Research Article

Open Access

Preparation and Identification of 1,3-Oxazepine Derivatives from Selected Carboxylic Acid Anhydrides with Imines Derived from 4-methyl aniline

Obaid H. Abid¹*, Ahmed K. Ramadan²

¹Department of Scientific Affairs and Graduate Studies, University of Fallujah, IRAQ. ²Department of Chemistry, College of Education for Pure Sciences, University of Anbar, IRAQ. *Correspondent author email : <u>hamadaalalousi1991@gmail.com</u>

ArticleInfo	Abstract
Submitted 07/11/2017	Novel 1,3-oxazepine derivatives have been synthesis via (2+5) cycloaddition reaction of imines and selected cyclic carboxylic acid anhydrides by refluxing in dry benzene. Imines were prepared by thermal condensation of 4-methyl aniline and para substituted benzaldehyde in absolute ethanol under reflux conditions. The structure of the target compounds were identified by some physical properties and spectral data of FT-IR and ¹ H-NMR.
Revised 14/12/2017	Keywords: Imines, Carboxylic Acid Anhydrides. 1,3-Oxazepine.
Accepted 20/01/2018	, صرت مشتقات جديدة من مركبات الأوكسازبين من تفاعل الإضافة الحلقية للإيمينات و إنهدريدات حوامض كاربوكسيلية حلقية مختارة بالتصعيد في البنزين الجاف . الإيمينات حضرت بواسطة التكاثف الحراري للأمين الأروماتي 4- مثيل أنيلين و معوضات البنزلديهايد في الموقع بارا تحت التصعيد في الإيثانول المطلق . تم تشخيص المركبات المستهدفة بإستخدام بعض الخصائص الفيزيائية والتحاليل الطيفية بواسطة الأشعة تحت الحمراء والرنين النووي المغناطيسي.

Introduction

Imines

Imines are organic compounds containing an azomethine group and identified by the general formula ($R^1R^2C=NR^3$) where R^1 , R^2 and R^3 are alkyl, aryl, cyclo alkyl or heterocyclic groups [1]. They originally prepared by the German scientist Hugo Schiff in 1864 from the condensation of amino group in primary amines and amino acids with the carbonyl group in aldehydes or ketones, and therefor are known as Schiff bases [2]. The importance of imines is owing to their uses as key intermediates for organic synthesis [3][4][5][6][7], organometallic ligands [8], corrosion inhibitors [9], analytical reagents [10], growth controlling agent [11]. Most imines and their organometallic compounds exhibit significant biological activities [12], and medical uses such as anti-inflammatory,

analgesic, antimicrobial, anticancer, antioxidant, anthelmintic and antidepressant activities [13].

Oxazepines

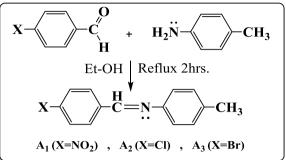
Oxazepines are a class of seven-membered heterocyclic ring compounds containing an oxygen atom at position 1 and a nitrogen atom in one of the three locations (2,3 or 4) in the heptane ring [14], they may contain carbonyl groups [15] and double bonds so they are known as unsaturated and non-aromatic [16]. 1,3-Oxazepine have been originally prepared via UV- irradiation of 4-phenyl-2-oxa-3azabicyclo[3.2.0]-hepta-3,6-diene, ring pyrylium expansion reaction of tetraflouroborates and/or catalvtic rearrangement of ketovinylaziridine [17]. Another route of their synthesis is based on the cycloaddition reaction (2+5) = 7 between

Copyright © 2018 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licenses.

2018

imines and variety of carboxylic acid anhydrides [18].Most of the Oxazepines exhibit a wide range of biological activities and pharmaceutical applications such as anticonvulsant [19], anti-tumor and Colorectal Adenocarcinoma [18], anti-bacterial [20], antioxidant and anti-inflammatory [7], beside their uses as corrosion inhibitors [21], and liquid crystal components [22].

Experimental Analysis


4-Methyl aniline, 4-nitro benzaldehyde, 4chloro benzaldehvde, 4-bromo benzaldehvde, exo-3,6-epoxy-1,2,3,6-tetra-hydro phthallic anhydride, tetrachloro phthalic anhydride, and citraconic anhydride were supplied from Sigma-Aldrich and used directly without further purification, and all solvents were supplied from Scharlau and Romal. Melting points were recorded on Electro Thermal Melting Point Apparatus. FT-IR spectra were recorded on **Bruker-Tensor** 27 spectrophotometer in the range of 4000-400 cm⁻¹ which was made at chemistry department, Anbar University, Iraq. ¹H-NMR spectra were recorded on Bruker-300 MHz spectrometer at Chemistry Department, Gazi University, Turkey. The chemical shifts of ¹H spectra were expressed as (δ) in ppm using Tetramethylsilane (TMS, $\delta = 0.00$ ppm) as internal standard and deuterated dimethyl sulfoxide (DMSO- d_6) as a solvent.

Synthesis of compounds

General procedure for synthesis of imines compunds $[A_1-A_3]$.

A mixture of 4-methyl aniline (0.01 mol) and p-nitrobenzaldehyde (0.01 mol) in absolute ethanol (50 mL) with A few drops of glacial acetic acid as a catalyst was placed in roundbottom flask (100mL) with stirring. The reaction mixture was refluxed for 2hr and then left to cool down to room temperature, whereby, a solid product $[A_1]$ was obtained. The solvent was removed by filteration and the residual solid was recrystallized twice from absolute ethanol. Other imine, [A₂, A₃], were prepared from the reaction of equimolar with amount of 4-methyl aniline pchlorobenzaldehyde or p-bromobenzaldehyde respectively using the same procedure [23].

The reaction pathway for the formation of Imine compounds $[A_1-A_3]$ is depicted by scheme (1).

Scheme 1: Reaction pathway for the formation of Imine compounds [A₁-A₃].

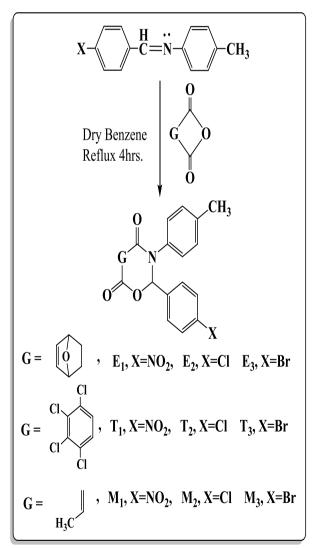
Characterizations

(E)-N-(4-Nitrobenzylidene)-4-methyl aniline $[A_1]$:

Yellow solid, (97% yield), m.p. 108-110 °C, IR (v cm⁻¹): 3099 cm⁻¹ (C-H aromatic), 3048 cm⁻¹ (C-H alkene), 2989-2833 cm⁻¹ (C-H aliphatic), 1624 cm⁻¹ (C=N), 1586-1462 cm⁻¹ (C=C aromatic), 1501, 1326 cm⁻¹ (C-NO₂).

(E)-N-(4-Chlorobenzylidene)-4-methyl aniline $[A_2]$:

White solid, (85% yield), m.p. 100-102 °C, IR ($\nu \text{ cm}^{-1}$): 3093 cm⁻¹ (C-H aromatic), 3026 cm⁻¹ (C-H alkene), 2984-2864 cm⁻¹ (C-H aliphatic), 1620 cm⁻¹ (C=N), 1575-1490 cm⁻¹ (C=C aromatic), 826 cm⁻¹ (C-Cl).


(E)-N-(4-Bromobenzylidene)-4-methyl aniline $[A_3]$.

White solid, (83% yield), m.p. 116-118 °C, IR ($v \text{ cm}^{-1}$): 3089 cm⁻¹ (C-H aromatic), 3025 cm⁻¹ (C-H alkene), 2984-2864 cm⁻¹ (C-H aliphatic), 1619 cm⁻¹ (C=N), 1571-1489 cm⁻¹ (C=C aromatic), 655 cm⁻¹ (C-Br).

General procedure for 1,3-oxazepine derivatives $[E_1-E_3, T_1-T_3, M_1-M_3]$.

In A round bottom flask (100 mL) equipped with double surface condenser fitted with an anhydrous calcium chloride guard tube and stirring magnetic bar, a mixture of Imines $[A_1]/[A_2]/[A_3]$ (0.01 mol) and exo-3,6-epoxy-1,2,3,6-tetra-hydrophthallic anhydride (0.01 mol) in dry benzene (60 mL) was placed. The reaction mixture was refluxed for 4hr, then cooled down to the room temperature and let to stirrer on overnight. The separated solid product, [E₁], was filtered off, washed with NaHCO₃ solution (10 mL) then with distilled water, dried and recrystallized twice from dry benzene. Other derivatives [E₂, E₃, T₁, T₂, T₃, M₁, M₂, M₃] were prepared by reaction equimolar amount of tetrachlorophthallic anhydride or citraconic anhydride with imine [A₂], [A₃], [A₁], [A₂], [A₃], [A₁], [A₂], and [A₃] respectively [24].

The pathway of preparation of the target 1,3oxazepine derivatives $[E_1-E_3, T_1-T_3, M_1-M_3]$ were depicted in scheme (2).

Scheme 2: preparation pathway of 1, 3-oxazepine derivatives [E₁-E₃, T₁-T₃, M₁-M₃].

3-(4-Nitrophenyl)-4-(p-tolyl)-3,4,5a,6,9,9ahexahydro-6,9-epoxybenzo[e][1,3]oxazepine-1,5-dione [E₁].

Pale yellow solid, (67% yield), m.p. 180-182 °C, IR (ν cm⁻¹): 3079 cm⁻¹ (C-H aromatic), 2879 cm⁻¹ (C-H aliphatic), 1694 cm⁻¹ (C=O lactone), 1627 cm⁻¹ (C=O lactam), 1498 cm⁻¹ (C=C aromatic), 1297 cm⁻¹ (C-N), 1017 cm⁻¹ (C-O).

3-(4-Chlorophenyl)-4-(p-tolyl)-3,4,5a,6,9,9ahexahydro-6,9-epoxybenzo[e][1,3]oxazepine-1,5-dione [E₂].

Pale yellow solid, (71% yield), m.p. 186-188 °C, IR (v cm⁻¹): 3085 cm⁻¹ (C-H aromatic), 2879 cm⁻¹ (C-H aliphatic), 1695 cm⁻¹ (C=O lactone), 1628 cm⁻¹ (C=O lactam), 1500 cm⁻¹ (C=C aromatic), 1265 cm⁻¹ (C-N), 1001 cm⁻¹ (C-O). ¹HNMR, δ =2.26 ppm [s, 3H, Aryl-CH₃], δ =6.48-6.28 ppm [m, 6H, oxo ring protons], δ =10.36 ppm [s, 1H, O-CH-N], δ =7.52-7.12 ppm [m, 8H, H_{aromatic}].

3-(4-Bromophenyl)-4-(p-tolyl)-3,4,5a,6,9,9ahexahydro-6,9-epoxybenzo[e][1,3]oxazepine-1,5-dione [E_3].

Pale yellow solid, (78% yield), m.p. 184-186 °C, IR (v cm⁻¹): 3077 cm⁻¹ (C-H aromatic), 2879 cm⁻¹ (C-H aliphatic), 1693 cm⁻¹ (C=O lactone), 1627 cm⁻¹ (C=O lactam), 1497 cm⁻¹ (C=C aromatic), 1297 cm⁻¹ (C-N), 1016 cm⁻¹ (C-O). ¹HNMR, δ =2.26 ppm [s, 3H, Aryl-CH₃], δ =6.48-6.28 ppm [m, 6H, oxo ring protons], δ =10.36 ppm [s, 1H, O-CH-N], δ =7.52-7.12 ppm [m, 8H, H_{aromatic}].

6,7,8,9-Tetrachloro-3-(4-nitrophenyl)-4-(p-tolyl)-3,4-dihydrobenzo[e][1,3]oxazepine-1,5-dione [T_1].

Pale yellow solid, (67% yield), m.p. 180-182 °C, IR (v cm⁻¹): 3043 cm⁻¹ (C-H aromatic), 2920-2861 cm⁻¹ (C-H aliphatic), 1718 cm⁻¹ (C=O lactone), 1642 cm⁻¹ (C=O lactam), 1603-1451 cm⁻¹ (C=C aromatic), 1260 cm⁻¹ (C-N), 1031 cm⁻¹ (C-O). ¹HNMR, δ =2.28 ppm [s, 3H, Aryl-CH₃], δ =10.67 ppm [s, 1H, O-CH-N], δ =8.38-7.15 ppm [m, 8H, H_{aromatic}].

Copyright © 2018 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licenses.

6,7,8,9-Tetrachloro-3-(4-chlorophenyl)-4-(p-tolyl)-3,4-dihydrobenzo[e][1,3]oxazepine-1,5-dione [T_2].

Pale yellow solid, (70% yield), m.p. 172-174 °C, IR (v cm⁻¹): 3035 cm⁻¹ (C-H aromatic), 2921-2862 cm⁻¹ (C-H aliphatic), 1707 cm⁻¹ (C=O lactone), 1646 cm⁻¹ (C=O lactam), 1599-1513 cm⁻¹ (C=C aromatic), 1262 cm⁻¹ (C-N), 1022 cm⁻¹ (C-O).

6,7,8,9-Tetrachloro-3-(4-bromophenyl)-4-(p-tolyl)-3,4-dihydrobenzo[e][1,3]oxazepine-1,5-dione [T_3].

Pale yellow solid, (67% yield), m.p. 180-182 °C, IR (v cm⁻¹): 3031 cm⁻¹ (C-H aromatic), 2918-2862 cm⁻¹ (C-H aliphatic), 1706 cm⁻¹ (C=O lactone), 1644 cm⁻¹ (C=O lactam), 1600-1445 cm⁻¹ (C=C aromatic), 1260 cm⁻¹ (C-N), 1017 cm⁻¹ (C-O). ¹HNMR, δ =2.28 ppm [s, 3H, Aryl-CH₃], δ =10.70 ppm [s, 1H, O-CH-N], δ =7.50-6.59ppm [m, 8H, H_{aromatic}].

Methyl-2-(4-nitrophenyl)-3-(p-tolyl)-2,3dihydro-1,3-oxazepine-4,7-dione [M_1].

Pale yellow solid, (68% yield), m.p. 174-176 °C, IR (v cm⁻¹): 3026 cm⁻¹ (C-H aromatic), 2920-2871 cm⁻¹ (C-H aliphatic), 1694 cm⁻¹ (C=O lactone), 1628 cm⁻¹ (C=O lactam), 1480 cm⁻¹ (C=C aromatic), 1212 cm⁻¹ (C-N), 1032 cm⁻¹ (C-O).

Methyl-2-(4-chlorophenyl)-3-(p-tolyl)-2,3dihydro-1,3-oxazepine-4,7-dione [M₂].

Pale yellow solid, (68% yield), m.p. 174-176 °C, IR (v cm⁻¹): 3026 cm⁻¹ (C-H aromatic), 2920-2872 cm⁻¹ (C-H aliphatic), 1694 cm⁻¹ (C=O lactone), 1629 cm⁻¹ (C=O lactam), 1479 cm⁻¹ (C=C aromatic), 1213 cm⁻¹ (C-N), 1036 cm⁻¹ (C-O). ¹HNMR, δ =1.98 ppm [s, 3H, Aryl-CH₃], δ =2.25 ppm [s, 3H, Het-CH₃], δ =6.09 ppm [s, 3H, Het-H], δ =10.08 ppm [s, 1H, O-CH-N], δ =7.50-7.09 ppm [m, 8H, H_{aromatic}].

$Methyl-2-(4-bromophenyl)-3-(p-tolyl)-2,3-dihydro-1,3-oxazepine-4,7-dione \ [M_3].$

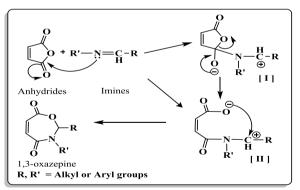
Pale yellow solid, (69% yield), m.p. 172-174 °C, IR (v cm⁻¹): 3027 cm⁻¹ (C-H aromatic), 2921-2872 cm⁻¹ (C-H aliphatic), 1695 cm⁻¹ (C=O lactone), 1630 cm⁻¹ (C=O lactam), 1479 cm⁻¹ (C=C aromatic), 1213 cm⁻¹ (C-N), 1037 cm⁻¹ (C-O). ¹HNMR, δ =1.98 ppm [s, 3H, Aryl-CH₃], δ =2.25 ppm [s, 3H, Het-CH₃], δ =6.09 ppm [s, 3H, Het-H], δ =10.08 ppm [s,1H, O-CH-N], δ =7.50-7.09 ppm [m, 8H, H_{aromatic}].

Results and Discussion

Imines were prepared by thermal condensation reaction of 4-methyl aniline with p-nitro, pchloro and p-bromo benzaldehydes in absolute ethanol under reflux condition and used as starting materials for the synthesis of Oxazepine derivatives. The products were characterized by confirming their structure by some physical properties and FT-IR spectra.

The FT-IR spectra of compounds $[A_1-A_3]$ showed that the disappearance of the stretching frequency absorption bands of (-NH₂) And (C=O) groups for amines and aldehvdes respectively and the appearance of characteristic absorption bands at (3099-3089 cm^{-1}) due to (C-H) aromatic, at (3048-3025 cm⁻¹) ¹) due to (=C-H) alkene, at (2989-2833 cm⁻¹) due to (C-H) aliphatic, at $(1624-1619 \text{ cm}^{-1})$ due to (C=N) imine groups, and (C=C) of the aromatic ring at (1586-1462 cm⁻¹) [25]. See Table 1.

The formation of imine compounds is thoroughly explained by literature [26], and the general mechanism is suggested to take place by nucleophilic addition of the amino group to the carbonyl group associated with formation of hemiaminal, followed by rejection of water to give the product as shown in scheme (3).



Scheme 3: Proposed mechanism for the formation of Imine compounds.

Oxazepine derivatives prepared in this paper were by cycloaddition reaction [2+5] of the prepared imines with each of tetrachlorophthalic, citraconic and exo-3,6epoxy-1,2,3,6-tetra-hydrophthallic anhydride by refluxing the reaction mixture in dry benzene.

FT-IR Spectra for 1,3-Oxazepine derivatives showed that the disappearance of absorption bands of (-C=N) and (C=O) groups of imines and carboxylic acid anhydrides respectively and appearance of the stretching absorption bands of aromatic (C-H) at (3085-3026 cm⁻¹), aliphatic (C-H) at (2921-2861 cm⁻¹), lactone (C=O) at (1718-1693 cm⁻¹), lactam (C=O) at (1646-1627 cm⁻¹), aromatic ring (C=C) at (1603-1445 cm⁻¹), (C-N) at (1212-1297 cm⁻¹) and (C-O) at (1001-1037 cm⁻¹) respectively [27] as shown in figures (1-3) for selected compounds. See Table 2.

The reaction is proposed to proceed via nucleophilic attack of the ioan pair of electrons in the mild nucleophilic imino group on the electrophilic carbonyl group of the cyclic anhydride to produce a dipolar intermediate [I] which then collapses to give intermediate [II] or to form intermediate [II] directly. Then intermediate [II] internally recyclized to give the target molecule [20]. The plausible mechanism for formation of 1,3-oxazepine derivatives can be illustrated by scheme (4).

Scheme 4: The plausible mechanism of formation of Oxazepine derivatives.

The ¹H-NMR spectra of the selected derivative [E₃] showed significant signals : 2.28 ppm (m, 2H, CH-CH of oxo- ring), 2.35 ppm (signals

CH₃-Ar and CH-O-CH of oxo- ring for overlapping with signal of DMSO-d6 solvent), 6.28-6.48 (dd, 2H, HC=CH), 7.12-7.15 ppm (dd, 4H, Ar-CH₃), 7.48-7.52 ppm (dd, 4H, Ar-Br), and 10.36 ppm (s, 1H, N-CH-O). The discussion for derivative $[T_2]$ is following: 2.28 ppm (s, 3H, CH₃-Ar), 6.59-6.91 ppm (dd, 4H, Ar-CH₃), 7.13-7.50 ppm (dd, 4H, Ar-Cl), and 10.70 ppm (s, 1H, N-CH-O). The discussion for derivative $[M_2]$ is following: 1.98 ppm (s. 3H, CH₃-Ar), 2.25 ppm (s, 3H, CH₃), 6.08 (s, 1H, HC-C=C), 7.09-7.12 ppm (dd, 4H, Ar-CH₃), 7.48-7.60 ppm (dd, 4H, Ar-Cl), and 10.08 ppm (s, 1H, N-CH-O) [28] as shown in figures (4-6) for selected compounds. Other derivatives [E₂], [T₁] and [M₃] are tabulated in Table 3.

Finally, the spectral data of both FT-IR and ¹H.NMR of the prepared compounds are quite consistent with the literature which confirm a successful recyclization of the dipolar intermediate to form 1,3-oxazepine ring.

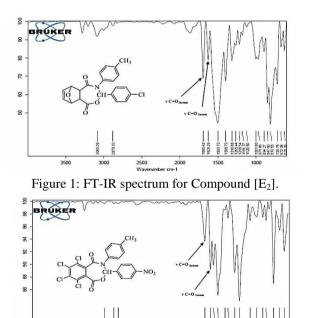


Figure 2: FT-IR spectrum for Compound [T₁].

Copyright © 2018 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licenses.

3500

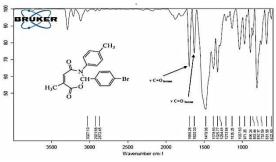


Figure 3: FT-IR spectrum for Compound [M₃].

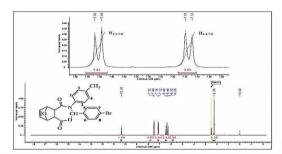


Figure 4: ¹H-NMR spectrum for Compound [E₃].

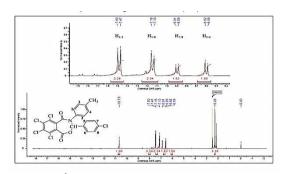


Figure 5: ¹H-NMR spectrum for Compound [T₂].

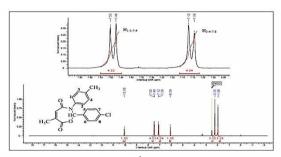


Figure 6: ¹H-NMR spectrum for Compound [M₂].

Table 1: FT-IR spectral data	(cm^{-1})) for synthesized compounds [.	Δ_{1}
Table 1. I'I'I' Specifial uata	CIII) for synthesized compounds [A	$A_1 - A_3_1$.

Comp.	C-H aro.	=C-H _{alk} .	C-H _{ali.}	C=N _{imi} .	C=C aro.	C-X sub.
A_1	3099	3048	2989-2833	1624	1586-1462	1501,1326
A_2	3093	3026	2984-2864	1620	1575-1490	826
A ₃	3089	3025	2984-2864	1619	1571-1489	655

Table 2: FT-IR spectral data (cm⁻¹) for synthesized $[E_1-E_3]$, $[T_1-T_3]$ and $[M_1-M_3]$ compounds.

	1	()	5	E 1 537 E 1	51 [1 5]	1	
Comp.	C-H aro.	C-H ali.	C=O _{lactone}	C=O _{lactam}	C=C aro.	C-N	C-O
E_1	3079	2879	1694	1627	1498	1297	1017
E_2	3085	2879	1695	1628	1500	1265	1001
E_3	3077	2879	1693	1627	1497	1297	1016
T_1	3043	2920-2861	1718	1642	1603-1451	1260	1031
T_2	3031	2921-2862	1707	1646	1599-1513	1262	1022
T ₃	3031	2918-2862	1706	1644	1600-1445	1260	1017
M_1	3026	2920-2871	1694	1628	1480	1212	1032
M_2	3026	2920-2872	1694	1629	1479	1213	1036
M ₃	3027	2921-2872	1695	1630	1479	1213	1037

Table 3: ¹H-NMR chemical shift (ppm) for synthesized $[E_2, E_3]$, $[T_1, T_3]$ and $[M_2, M_3]$ compounds.

Comp.	(s,3H)	(s,1H)	Haromatic rings	Other group
E ₂	2.26	10.36	7.52-7.12	H, oxo ring protons = $6.48-6.28$
E_3	2.26	10.36	7.52-7.12	H, oxo ring protons = $6.48-6.28$
T_1	2.28	10.67	8.38-7.15	
T_3	2.28	10.70	7.50-6.59	
M_2	1.98	10.08	7.50-7.09	$(\text{Het-CH}_3 = 2.25), (\text{Het-H} = 6.09)$
M_3	1.98	10.08	7.50-7.09	$(\text{Het-CH}_3 = 2.25), (\text{Het-H} = 6.09)$

Conclusion

A successful achievement of cycloaddition reaction of imines to carboxylic acid anhydrides to give 1,3-oxazepine ring is obtained. The expected plausible reaction mechanism was suggested according to the spectral data of FT-IR and ¹HNMR which is consistent with formation of charged linear intermediate in the transition state which then collapses via internal cyclization reaction to produce the target molecule.

References

- [1] H. Schiff, Ann. Chem. , vol. 131, p. 118, 1864.
- [2] P. Saul, "The chemistry of the carbon nitrogen double bond," *Ltd., London,* (1970.
- [3] Ahmed, A., Sarah, M., Anwar, H., Ayad, H. and Emad, Y, "Antibacterial Study of Some Oxazepine Derivatives," *Journal of Al -Nahrain University*, vol. 18, pp. 22-26, 2015.
- [4] Dhanya Sunil 1, Ranjitha C1, Rama M 1, "Oxazepine Derivative as an Antitumor Agent and Snail1 Inhibitor against Human Colorectal Adenocarcinoma," *international Journal of Innovative Research in Science*, vol. 3, pp. 15357-15363, 2014.
- [5] Matsuzaki, H., Takuchi, I., Hamad, Y. and Hatano, K, "Studies on the 1, 4-oxazepine ring formation reaction using the molecular orbital method," *Chemical and Pharmaceutical Bulletin*, vol. 48, pp. 755 -756, 2000.
- [6] Hamak, K. F., Eissa, H. H, "Synthesis, Characterization, and **Biological** Evaluation and Anti Corrosion Activity of Heterocyclic Compounds Some Oxazepine Derivatives from Schiff Organic Chemistry Bases," Current Research, vol. 2, no. 3, pp. 1-7, 2013.
- [7] H. Ayad, "Microwave Synthesis of Some New 1, 3 -Oxazepine Compounds as Photostabilizing Additives for Pmma

Films," *Journal of Al -Nahrain University*, vol. 15, pp. 47-59, 2012.

- [8] T. A. A. -. Khitam, "Synthesis, Evaluation Identification and the Biological Activity for Some New Heterocyclic Compounds Derived from Schiff Bases," Journal of Applied Chemistry, vol. 9, no. 5, pp. 1-11, 2016.
- [9] Andrady, A., Hamid, S., Hu, X.and Torikai, A, "Effects of increased solar ultraviolet radiation on materials in Environmental Effects of Ozone Depletion," *J. Photochem. Photobiol*, vol. 46, p. 96–103, 1988.
- [10] Grassie N., Scott, G, "Polymer Degradation and Stabilization," *Cambridge University Press, London*, 1985.
- [11] Diana C. G. A. Pinto., Clementina, M. M. Santos. and Artur, M. S. Silva, "Advanced NMR techniques for structural characterization of heterocyclic structures," *Recent Research Developments in Heterocyclic Chemistry*, vol. 81, pp. 397-475, 2007.
- [12] Arct J., Dul, M., Rabek, J.F. and Ranby, B, "Studies on modified benzotriazoles as photostabilizers for poly (vinyl chloride)," *Eurp. Polym.J*, vol. 17, pp. 1041-1048, 1981.
- [13] Ranby B.G., Rabek, J.F,
 "Photodegradation, Photooxidation and Photostabilization of Polymers," *London: John Wiley & Sons*, 1975.
- [14] J. Mark, "Physical Properties of Polymers Handbook," *Springer, New York*, 1988.
- [15] Mori, F., Koyama, M.and Oki, Y, "Studies on photodegradation of poly (vinyl chloride)," *Die Angewandte Makomolekulare Chemie*, vol. 64, no. 1, p. 89– 99, 2007.
- [16] Silverstein, R.M., Basslar, G.C, "Spectroscopic identification of organic compound," 2005.
- [17] Fisher, P.E., Lawrence, W, "Selection of Engineering Materials and Adhesives,"

99

Copyright © 2018 Authors and Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4. 0 International Licenses.

CRC Press, 2005.

- [18] Shyichuk A., White, J, "Analysis of chain -scission and crosslinking rates in the photo -oxidation of polystyrene," *Appl. Poly. Sci*, vol. 77, no. 13, pp. 3015-3023, 2000.
- [19] F. Gugumus, "Mechanism of Polymer Degradation and Stabilization," 1990.
- [20] A. N. Olfat, "Photostabilization of polyvinyl chloride by some new thiadiazole derivatives," *Eur. J. Chem*, vol. 3, no. 6, p. 242-247, 2015.