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Abstract: Steel slag (SS) has been largely discharged but little utilized, causing an environmental
problem in China. In this paper, SS-based composite cementitious materials with high strength
were prepared by the high volume of SS (≥40%), granulated blast-furnace slag (GBFS), fly ash (FA),
flue gas desulfurization gypsum (FGDG) and cement to promote the effective utilization of SS. The
hydration and hardening properties were studied through setting time, compressive strength, length
change, isothermal calorimetry (IC), X-ray diffraction (XRD), mercury intrusion porosimetry (MIP),
and scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS) tests.
The results show that SS-based composite cementitious material exhibited a lower hydration heat
release, an appropriate setting time, and volume stability. The SS cementitious material with 40% SS
could obtain high strength of over 65 MPa at 28 days and 80 MPa at 90 days. The strength value of
> 60 MPa is present in the binder, with 50% SS at 56 days. GBFS promotes hydration reactions and
the formation of AFt and C-(A)-S-H gel, thus enhancing compressive strength. FA has a beneficial
effect on later strength. The small and fine pore structures contribute to the development of strength.
The main hydration products of SS composite cementitious materials are C-(A)-S-H gel, and ettringite
(AFt), with less Ca(OH)2. The C-(A)-S-H gel with a lower Ca/Si ratio and a higher Al/Ca ratio in
cementitious material, promotes mechanical properties.

Keywords: steel slag; solid wastes; compressive strength; hydration; microstructure

1. Introduction

Steel slag (SS) is an industrial solid waste discharged during steelmaking. Its emissions
were 160 million tons, and the utilization rate was less than 30% in China. A great part of
SS is randomly discarded, resulting in land occupation and environmental pollution. The
improvement of efficient utilization of SS is conducive to ecological environment protection
and achieving sustainable development of the steel industry.

The mineral composition of SS contains C3S, γ-C2S, C4AF, C2F, RO phase (CaO–FeO–
MnO–MgO solid solution), free-CaO, and free-MgO [1]. SS has been mainly used as
aggregate substitution [2–4] and supplementary cementitious materials [5,6] in building
materials. Some mechanical properties and durabilities of concrete with complete or
partial substitution of SS aggregate were examined. The compressive strength of concrete
would increase as the substitution ratio of SS aggregate replacing traditional aggregate
increased [4,7–9]. There was a reduction in the compressive strength of concrete containing
SS aggregates after freezing-thawing cycles due to high porosity [10]. It was proposed that
the replacement ratio of SS aggregate at 15% and 30% are beneficial to the compressive
strength [11].

SS has a low reactivity with respect to the high amount of γ-C2S resulting from
the slow and natural cooling during SS production. Low reactivity calcium silicate in SS
participates in cement hydration to generate hydrated calcium silicate. SS as supplementary
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cementitious materials could improve the workability, decrease hydration heat and decrease
compressive strength [5]. The compressive strength decreases with the increase in the SS
replacement ratio [12–14]. The 28-day compressive strength of mortar is about 37 MPa
when the SS content reaches 30% [15].

It should be noted that the use of high-volume SS (≥40%) in steel slag-based cemen-
titious material can efficiently promote the utilization of SS. Low compressive strength
was reported in cementitious materials with high-volume SS. A low 28-day compressive
strength of 30 MPa was exhibited in cement paste with 50% SS [16] and with the replacing
ratio increase to 70%, the strength of cement paste was only 20.8 MPa [17]. He et al. [18]
reported that 80% SS-20% cement paste has a 28-day compressive strength of about 35 MPa
and decreases by 60 MPa compared with that of pure cement paste.

Due to the low activity of SS, activation is necessary to promote the activity and hydra-
tion properties of SS-based composite binders. Alkali and calcium sulfur activation were
primarily used in low-activity cementitious materials. Potassium and sodium compounds
were commonly used as activators in alkali-activated cementitious materials. Under alkali
conditions, the silicate and aluminate minerals dissolve and hydrate to produce C-S-H, C-A-
S-H and N-A-S-H. A typical calcium sulfur-activated cementitious material (supersulfated
cement) is composed of 70% to 90% slag, 0% to 5% Portland cement (clinker) or calcium
hydroxide, and 10% to 20% sulfate activators (hemihydrate and gypsum dihydrate). The
activity of SiO2 and Al2O3 is activated by calcium and sulfate and undergoes a hydration
reaction to form C-(A)-S-H and AFt.

The steel slag-based composite cementitious material with a high volume of SS could
be prepared based on the activity matching between the aluminate and silicate phases
in SS, GBFS, FA with the calcium and sulfate phases in cement (clinker) and gypsum. It
hydrates to generate C-S-H, Aft, or AFm, and potentially results in high cementitious
properties. It was proposed that the addition of SS of less than 20% could slightly improve
the compressive strength of SS-GBFS-FGDG mortar [19]. But a higher content of SS would
have a negative impact on the compressive strength [19,20]. The hydration degree of the
composite cementitious materials was improved by GBFS with higher activity, thereby
improving the compressive strength. [16,21,22]. The compressive strength of the SS-FA-
FGDG ternary system decreases with the substitution ratio of FA replacing SS. The strength
of 60% SS-20%FA-20%FGDG paste is 30 MPa, and the strength decreases to 15 MPa while
the replacing ratio of FA increases to 40% [23]. The previous studies indicate that composite
cementitious materials can possess a higher strength with a lower volume of SS (≤20%),
and for a high volume SS, low compressive strength occurred for SS-based composite
cementitious material [24].

This study aims to prepare a high-strength SS-based composite cementitious material
using high volume SS (≥40%) along with GBFS, FA, FGDG and less Portland cement. The
hydration and hardening properties of SS-based composite cementitious materials were
analyzed through hydration heat evolution, setting time, compressive strength, length
change, XRD, MIP, and SEM-EDS tests. This study will further promote the effective
utilization of steel slag, sustainable development of resources and environmental protection.

2. Experimental
2.1. Raw Materials

Fine powders of SS from Jigang Group Co., Ltd., Shandong, GBFS from Jintaicheng
Environmental Resources Co., Ltd., Hebei, and low calcium FA were used in the experiment.
Flue gas desulfurization gypsum was treated through a 200-mesh sieve in size of 75 µm.
PC-II 52.5 Portland cement from Jiangnan Onoda was used. Particle size distributions of
these fine materials were measured and shown in Figure 1. The medium diameter (D50) of
SS, GBFS, PC, FGDG and FA were 11.51, 6.58, 11.56, 29.02, and 8.36 µm, respectively.
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Figure 1. Particle size distributions of raw materials.

The chemical and mineral compositions of raw materials were measured by X-ray
fluorescence (XRF) and XRD as shown in Table 1 and Figure 2. The main chemical composi-
tion of SS is CaO, followed by Fe2O3 and SiO2, MgO, and MnO. Its mineral composition
includes C2S, Ca2Fe2O5, RO and Ca(OH)2 phases. The alkalinity coefficient of the SS is 1.94
regarded as medium alkalinity according to Mason’s theory [25]. GBFS is composed by
CaO and SiO2, followed by Al2O3 as well as the amorphous phase. Fly ash consists of SiO2,
CaSO4, Ca3Al2O6, etc. The main mineral phases of FGDG were dihydrate (CaSO4·2H2O),
anhydrite (CaSO4) along with calcium carbonate (CaCO3).

Table 1. Chemical composition of raw materials (wt. %).

Materials CaO SiO2 Al2O3 SO3 MgO Fe2O3 Na2O K2O MnO P2O5 LOI

SS 36.46 16.64 5.71 0.24 7.42 21.03 0.29 0.09 6.06 2.14 1.06
GBFS 40.38 30.42 16.74 1.34 7.56 1.24 - 0.43 0.23 0.14 -

PC 62.13 21.75 5.21 1.97 2.09 2.91 - 0.63 0.05 0.16 2.40
FGDG 32.06 1.65 0.80 42.46 0.70 0.20 - 0.08 0.02 0.02 21.59

FA 7.95 46.41 31.18 1.91 1.30 4.97 0.60 0.86 0.08 0.60 2.40

2.2. Preparation and Curing Procedures

The experimental flowchart of this study is shown in Figure 3. The mixture proportions of
SS-based composite cementitious materials are shown in Table 2. The water-to-binder ratio of 0.3
was used. The fluidity of SS-based composite cementitious material is a range of 190–250 mm.
The moulds in sizes of 20 mm × 20 mm × 20 mm and 20 mm × 20 mm × 80 mm were
used for compressive strength and length change measurements, respectively. The raw
materials were premixed, and the paste was mixed by a mixer for 4 min. The paste with
the mould was vibrated by a vibrating machine. After casting, that was placed in a curing
box (20 ± 2 ◦C and RH 95 ± 2%) for 24 h. Then, the cubes were demoulded and cured
in water at 20 ± 1 ◦C until certain periods. At the ages of 3, 7, 14, 28, 56, and 90 days,
parts of the samples were taken out and prepared for compressive strength and length
change tests. Moreover, other parts of the samples were broken into pieces and soaked
in anhydrous ethanol for 24 h [26] to stop the hydration. The sample pieces were dried
in a vacuum oven at 40 ◦C for 24 h. The prepared sample pieces were used for MIP and
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SEM-EDS analysis. Parts of the sample pieces were ground and passed through a 200-mesh
sieve for the XRD test.
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Table 2. Mixture proportions (wt. %) of SS-based composite cementitious materials.

Binders SS FGDG PC FA GBFS

SS40 40 13 15 0 32
SS43 43 13 15 0 29

SS40-FA7 40 13 15 7 25
SS40-FA12 40 13 15 12 20
SS50-FA2 50 13 15 2 20

2.3. Test Methods

The hydration heat evolution of SS-based composite cementitious materials was tested
and recorded for 72 h using an isothermal calorimeter (TAM Air). The weight of 1.8 g
of deionized water and 6 g of the binder were used. The slurry was mixed outside and
immediately loaded into the isothermal calorimeter. The temperature was set and stable
at 20 ◦C.

The fluidity of binders was tested according to GBT/2419-2016.
The initial and final setting times were conducted by using a Vicat apparatus according

to the Chinese standard of GB/T 1346-2011.
The compressive strength was measured by a pressure testing instrument (AEC-201

type) with 2.4 KN/s according to JGJ/T 70-2009. The strength value was calculated by
taking the average of at least four cubes. The length change was measured according
to GB/T 29417-2012. The data on length change was collected by a digital comparator
(precision of 0.001 mm). The average value of three cubes was used. The linear expansion
ratio was obtained by calculating the length value at specific periods corresponding to the
initial length value.

The hydration products of pastes were identified by XRD tests. XRD analysis was
performed by a Rigaku-Smart-lab 3000A X-ray diffractometer with Cu Kα radiation at
35 mA and 40 kV. The scanning range is between 5◦ and 70◦ at 5◦ per minute with a step
of 0.01◦.

The pore parameters of samples were measured by using a MIP (Auto Pore V 9600,
Micromeritics). The pressure was 0.1 to 33,000 psi, and the pore size was in a range of 5.48
to 10,000 nm.

The samples were coated with a gold layer for SEM-EDS measurement. The micro-
morphology of samples was observed by a ZEISS instrument (Ultra 55 FESEM) at the
age of 90 days. Elements in the selected micro-regions were determined by the EDS at an
accelerated voltage of 10 kV.

3. Results
3.1. Hydration Heat Evolution and Setting Time

The hydration heat flow and cumulative hydration heat of cementitious materials
are shown in Figure 4. Three exothermic peaks were observed on heat flow curves for
pastes except for the SS50-FA2 group. The first exothermic peak which corresponds to
the dissolution of mineral ions and initial hydration of pastes is not accurate and fully
displayed because of the limitation of the device and mixing way. The first exothermic peak
was followed by an induction period with relatively small amounts of heat release and
a short duration. The duration time shortens with the increase in SS. The heat flow then
begins to enter the acceleration period, and the starting time is ordered by SS50-FA2 < SS43
and SS40 < SS40-FA7 < SS40-FA12.

A high exothermic peak II occurred in the SS50-FA2 paste. Other cementitious ma-
terials show a relatively lower exothermic peak II at around 10 to 14 h. The occurrence
time of peak II is prolonged with the rise of FA content in SS40-FA7 and SS40-FA12 pastes
compared with the SS40 group. The cement is replaced by SS with medium alkalinity,
and the second exothermic peak appears around 10 h [27]. It is inferred that the second
exothermic peak would be caused by the hydration of SS particles based on the high heat
release at peak II for SS50-FA2 paste with a high content of SS.
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tious materials.

The peak III appeared in SS40, SS43, and SS40-FA7 pastes after 17 h. SS40-FA12 paste
presents a small peak III after 28 h resulting by a high addition of FA. The third exothermic
peak is considered in relation to the main hydration of active mineral phases of binders as
a result of the formation of C-S-H gel and Ca(OH)2 [28].

The cumulative hydration heat presents about 117.52–152.92 J/g for SS-based compos-
ite cementitious materials, which is lower than Portland cement systems. The cumulative
hydration heat of SS43 paste at 1 and 3 days is slightly higher than that of SS40 paste. The
cumulative hydration heat of SS40-FA7 and SS40-FA12 paste decreased with the increase of
FA compared to SS40 at 1 and 3 days. It has been recognized that FA leads to a lower cumu-
lative heat release than GBFS and Portland cement [29]. The fact that SS50-FA2 paste has a
larger cumulative hydration heat than SS40-FA12 paste shows that SS releases more heat
than FA. It is indicated that the activity of SS is higher than FA in cementitious materials at
an early age.

The initial and final setting times are important indicators of early hydration. The
initial and final setting times of pastes are shown in Figure 5. The initial and final setting
times of pastes are at ranges of 282–348 and 460–512 min respectively, which meets the
requirement of the standard of GB/T 1346–2011 [30]. Compared with SS40 paste, the initial
and final setting times of SS40-FA7 and SS40-FA12 pastes were prolonged by the addition
of FA. SS40-FA12 and SS50-FA2 pastes exhibited similar initial and final setting times. The
proper setting time of steel slag paste facilitates the placement and handling.
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3.2. Compressive Strength

Results of the compressive strength of cementitious materials at different ages are
shown in Figure 6. It can be seen that the compressive strength increases as hydration time
increases. The compressive strength of SS40 paste exceeds 60 MPa at 28 days and 80 MPa
at 90 days, while the compressive strength of other pastes exceeds 70 MPa at 90 days. The
SS40 specimen had higher compressive strength values. The continuous hydration of SS
and GBFS increases the amount of C-(A)-S-H gel, which greatly improves the pore structure
of pastes and results in the development of compressive strength.
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Compared to the SS40 specimen, SS40-FA7 and SS40-FA12 pastes possessed lower
compressive strength at all test ages because of the addition and the lower activity of FA
in binders [31]. A high rise in compressive strength occurred for SS40-FA7 and SS40-FA12
pastes after 56 days, and the increase ratio is 35% and 29% from 56 to 90 days. It indicates
that the FA plays an advantageous role in the development of compressive strength, due to
the activation of the pozzolanic activity of the FA by the Ca(OH)2 formed in the paste at
later ages. The C-S-H gel formed from the hydration of FA can fill the pores [32], resulting
in a rapid rise in compressive strength at 90 days. The compressive strength of SS50-FA2
paste was higher than that of SS40-FA12 within 56 days, indicating that SS is superior to FA
in the development of compressive strength.

3.3. Hydration Products

The hydration products of all pastes at different ages (up to 90 days) determined by
XRD are shown in Figure 7. It is observed that the phases, of AFt, Ca(OH)2, and various
unhydrated phases including RO, γ-C2S, and gypsum, are produced in cementitious
materials. A stronger intensity of AFt and a relatively weaker intensity of Ca(OH)2 are
exhibited in SS cementitious materials, while amorphous C-S-H cannot be detected.
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When the binders were mixed with water, cement minerals hydrated first and pro-
duced C-S-H gel and Ca(OH)2. The Si-O and Al-O bonds in GBFS, FA [33] and SS particles
are decomposed in an alkaline environment to produce Ca2+, SiO4−

4 and AlO5−
4 , respec-
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tively. These ions can participate in hydration reactions to form hydrated calcium silicate
and hydrated calcium aluminate according to Equations (1) and (2). The latter can react
with SO2−

4 released from FGDG to produce AFt [20], as shown in Equation (3). The skeleton
structure formed by AFt is conducive to the formation of early strength, and the continuous
formation of C-S-H gel and AFt promotes the development of compressive strength.

Ca2++xSiO4−
4 +yH2O → CaO·xSiO2·yH2O (1)

5Ca2+ + 2AlO5−
4 +8H2O → 3CaO·Al2O3·6H2O + 2Ca(OH)2 (2)

3CaO·Al2O3·6H2O + 3CaSO4+26H2O → 3CaO·Al2O3·3CaSO4·32H2O (3)

It can be seen that the diffraction peak intensity of AFt increases and the diffraction
peak of gypsum gradually decreases with the development of hydration time, due to the
consumption of gypsum during the formation of AFt. The disappearance of the gypsum
diffraction peak can be observed in SS40 and SS43 pastes after 28 days. After 56 days, there
were no obvious signs of a gypsum diffraction peak in other cementitious materials. The
higher amount of GBFS in SS40 and SS43 pastes results in faster consumption of gypsum,
which would be caused by a greater hydration reaction between the aluminate of GBFS and
gypsum to produce AFt [34,35]. The gypsum diffraction peak of SS50-FA2 is lower than
that of SS40-FA12 indicating that more steel slag leads to faster consumption of gypsum.

The diffraction peak of γ-C2S decreases with the hydration time. The presence of
CaCO3 would be caused by carbonization, but most of it comes from FGDG. The diffraction
peak of the RO phase remained and exhibited insignificant change up to 90 days.

3.4. Length Variation

The linear expansion ratio of SS-based composite cementitious materials is presented
in Figure 8. All pastes expended and the values of the expansion ratio are less than 0.46%
and cured in water for up to 90 days. There is a rapid increase in the linear expansion ratio
before 28 days and then a steady increase afterward.
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SS40 and SS43 pastes showed similar length changes, and the linear expansion ratios
are less than 0.25%. It cannot be observed an increase in the expansion ratio up to 90 days
when the amount of SS increases from 40% in SS40-FA12 to 50% in SS50-FA2. The potential
volume instability has been proposed because the reaction between f-CaO and f-MgO in
the SS and water produce Ca(OH)2 and Mg(OH)2 as a result of expansion [36]. The volume
stability of SS cementitious materials exhibited a relatively weak variation with the rise of
SS content up to 50% in this paper.

It can be seen that cementitious materials incorporating FA occurred a larger length
change at 90 days. SS40-FA12 paste exhibited a higher expansion ratio than SS40-FA7 and
SS50-FA2 specimens. The linear expansion ratio rises with the increase in FA content. The
expansion development is dominated by AFt formation in the expansion performance of
cement pastes with FA at early ages [37].

3.5. Pore Parameters

The pore size distribution curves and pore volume fractions of cementitious materials
are shown in Figure 9. Pore sizes smaller than 5.48 nm were not detected due to the
limited method of testing. To gain more insights into the pore structure, the measured
pore size distribution was divided into three size ranges: gel pores (<10 nm), medium
pores (10–50 nm) and large pores (>50 nm) [38]. Table 3 summarizes the pore parameters
including average and median pore diameter as well as the total porosity of specimens at
90 days. In general, the smaller the average pore size, the denser the pore structure, and
the higher the strength [39]. Previous studies have shown that compressive strength is
inversely proportional to the size of the porosity [40,41].
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Figure 9. (a) Pore size distribution curves and (b) pore volume fractions of SS-based composite
cementitious materials at 90 days.

Table 3. Pore parameters of SS-based composite cementitious materials at 90 days.

Groups Average Pore Diameter (nm) Median Pore Diameter (Volume) (nm) Porosity (%)

SS40 19.07 27.77 23.61
SS43 23.10 34.35 20.91

SS40-FA7 20.60 31.00 22.84
SS40-FA12 19.19 28.91 23.37
SS50-FA2 18.35 27.29 30.28

The gel and medium pores possess roughly 75%–89% of the volume fractions, meaning
most occurrence pores in specimens (Figure 9). SS40 paste possesses a high-volume fraction
of up to about 72% in the medium pore range, and the proportion of <50 nm pores accounts
for 89%. The SS40 specimen exhibited a lower average pore diameter, and its porosity
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is 23.61%. It is predicted that its small and fine pores contribute to its high compressive
strength (Figure 6). A large proportion of large pores and small porosity occurred in the
SS43 paste. SS40-FA7 and SS40-FA12 specimens present similar pore parameters. A high
fraction of gel pores but a low proportion of medium pores were observed in the SS50-FA2
paste. SS50-FA2 specimen has the smallest average pore size, but the highest porosity
than other pastes. The lowest compressive strength would be mainly attributed to its
high porosity.

3.6. Micromorphology

SEM micrographs of pastes at 90 days are shown in Figure 10. The presence of AFt
needles with a width of around 200 nm and C-(A)-S-H gels was found in all pastes. The
dot-like substances, which may be the initial C-S-H gel [28] were observed in the SS40 paste.
The structure of AFt interlaced with C-(A)-S-H gels occurred in other samples. It can be
observed the spots of net structure with regard to the interconnection between AFt and
C-(A)-S-H in SS40-FA12 and SS50-FA2 samples.
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The percentages of Ca and Si atoms as well as Ca/Si and Al/Ca atomic ratios in C-(A)-
S-H of pastes were explored by EDS analysis at 90 days, as shown in Figure 11. The Ca/Si
ratio of C-(A)-S-H gel in cementitious materials is in the range of 1.32–1.84. Relevant works
of literature [42–44] suggest that the Ca/Si of C-S-H for cement-based materials ranges from
1.50 to 2.58. SS cementitious materials exhibit a lower Ca/Si ratio of C-(A)-S-H compared
to cement-based materials. The average silicate chain length of C-(A)-S-H increases with
the decrease in the Ca/Si ratio [45]. Longer silicate chains contribute to the development of
mechanical properties [43].
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The Al/Ca ratio of pastes ranges from 0.02 to 0.34, and the average Al/Ca is 0.12
(Figure 11b). Al enters C-S-H mainly through silicic acid chain bridging sites [46], forming
dense C-A-S-H gels [47]. The Al substitutes Si in C-S-H and high Al/Ca provide excellent
mechanical properties [48].

4. Conclusions

In this paper, the high-strength SS-based composite cementitious materials were
prepared by high volume SS (≥40%) along with GBFS, FA, FGDG and less Portland cement.

SS-based composite cementitious materials exhibited a low hydration heat release.
The second exothermic peak before the main peak on the heat flow curves is caused by
the hydration of SS particles. The increase in SS or FA prolongs the initial and final setting
times. The setting times of SS-based composite binders satisfy the requirement.

The SS-based composite cementitious material (40% SS) could obtain a high com-
pressive strength of over 65 MPa at 28 days and 80 MPa at 90 days. The strength value
of >60 MPa is present in the binder with 50% SS at 56 days. GBFS with a higher activity
promotes the hydration reaction and the formation of AFt and C-(A)-S-H gel, thus facilitat-
ing the compressive strength of the binder. The FA performs an advantageous effect on
the strength at later periods. Meanwhile, the SS-based composite binders exhibited good
volume stability.

The main hydration products of SS-based composite binders are AFt and C-(A)-S-H gel,
with less Ca(OH)2. The network structure of the interconnection between the needles AFt
and C-(A)-S-H gel formed, which is conducive to the dense structure. A lower Ca/Si ratio
and a higher Al/Ca ratio of C-(A)-S-H gel formed, which promotes mechanical properties.

Small and fine pores contribute to the high compressive strength of paste with 40% SS,
and a higher SS volume (50%) would lead to an increase in porosity, resulting in a reduction
in the strength of the paste (SS50-FA2).
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The results could provide a reference for the preparation and application of high-
strength steel slag-based composite cementitious materials, which facilitate the efficient
utilization of steel slag.
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