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We describe a novel approach to prepare, detect, and characterize magnetic quantum phases in ultracold

spinor atoms loaded in optical superlattices. Our technique makes use of singlet-triplet spin manipulations

in an array of isolated double-well potentials in analogy to recently demonstrated control in quantum dots.

We also discuss the many-body singlet-triplet spin dynamics arising from coherent coupling between

nearest neighbor double wells and derive an effective description for such systems. We use it to study the

generation of complex magnetic states by adiabatic and nonequilibrium dynamics.
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Recent advances in the manipulations of ultracold atoms

in optical lattices have opened new possibilities for ex-

ploring many-body systems [1]. A particular topic of con-

tinuous interest is the study of quantum magnetism in spin

systems [2– 4]. By loading spinor atoms in optical lattices

it is now possible to ‘‘simulate’’ spin models in controlled

environments and to explore novel spin orders.

In this Letter we describe a new approach for prepara-

tion and probing of many-body magnetic quantum states

that makes use of coherent manipulation of singlet-triplet

pairs of ultracold atoms loaded in deep period-two optical

superlattices. Our approach makes use of a spin dependent

energy offset between the double-well minima to com-

pletely control and measure the spin state of two-atom

pairs, in a way analogous to the recently demonstrated

manipulations of coupled electrons in quantum double

dots [5]. As an example, we show how this technique

allows one to detect and analyze antiferromagnetic spin

states in optical lattices. We further study the many-body

dynamics that emerge when tunneling between nearest

neighbor double wells is allowed. As two specific ex-

amples, we show how a set of singlet atomic states can

be evolved into singlet-triplet cluster-type states and into a

maximally entangled superposition of two antiferromag-

netic states. Finally, we discuss the use of our projection

technique to probe the density of spin defects (kinks) in

states prepared via equilibrium and nonequilibrium

dynamics.

The key idea of this work is illustrated by considering a

pair of ultracold atoms with two relevant internal states,

which we identify with spin up and down � �" , # in an

isolated double-well (DW) potential as shown in Fig. 1. By

dynamically changing the optical lattice parameters, it is

possible to completely control this system and measure it

in an arbitrary two-spin basis. For concreteness, we first

focus on the fermionic case. The physics of this system is

governed by three sets of energy scales: (i) the on site

interaction energy U � U"# between the atoms, (ii) the

tunneling energy of the � species J� and (iii) the energy

difference between the two DW minima 2�� for each of

the two species. The � index in J and � is due to the fact

that the lattice that the " and # atoms feel can be engineered

to be different by choosing laser beams of appropriate

polarizations, frequencies, phases, and intensities. In the

following we assume that the atoms are strongly interact-

ing, U � J�, and that effective vibrational energy of each

well @!0 is the largest energy scale in the system @!0 �
U, ��, J�, i.e., deep wells.

Singlet jsi and triplet jti states form the natural basis for

the two-atom system. The relative energies of these states

can be manipulated by controlling the energy bias ��

between the two wells. In the unbiased case (U � 2��)
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FIG. 1 (color online). (a) Energy levels of fermionic atoms in a

spin independent double well as �=U is varied: While in the

regime 2� � U, �1; 1�jsi is the lowest energy state, when 2� *

U, �0; 2�jsi becomes the state with lowest energy. (b) In spin

dependent potentials the two species feel different lattice pa-

rameters. (c) Restricted to the (1,1) subspace � acts as an

effective magnetic field gradient and couples jsi and tzi.
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only states with one atom per site (1,1) are populated, as

the large atomic repulsion energetically suppresses double

occupancy [here, labels (m, n) indicate the integer number

of atoms in the left and right sites of the DW]. For weak

tunneling and spin independent lattices (J" � J# � J, �" �
�# � �) the states �1; 1�jsi and �1; 1�jti are nearly degen-

erated. The small energy splitting between them is

�4J2=U, with the singlet being the low energy state

[Fig. 1(a)]. As � is increased the relative energy of doubly

occupied states (0, 2) decreases. Therefore, states �1; 1�jsi
and �0; 2�jsi will hybridize. When 2� * U the atomic

repulsion is overwhelmed and consequently the �0; 2�jsi
becomes the ground state. At the same time, the Pauli

exclusion results in a large energy splitting @!0 between

doubly occupied singlet and triplet states as the latter must

have an antisymmetric orbital wave function. Hence,

�1; 1�jti does not hybridize with its doubly occupied coun-

terpart, and its relative energy becomes large as compared

to the singlet state. Thus the energy difference between

singlet and triplet states can be controlled using �.

Further control is provided by changing J� and �� in

spin dependent lattices [see Fig. 1(b)]. Specifically, let us

now consider the regime 2�� � U in which only (1,1)

subspace is populated. Within this manifold we define [6]

jsi � ŝyj0i � 1
��

2
p �j"#i � j#"i�, jtzi� t̂yz j0i� 1

��

2
p �j"#i	j#"i�,

jtxi � t̂yx j0i � �1
��

2
p �j""i � j##i�, jtyi� t̂yy j0i� i

��

2
p �j""i	j##i�.

Here t̂y� and ŝ are operators that create triplet and singlet

states from the vacuum j0i (state with no atoms). They

satisfy bosonic commutation relations and the constrain

�P��x;y;zt̂
y
� t̂�� 	 ŝyŝ � 1, due to the physical restriction

that the state in a double well is either a singlet or a triplet.

In the rest of the Letter we will omit the label (1,1) for the

singly occupied states.

When �� depends on spin, i.e., � � �" � �# � 0, the

jtzi component mixes with jsi [see Fig. 1(c)]. Note that, on

the other hand, jtx;yi remain decoupled from jtzi and jsi .

As a result, the states jsi and jtzi form an effective two-

level system whose dynamics is driven by the Hamiltonian:

 Ĥ J
1
� ���ŝyŝ� t̂yz t̂z� ��~Sz 	 const: (5)

Here � � 2J"J#= ~U is the exchange coupling energy (with

~U � U2���"	�#�2
U

) and ~Sz � ŝy t̂z 	 t̂yz ŝ. If � � 0, exchange

dominates and jsi and jtzi become the ground and first

excited states, respectively. However, if � � � , exchange

can be neglected and the ground state becomes either j"#i
or j#"i depending on the sign of �.

These considerations indicate that it is possible to per-

form arbitrary coherent manipulations and robust measure-

ment of atom pair spin states. The former can be

accomplished by combining time-dependant control over

� , � to obtain effective rotations on the spin-1=2 Bloch

sphere within jsi � jtzi state. In the parameter regime of

interest, � , �, can be varied independently in experiments.

In addition, by applying pulsed (uniform) magnetic fields it

is possible to rotate the basis, thereby changing the relative

population of the jtx;y;zi states. Atom pair spin states can be

probed by adiabatically increasing � until it becomes

larger than U=2, in which case atoms in the jsi will

adiabatically follow to �0; 2�jsi while the atoms in jt�i
will remain in (1,1) state [Fig. 1(a)]. A subsequent mea-

surement of the number of doubly occupied wells will

reveal the number of singlets in the initial state. Such a

measurement can be achieved by efficiently converting the

doubly occupied wells into molecules via photoassociation

or using other techniques such as microwave spectroscopy

and spin changing collisions [7]. Alternatively, one can

continue adiabatically tilting the DW until it merges to one

well. In such a way the jsi will be projected to the �2�jsi,
while the triplets will map to �2�jt�i. As �2�jt�i has one of

the atoms in the first vibrational state, by measuring the

population in excited bands one can detect the number of

initial jt�i. Hence the spin-triplet blockade [5] allows

effective control and measurement of atom pairs.

Detection and diagnostics of many-body spin phases

such as antiferromagnetic (AF) states is an example of

direct application of the singlet-triplet manipulation and

measurement technique. The procedure to measure the AF

state population is the following: after inhibiting tunneling

between the various DWs, one can abruptly increase �,

such that the initial state is projected into the new eigen-

states j"#i and j#"i at time � � �0. For � > �0 � can then be

adiabatically decreased to zero, in which case the j"#i pairs

will be adiabatically converted into jsi and j#"i pairs to jtzi.
Finally, the singlet population can be measured using the

spin blockade. As a result, a measure of the doubly occu-

pied sites (or excited bands population) will detect the

number of j"#i pairs and thus probe antiferromagnetic

states of the type j"#"# . . .i.
These ideas can be directly generalized to perform mea-

surements of the more complex magnetic states that can be

represented as products of atom pairs. For example, a pulse

of rf magnetic field can be used to orient all spins, thus

providing the ability to detect jAFi states aligned along an

arbitrary direction. Moreover, one can determine the rela-

tive phase between singlet and triplet pairs in jAFi states of

the form
Q jsi 	 ei�jtzi by performing Ramsey-type spec-

troscopy. After letting the system evolve freely (with � �
0) so that the jsi and jtzi components accumulate an addi-

tional relative phase due to exchange, a readout pulse

(controlled by pulsing �) will map the accumulated phase

onto the population of singlet and triplet pairs. To know �
is important as it determines the direction of the antiferro-

magnetic order. Furthermore, by combining the blockade

with noise correlation measurements [8] it is possible to

obtain further information about the magnetic phases.

While the blockade probes local correlation in the DWs,

noise measurements probe nonlocal spin-spin correlations

and thus can reveal long range order.

Before proceeding we note that ideas similar to that

outlined above can be used for bosonic atoms if initially

no jtx;yi states are populated. The latter can be done by
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detuning the jtx;yi states by means of an external magnetic

field. In the bosonic case the doubly occupied jtzi states

will be the ones that have the lowest energy. They will be

separated by an energy @!0 from the doubly occupied

singlets as the latter are the ones that have antisymmetric

orbital wave function in bosons. Consequently, the role of

jsi in fermions will be replaced by jtzi in bosons. The

readout procedure would then be identical to that described

above, while the coherent dynamics will be given by the

Hamiltonian Eq. (5) apart from the sign change � ! �� .

Up to now we have ignored tunneling between near-

est neighbor DWs, but in practice inter-DW tunneling t�
can be allowed by tuning the lattice potential. When atoms

can hop between DWs, the behavior of the system de-

pends on the dimensionality. For simplicity we will re-

strict our analysis to a 1D array of N double wells, where

t� corresponds to hopping energy of �-type atoms be-

tween the right site of the jth � DW and the left site of

the �j	 1�th � DW.

In the regime J�, t�, �� � U, multiply occupied wells

are energetically suppressed and the effective Hamiltonian

is given by Ĥeff � ĤJ 	 Ĥt . Here the first term corre-

sponds to the sum over N independent HJ
j Hamiltonians

[see Eq. (5)], ĤJ �
P

N
j�1

HJ
j , each of which acts on its

respective jth � DW. On the other hand Ĥt is nonlocal as it

couples different DWs and quartic as it consists of terms

with four singlet-triplet operators [9]. The coupled DWs

system is, in general, complex and the quantum spin dy-

namics can be studied only numerically. However, there

are specific parameter regimes where an exact solution can

be found. For this discussion we will set �� � 0. If t"=t# !
0, and at time � � 0, no jtxi, jtyi triplet states are popu-

lated, their population will remain always zero. Conse-

quently, in this limit, the relevant Hilbert space reduces

to that of an effective spin one-half system with jsi and jtzi
representing the effective 
1=2 states, which we denote as

j*i and j+i. Ĥt couples such effective spin states. In the

restricted Hilbert space Ĥeff maps exactly to an Ising chain

in a magnetic field:

 Ĥ eff � ��
X

j

�̂zj � �z
X

j

�̂xj�̂
x
j	1

(6)

where �̂� are the usual Pauli matrices which act of the

effective j*i and j+i spins. In terms of singlet-triplet op-

erators they are given by �̂zj � �ŝyj ŝj � t̂yzjt̂zj�, �̂xj �
ŝyj t̂zj 	 t̂yzjŝj and �̂yj � �ŝyj t̂zj � t̂yzjŝj�=i. Here �z �

t2#
2U

�
t2#
U##

and the upper and lower signs are for fermions and

bosons, respectively. For fermions in the lowest vibrational

level the on site interaction energy between the same type

of atomsU"",U## ! 1 due to the Pauli exclusion principle.

The 1D quantum Ising model exhibits a second order

quantum phase transition at the critical value jgj �
j�z=�j � 1. For fermions (upper sign) when g� 1 the

ground state corresponds to all effective spins pointing

up, i.e., jGi � j* . . . *i � �jjsij. On the other hand

when g� 1, there are two degenerate ground states which

are, in the effective spin basis, macroscopic superpositions

of oppositely polarized states along x. In terms of the

original fermionic spin states this superposition correspond

to the states jAF
i � 1
��

2
p �j"# . . . "#i 
 j#" . . . #"i�. There-

fore, by adiabatic passage one could start with jGi and

convert it into AF state(s). Because of the vanishing energy

gap at the quantum critical point g � 1, adiabaticity is

difficult to maintain as N ! 1 [10–13]. In that respect,

our projection scheme is useful to test adiabatic following.

It can be done either by measuring the number of j "#i pairs

in the final state or by adiabatically ramping down g back

to zero and measuring the number of singlet-triplet pairs.

The remaining number of triplets will determine the num-

ber of excitations created in the process.

We now turn to nonadiabatic dynamics. We will discuss

the situation where initially the system is prepared in a

product of singlet states (�z � 0 ground state) and then one

lets it evolve for � > 0 with a fixed j�zj> 0. Generically

the coupling between DWs results in oscillations between

singlet and triplet pairs with additional decay on a slower

time scale. We present two important special cases:

(i) Singlet-triplet cluster state generation.—If the

value of �z is set to be j�zj � � , then the Hamiltonian

reduces to a pure Ising Hamiltonian and thus at parti-

cular times �c, given by �z�c=@ � �=4 mod �=2, the

evolving state becomes a d � 1 cluster state jCi in the

effective spin basis [14]. Up to single spin rotations jCi �
1

2N=2

N

N
j�1

�j*ij�̂zj	1
	 j+ij�. Cluster states are of interest

for the realization of one-way quantum computation pro-

posals where starting from the state jCi computation can be

done via measurements only. Preparation of cluster states

encoded in the logical * , + qubits may have significant

practical advantages since the * , + states have zero net spin

along the quantization axis and hence are not affected by

global magnetic field fluctuations. Additionally, the use of

such singlet-triplet states for encoding might allow for the

generation of decoherence free subspaces insensitive to

collective and local errors [15] and for alternative schemes

for measured-based quantum computation [16].

(ii) Nonequilibrium generation and probing of AF cor-

relations.—The second situation is when the value of �z is

set to the critical value, j�zj � � (or g � 1). We will first

focus on the fermionic system �z > 0. To discuss it, we

remind that the dynamics driven by Ĥeff is exactly solvable

as Ĥeff can be mapped via the Jordan-Wigner transforma-

tion into a quadratic Hamiltonian of fermionic operators

which can be diagonalized by a canonical transformation

[13,17]. Using such transformation it is possible to show

that at specific times, the shortest of them denoted by �m �
@
N	1

4� , long range AF correlations build up and for small

atom number the state approaches jAF	i. To quantify the

resulting state in Fig. 2 (inset) we plot the fidelity, defined

as F 1��m� � jhAF	j ��m�ig�1j2, as a function of N. The
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figure shows that while an almost perfect jAF	i is dynami-

cally generated for small N, its fidelity exponentially de-

grades with increasing atom number.

However, the fidelity is a very strict probe, as it drops to

zero when a single spin is flipped. As N increases the

system ends at �m in a quantum superposition of states

like j . . . )((((())))))( . . .i with finite do-

mains of ‘‘effective spins’’ pointing along 
x, separated by

kinks where the polarization of the spins changes its ori-

entation (we used the convention j"#i � j)i). Con-

sequently, one gets more realistic information about the

AF order of the state by measuring the average size of the

domains or the average density of kinks, the latter defined

as � � 1

2N

P

j�1� h ���j�̂xj�̂xj	1
j ���i�.

Our readout technique can be used to detect the kink

density as for an arbitrary fixed g energy conservation

imposes a relation between � and the triplet-z density, Nt:

 ���; g� � 1

2
� Nt��; g�

g
: (7)

A simple analytical expression for Nt��; g� can be ob-

tained by using the Jordan-Wigner transformation [17]:

Nt��; g� � 1

N
�2z

P

N�1
k�0

sin2�2�k=N�sin2�2!k��
@
2!2

k

where @!k �
�

����������������������������������������������������

g2 	 1	 2g cos�2�k=N�
p

are quasiparticle frequencies

of Ĥeff . The fact that it always remains below 0.2 (see

Fig. 2) confirms the idea that regardless of the reduced

fidelity at largeN, the state does retain AF correlations. We

point out that jAF	i states are only generated at g � 1.

Let us now discuss the bosonic case. If �z > 0, the

fermionic results apply for bosons by simply interchanging

the role of jsi $ jtzi. On the other hand if �z < 0, not only

one has to interchange jsi $ jtzi but additionally, the adia-

batic and nonequilibrium dynamics will generate, instead

of jAF
i states, 1
��

2
p �j)( . . . )(i
 j() . . . ()i� i.e.,

macroscopic superpositions of AF states along the x direc-

tion in the effective spin basis. With these modifications,

the results derived for fermions hold for bosons [18].

Before concluding we briefly mention that spin depen-

dent superlattices of the form

 V �
X

j�1;2

�Aj 	 Bj�z�cos2
kz=j	 	j� (8)

can be experimentally realized by superimposing two in-

dependent lattices, generated by elliptically polarized

light, one with twice the periodicity of the other [19–21].

Complete control over the DW parameters is achieved by

controlling the phases (which determine �), intensities

(which determine U, J, and t) and polarization of the laser

beams (which allows for spin dependent control).

In summary we have described a technique to prepare,

detect and manipulate spin configurations in ultracold

atomic systems loaded in spin dependent period-two super-

lattices. By studying the many-body dynamics that arises

when tunneling between DWs is allowed, we discussed

how to dynamically generate singlet-triplet cluster states

and AF cat states, which are of interest for quantum

information science, and how to probe AF correlations in

dynamics that are far from equilibrium. Even though in this

Letter we restrict our analysis to 1D systems the ideas

developed here can be extended to higher dimensions

and more general kinds of interactions.
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jh ��m�jAF	ij2 vs N (inset). Our projection technique can be

used to measure ���� as it is directly related to the triplet density,

Nt��� [see Eq. (7)].
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