66 and E66 curves, it is evident that, even 

if the shape of the curves is similar so indicating that the same pore size classes are present, the 

presence of the resin considerably lowers the total porosity. In fact, L66 and E66 specimens show a 

total porosity, which is about 33% lower than G66 specimen. 

Figure 4. Cumulative pore volume vs. pore radius as obtained by mercury intrusion 

poroszimetry analyses for G66, L66, E66 and G, L, E specimens. 
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By a careful examination of the figure, it can also be inferred that the addition of the aggregates has 

the effect of reducing up to about the 50% the total porosity of the specimens with respect to the  

sand-free ones. This reduction is due to the addition of the siliceous sand, which can be approximately 

considered as a material with very low porosity. We would have expected a still higher reduction by 

considering that about 70% of the mortar is constituted by sand. On the other hand, this lowering of the 

total porosity is accompanied by an increase of the mean pore size. This twofold effect may be 

interpreted with the onset of a macroporosity zone at the interface between the matrix and the sand 

particles of higher dimensions, similar to the Interfacial Transition Zone observed in cement and 

geopolymer based mortars and concretes [52–54]. This interpretation is corroborated by the 

examination of the SEM micrographs reported in Figure 5, where a clear detachment between the 

binding matrix and a large sand particle is observable for both the neat geopolymer G66 and hybrid 

composite E66 specimens. Also the size of the microcrack, about 5 μm, is consistent with literature 

values [52] and the porosimetric data, in fact, a sudden step is observable in the pore size distribution 

curve between 5 and 10 μm. 

Figure 5. SEM micrographs of (A,B) the G66; and (C,D) E66 specimens. 

  

  

A B 

C D 
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2.2.5. Compressive Strength Determination 

The compressive strength of the mortar specimens with different sand content, prepared in the same 

conditions and cured for 28 days was analyzed. The obtained results are shown in Figure 6, which 

shows an improvement of the compressive strength of the hybrid mortars in respect to the neat 

geopolymeric ones. The incorporation of the organic resin in the mortar samples significantly affects 

the mechanical properties, as the compressive strength increases with the resin content. An explanation 

of this behavior likely involves the reduction of porosity reported in the previous paragraph. 

Furthermore, an increase of compressive strength is also observed with the increase of the sand 

content. The increase in strength observed with high amount of sand can be explained by considering 

the introduction of a material (the sand) with higher compressive strength than the geopolymer matrix 

and with the reduction of the microcracking related to the drying shrinkage of the binder phase. In fact, 

it is well known that aggregate properties strongly affect the drying shrinkage behavior of concrete. On 

the other hand, the increase of strength is significantly lower than what would be expected, in fact in 

previous papers [42,55] an increase of about 100% was observed by the addition of a fine siliceous 

filler. This behavior may be likely explained by considering the onset of the Interfacial Transition 

Zone between the largest sand particles and the geopolymeric matrix. 

The compressive strength results are in agreement with data concerning the total open porosity of 

the mortars. In fact, samples with high compressive strength value show lower porosity. 

Figure 6. Compressive strength of G, E, L specimens as function of sand content. 

 

2.2.6. Stress-Strain Response 

The compressive behavior of the materials studied in this work can be examined by plotting the 

complete stress–strain response (Figure 7). The stress-strain curves of the hybrid mortars were plotted 
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together with that of the geopolymer mortar. All the specimens were tested under uniaxial compression, 

by applying a vertical load gradually until they reached the complete failure. 

Figure 7. Stress-strain curves of G, G66, E, E66, L, L66 specimens. 

 

From Figure 7 it is possible to establish the differences between the stress-strain relationship of a 

neat geopolymer mortar and a hybrid one. As already shown in the previous figure, hybrid mortar 

composites have higher strength than the resin free mortars. Close to the peak load, some cracks 

started appearing on the surface of the specimen. An examination of the stress-strain diagrams 

indicates that the hybrid mortars behave differently respect to the neat geopolymer one. In fact, the 

stress-strain curve related to composite specimens continues at high stress values after the maximum 

and fracture happens at high strain values. On the other side, the neat geopolymer sample fails at a 

strain value closer to the maximum. 

The main parameters that influence stress-strain relationships are: peak stress (compressive strength 

value), modulus of elasticity and ultimate strain (strain at failure). 

The measured peak stress (compressive strength value), and the corresponding value of strain, the 

ultimate strain (maximum strain of the samples) and the corresponding value of stress obtained are 

reported in Table 2. 

The presence of epoxy resin in the mixture significantly influences the extent of all the measured 

parameters. Changing the kind of resin causes a slight variation in the ultimate strength, in fact 

EpojetLV shows a better behavior than Epojet. Moreover, the epoxy resin significantly influences the 

ultimate strain before cracking. 

Up to now, for geopolymers, there are no structural codes. For conventional concrete, according to 

several codes, the ultimate strain is 3.5‰ [55,56]; for this value the compressive stress value is 60% of 

the compressive strength. 
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Table 2. Ultimate strain, compressive strength at ultimate strain, strain at peak stress and 

unconfined compressive strength of the neat geopolymer and of the hybrid  

composite specimens. 

Mixtures εult 
a
 σult 

b
 (MPa) εsps 

c
 σsps 

d
 (MPa) 

L66 0.0044 44.16 0.0016 61.89 

E66 0.0028 40.09 0.0013 58.03 

G66 0.0018 35.84 0.0012 43.16 

a Ultimate strain; b Compressive strength at ultimate strain; c Strain at peak stress; d Unconfined  

compressive strength. 

Table 2 shows that L66 undergoes strains which are higher than the strains considered by code for 

conventional concrete. The presence of the resin in the geopolymer mortar allows the increase of 

strains in the descending branch and to reach high value of strain. 

Even if the modulus of elasticity is similar for both hybrids, as evidenced by the linear part of the 

stress strain curve, the use of GeoepojetLV allows reaching higher value of peak stress and  

ultimate strain. 

As seen, the hybrid composite specimens show progressive fracture behavior rather than a brittle 

one and consequently require higher fracture energy than the neat geopolymer mortar. This behavior 

may be likely explained by considering the propagations of cracks proceeding in a progressive and 

controlled way with increasing strain [57] owing to the presence of the resin phase. The organic phase 

may play a dual role: on one side, it could absorb part of the load by plastic deformation; on the other 

side, it could perform a toughening effect by a typical crack deviation mechanism [58]. 

3. Materials and Methodology 

3.1. Materials and Design 

3.1.1. Materials 

The epoxy resins used in this paper, Epojet
®

 and EpojetLV
®

, were purchased from Mapei S.p.A 

(Milan, Italy). Sodium hydroxide was purchased by Aldrich. Metakaolin, provided by Neuchem S.r.l. 

(San Vittore Olona, Italy), has the following composition: Al2O3 41.90 wt %; SiO2 52.90 wt %;  

K2O 0.77 wt %; Fe2O3 1.60 wt %; TiO2 1.80 wt %; MgO 0.19 wt %; CaO 0.17 wt %. The sodium 

silicate solution was supplied by Prochin Italia S.r.l. (Marcianise, Italy) with the composition:  

SiO2 27.40 wt %, Na2O 8.15 wt % and H2O 64.45 wt %. Siliceous sand was employed as aggregate 

and its physical characteristics are shown in Table 3. 

Table 3. Physical characteristics of siliceous sand. 

Mixtures Values Relevant regulation 

Sand equivalent (%) 97 EN 933-8 

Apparent density (g/cm3) 2.59 MIP 

Bulk density (g/cm3) 1.64 ISO 6782 

Water absorption (%) 1.10 ISO 7033 

Fineness modulus 2.70 UNI EN 12620 
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3.1.2. Preparation of the Specimens 

Preparation of the Geopolymeric Mortars (G33/G66) 

The alkaline activating solution was prepared by dissolving solid sodium hydroxide into the sodium 

silicate solution. The solution was then allowed to equilibrate and cool for 24 h. The composition of 

the solution can be expressed as Na2O·1.4SiO2·10.5H2O. Then this was added to a mixture of MK and 

sand, according the amount reported in Table 4 for G33, G66, respectively. 

The samples were mixed for 10 min using a planetary Hobart mixer, casted into 40 × 40 × 160 mm
3
 

steel molds and vibrated for 10 min to remove air bubbles. 

Preparation of The Hybrid Geopolymeric Mortars (E33/E66/L33/L66) 

Epojet
®

 and EpojetLV
®

 resins were obtained by mixing two commercial components, named A and 

B, in 4:1 ratio in weight as specified in the technical data sheet supplied by the manufacturer [45]. 

Before being added to the geopolymeric mortar, Epojet
®
 and EpojetLV

®
 were cured at room 

temperature for 10 and for 60 min, respectively. Both the resins were added when they were still easily 

workable and long before their complete crosslinking and hardening (that takes place in about  

5–7 h at 23 °C). The partially crosslinked resins were added to the freshly-prepared geopolymer mortar 

and quickly incorporated by mechanical mixing (10 min). 

Different samples were prepared according the compositions reported in Table 4. 

All the specimens in the molds were cured in >95% relative humidity conditions at room 

temperature for 7 days (the samples used for the mechanical tests were left further 21 days in air). The 

evaporation of water was prevented by sealing the top of the molds with a thin plastic layer during 

storage as well as during the curing stage. 

Three prismatic specimens (40 × 40 × 160 mm
3
) were prepared for each mixture even if physical 

mechanical characterization was studied in depth only for the mixtures with high sand content, which 

showed better performances. For these mixtures, three additional prismatic specimens  

(40 × 40 × 160 mm
3
) were prepared. 

Table 4. Mix design proportion (% wt/wt). 

System Sodium hydroxide Sodium silicate solution MK Epojet EpojetLV Sand 

G * 8.3 50.0 41.7 – – – 

G33 5.6 33.1 28.0 – – 33.3 

G66 2.8 16.6 14.0 – – 66.6 

E * 6.7 40.0 33.3 20.0 – – 

E33 4.4 26.8 22.1 13.4 – 33.3 

E66 2.2 13.4 11.1 6.7 – 66.6 

L * 6.7 40.0 33.3 – 20.0 – 

L33 4.4 26.8 22.1 – 13.4 33.3 

L66 2.2 13.4 11.1 – 6.7 66.6 

* see References [12,22]. 
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3.2. Analytical Techniques 

Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses were performed by 

a TA Instrument SDT2960 simultaneous DSC-TGA. The analyses were performed at a heating rate of 

10 °C/min, using ≈10 mg of the powdered sample under air flow. 

SEM analysis was carried out by means of a FEI Quanta 200 FEG microscope. 

A Controls
®

 srl (Cinisello Balsamo, Italy) crack measurement microscope (mod. 58-C0218, 

Magnification: 40×, Measuring range: 4 mm, Subdivision: 0.02 mm) was used for measuring crack 

widths. The apparatus operates by an adjustable lamp unit and the image is focused by turning  

a knob. The eyepiece scale can be turned through 360° to align with the direction of the crack or pitch 

under examination. 

The pore size distribution of the prepared mixtures was measured by Mercury Intrusion Porosimetry 

using Pascal 140 and 440 produced by Thermo Fischer Scientific
® 

(Illkirch Cedex, France). The use of 

two instruments allows to determine the pore radius in the range 3.75–50.000 nm. The tests were 

carried out following the ISO 15901-1:2005. The total pore volume of the samples was calculated by 

using the well-known Washburn Equation:                (1)  

in this formula d is the pore diameter (m); γM is the mercury surface tension (N/m); P is the applied 

pressure (MPa); and θ is the contact angle between the mercury and the solid surface (°). 

The compressive and flexural strengths were evaluated according to EN 196-1. Mechanical test was 

performed in a Controls MCC8 multipurpose testing machine with a capacity of 100 kN and it was 

determined by taking the average of three test results. Compressive strength measurements were 

carried out using a Controls MCC8 hydraulic console with a capacity of 2000 kN. Each data point 

represents the average of six compressive strength values. 

Stress-strain relationships for the casted specimens were obtained by testing mortar specimens 

according to EN 196-1 regulation. The tests were performed after 28 days of curing at  

room temperature. 

Water absorption is defined as the ratio between the weight of water absorbed by a material and the 

weight of the dry material. Water absorption of the mortar depends on various factors like mix 

proportion, open porosity, type of binders, etc. Standard codes of practice give procedures to determine 

water absorption of the mortar. In this study UNI EN 13755:2008 was followed. The water absorption 

capacity (WAC) was determined as described in [59]. The water saturated specimens were dried at  

40 ± 2 °C until constant weight was reached. Then, WAC was determined as follows:                    (2) 

where    is the water saturated specimens mass and    is the 40 ± 2 °C dried specimens mass. 
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4. Conclusions 

The present paper reports for the first time the preparation and characterization of geopolymeric 

mortars containing epoxy resins. The composites are produced by the addition of polymerizable 

commercially available epoxy monomers in liquid form to the geopolymeric mortar suspension during 

mixing. Epoxy-modified systems harden by the simultaneous progress of geopolymerization and 

epoxy polymerization. The hardened epoxy resins form spherical particles (whose diameter ranges 

from 1 to 50 μm) homogenously dispersed into the inorganic matrix. As a result, a co-matrix phase is 

formed that binds aggregates strongly. 

In respect to the neat geopolymeric mortars, the geopolymeric hybrid mortars prepared present: 

1. Improved strength: the polymer-modified mortars have improved compressive strength in 

comparison with unmodified ones. Furthermore, the polymer in the mortar helps restrain 

micro-crack propagation, which improves the overall toughness of the mortar. 

2. The total porosity decreases with the addition of the organic polymer. This may contribute to 

improve gas and water impermeability and consequently the durability. 

These improved properties allow the use of polymer-modified geopolymeric mortars in several 

applications that would otherwise be difficult or impossible, including concrete reinforcement and 

repair, decorative cement overlays, and many others. For these reasons polymer-modified 

geopolymeric mortars are promising construction materials for the future because of the good balance 

between their performance and cost compared to other mortar-polymer composites. 
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