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Abstract: Natural polymer hydrogels have good mechanical properties and biocompatibility. This
study designed hydroxyapatite-enhanced photo-oxidized double-crosslinked hydrogels. Hyaluronic
acid (HA) and gelatin (Gel) were modified with methacrylate anhydride. The catechin group was
further introduced into the HA chain inspired by the adhesion chemistry of marine mussels. Hence,
the double-crosslinked hydrogel (HG) was formed by the photo-crosslinking of double bonds and
the oxidative-crosslinking of catechins. Moreover, hydroxyapatite was introduced into HG to form
hydroxyapatite-enhanced hydrogels (HGH). The results indicate that, with an increase in crosslinking
network density, the stiffness of hydrogels became higher; these hydrogels have more of a compact
pore structure, their anti-degradation property is improved, and swelling property is reduced. The
introduction of hydroxyapatite greatly improved the mechanical properties of hydrogels, but there
is no change in the stability and crosslinking network structure of hydrogels. These inorganic
phase-enhanced hydrogels were expected to be applied to tissue engineering scaffolds.

Keywords: hyaluronic acid; gelatin; dopamine; double crosslinked; hydroxyapatite-enhanced hydrogel

1. Introduction

Hydrogels are a type of three-dimensional polymer network that have a large number
of pore structures; hence, the exchange and circulation of substances becomes easy [1,2].
Natural polymer hydrogels with good biocompatibility and biodegradation can support cell
adhesion, proliferation, and differentiation on its surface or inside. Thus, they are often used
in the field of tissue engineering, for example, in cartilage repair and skin dressing [3–6].
However, their applications were hindered due to most natural polymers’ poor strength
and toughness. Inorganic materials with good biocompatibility, such as hydroxyapatite
and calcium phosphate, are widely used in bone tissue regeneration [7–9]. The introduction
of inorganic materials into natural polymerbased hydrogels can effectively improve the
mechanical properties of these hydrogels and provide a corresponding biological function
of inorganic material [10,11].

Hyaluronic acid (HA), a natural linear polysaccharide, is a component of an extracel-
lular matrix and plays an important role in biological processes (e.g., cell proliferation, cell
differentiation, and morphogenesis) [12–14]. The HA molecules have many active groups,
which can form a covalently cross-linked hydrogel network through chemical modifica-
tion. Chen et al. introduced a sulfhydryl group into the HA molecular chain through an
amidation reaction, which combined with collagen to form HA/Col composite hydrogels
that could induce chondrogenic differentiation of cells [15]. Gelatin (Gel), as a derivative of
collagen denaturation hydrolysis, shows excellent biocompatibility and biodegradability.
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Gel exists within a large number of bioactive sequences, such as arginine–glycine cell-
binding sites, which is conducive to cell adhesion and spreading [16,17]. Additionally, Gel
molecule chains with a large number of amino acid residues are easy to chemical modi-
fication. For example, methylacrylylated Gel (GelMA) could be obtained by the reaction
between methacrylate anhydride and amino in Gel, which could form hydrogel through
photoinitiated free radical polymerization, and have been widely used in tissue engineering
scaffolds due to its simple and controllable manufacturing method [18–20].

Inspired by the adhesion chemistry of marine mussels, various hydrogels formed by
derivatives with catechol groups have wide application prospects in tissue engineering
scaffolds [21,22]. Studies indicate that catechol groups have a strong affinity for various
organic and/or inorganic surfaces and biomacromolecules that can improve hydrogels’
mechanical properties [23–25]. As catechol and amino acids derivatives, dopamine (DA)
has good adhesion and biocompatibility. Hence, they can be easily modified to natural
polymers. Li et al. prepared DA-modified HA, which could fabricate a hybrid crosslinking
hydrogel with type I collagen. This hybrid hydrogel can recruit autologous stem cells and
induce differentiation of stem cells into chondrocytes [26].

In this study, we first simultaneously introduced the double bond and catechin into HA
to form a photo-oxidized double-crosslinked hydrogel (HG) with GelMA. Then, hydroxyap-
atite was added to HG to form hydroxyapatite-enhanced hydrogels (HGH). Firstly, HA and
Gel were modified with methacrylate anhydride to obtain hyaluronic acid methacrylate
(HM) and GelMA with different substitution degrees, and HM was further modified with
DA (HMD). The structure of HM, HMD, and GelMA was characterized by nuclear mag-
netic hydrogen spectroscopy (1H-NMR), Fourier-transform infrared spectroscopy (FT-IR)
and Gel permeation chromatography (GPC). Photo-oxidized double-crosslinked hydrogels
were prepared by photo-crosslinking of double bonds and oxidative-crosslinking of cate-
chins. Moreover, hydroxyapatite, as an inorganic phase, was added to HG to improve their
mechanical properties. To investigate the effects of the crosslinking degree and inorganic
phase on hydrogels, the microstructure, mechanical properties, swelling, and degradation
of hydrogels were tested. These inorganic phase-enhanced hydrogels provide a simple
method for the design of tissue engineering scaffolds

2. Results and Discussion
2.1. Synthesis and Characterization of HMD and GelMA

Figure 1A presents the synthetic route of HMD and GelMA. First, HM with different
substitutions was prepared by the reaction between methacrylate anhydride and hydroxyl
of HA in different proportions. The carboxyl group in HM were activated by EDC/NHS
and reacted with DA to obtain HMD. GelMA was prepared by an amidation reaction.
Specifically, HM and HMD form a new vibration absorption peak at 1734 cm−1, which is the
absorption vibration characteristic peak of -C=O- in the ester bond [27]. Additionally, the
absorption peak of C-H on the benzene ring appeared near 3102 cm−1, and the characteristic
peak of the amide bond appeared at 1640 cm−1. These findings revealed that the double
bond and DA were successfully grafted into HA (Figure 1B). As shown in Figure 1C, the
characteristic absorption peaks of the amide bond at 1642, and 1550 cm−1 were retained in
GelMA. This indicated that the modification method was moderate and did not damage
the integrity of the peptide chain. The changes in the absorption peak were not evident
due to the overlap of the absorption peaks between the Gel and methyl propylene groups.
Figure 2A presents the UV spectrum of HMD. Unlike HA and HM, HMD had a strong
absorption peak at 280 nm which belongs to the catechin group. Simultaneously, no
absorption peak was observed above 300 nm, indicating that DA was successfully grafted
without oxidation.
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Figure 1. (A) Synthetic route of HGD and GelMA. (B) FT-IR of HA, HM, HMD-1, HMD-3 and HMD-5.
(C) FT-IR of gelatin and GelMA.

The relative molecular weight and molecular weight distribution of HMD were de-
termined through GPC (Figure 2B). The relative molecular weight of HA was greatly
decreased after twice modification (223 kDa of HA and approximately 60 kDa of HMD) due
to the hydrolysis of HA under the acidic reaction conditions when it was reacted with DA.

The product was characterized through 1H-NMR (Figure 2C,D), and the substitu-
tion degree of methacrylate anhydride and DA were calculated. Two new resonance
peaks of HMD at 5.68 ppm and 6.13 ppm were the characteristic peaks of olefin proton
in methacrylate anhydride. The substitution degree of methacrylate anhydride can be
calculated by integrating the olefin proton peak with the characteristic peak of methyl
H on N-acetylglucosamine at about 1.88 ppm (18%, 36%, and 52% for HMD-1, HMD-3,
and HMD-5, respectively). Additionally, new peaks at 6.5–7.2 ppm were the characteristic
peaks of the benzene ring in DA. The substitution degree can be calculated by integrating
the characteristic peak of catechol at 6.5–7.2 ppm with the characteristic peak of methyl
hydrogen on N-acetylglucosamine at about 1.88 ppm (the substitution degree for DA was
approximately 10%). The DA substitution degree in the derivatives was also determined by
UV spectroscopy using a calibration curve. All above results were list in the Table 1. Unlike
Gel, GelMA showed two characteristic peaks at 5.31 ppm and 5.55 ppm, which were the
chemical signals of hydrogen nucleus vibration that belongs to -C=CH2 in methacrylate
anhydride. Additionally, the specific characteristic peak of methyl proton in methyl acry-
lamide was increased at 1.9 ppm [28]. Based on the change in the characteristic peak area
at 2.89 ppm before and after the reaction, the degree of methacrylate anhydride was 54%
by quantitative calculation. These indicated that HMD with different graft rates of methyl
propylene groups and GelMA were successfully prepared.
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Table 1. The substitution degree of methacrylate anhydride and DA in HMD-1, HMD-3 and HMD-5.

Methacrylate Anhydride
(By 1H-NMR)

DA
(By 1H-NMR)

DA
(By UV Spectroscopy)

HMD-1 18% 9.3% 6.3%
HMD-3 36% 9.6% 6.1%
HMD-5 52% 10.1% 9.4%

2.2. Preparation and Microstructure of Hydrogels

Three HG hydrogels with different crosslinking density were prepared via UV photo-
crosslinking by methyl propylene groups and oxidation-crosslinking by catechol. They are
called HG-1, HG-3, and HG-5 according to the content of methacrylate anhydride in HMD.
Similarly, hydroxyapatite was introduced to prepare three HGH hydrogels with different
crosslinking density, called HGH-1, HGH-3, and HGH-5, respectively (Figure 3A).
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After freeze-drying, the internal pore structures of the six groups of hydrogels were
observed by SEM (Figure 3B). Image J was used to calculate the porosity of all hydrogels
(Figure 3C,D). Each hydrogel formed interconnected porous structures with thick pore
walls and a microfibril structure on the surface, which might be a three-dimensional
structure formed by the complexation between the oxidative crosslinking of the DA and
Gel molecules [29]. Meanwhile, the hydroxyapatite in HGH closely adhered to the pore
wall, providing a basis for enhancing the mechanical properties of the hydrogel [30,31].
With an increase in the substitution degree of methacrylate anhydride in HMD, the porosity
decreased gradually. Further, the crosslinking density of the hydrogel increased (HG-1
was approximately 50.6%, HG-3 was approximately 47.5%, and HG-5 was approximately
43.8%). The porosity of HGH-1, HGH-3, and HGH-5 is approximately 58.8%, 56.8%, and
58.2%, respectively. The interaction between hydroxyapatite and DA improved the pore
structure of the hydrogel.

Additionally, the XRD result of HGH showed that the diffraction peaks of (100), (002),
and (211) crystal planes appeared at 10.8◦, 25.8◦, and 31.7◦, respectively. Meanwhile, the
diffraction peaks of (112), (300), and (202) appeared near 32◦ at 39.8◦, 46.7◦, and 49.5◦, re-
spectively, and the diffraction peaks of (130), (222), and (213) crystal surfaces were observed
(Figure 3E). The diffraction peaks of crystal planes were consistent with the standard data
card of hydroxyapatite XRD diffraction (PDF#74-0565). This indicated that the crystal
structure of hydroxyapatite does not change after the composite of hydroxyapatite into
the hydrogel.
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2.3. Mechanical Properties of Hydrogels

The compression properties of the two types of hydrogels were tested by using a
universal tensile testing machine (Figure 4). In the compression process, with an increase in
the methacrylate anhydride substitution in HMD, the crosslinking density of the hydrogel
polymer network also increased, and additional force was required during compression
due to the restricted movements of the polymer chain. The compression modulus of HG
increased (HG-1: 9 kPa, HG-3: 14 kPa, and HG-5: 29 kPa). However, due to an increase
in irreversible covalent crosslinking of the double bond, hydrogels were more fragile,
and their compressive strength was decreased (HG-1: 138 kPa, HG-3: 85 kPa, and HG-5:
49 kPa) [32]. The compressive strength and compressive modulus of HGH were increased
after hydroxyapatite was added (the compressive strength of HGH-1 increased to 254 kPa,
and the compressive modulus of HGH-5 increased to 50 kPa). Hydroxyapatite could
increase the density of hydrogel crosslinking network through interaction with hydrogel
matrix, such as hydrogen bond interaction, thus improving the strength of hydrogel [33,34].
In addition, catechol groups have a strong affinity to hydroxyapatite [24,35]. Therefore,
the mechanical properties of hydrogel were enhanced by the interaction between catechol
and hydroxyapatite.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW  6  of  12 
 

 

2.3. Mechanical Properties of Hydrogels 

The compression properties of  the  two  types of hydrogels were  tested by using a 

universal tensile testing machine (Figure 4). In the compression process, with an increase 

in the methacrylate anhydride substitution in HMD, the crosslinking density of the hy‐

drogel polymer network also increased, and additional force was required during com‐

pression due to the restricted movements of the polymer chain. The compression modulus 

of HG increased (HG‐1: 9 kPa, HG‐3: 14 kPa, and HG‐5: 29 kPa). However, due to an in‐

crease in irreversible covalent crosslinking of the double bond, hydrogels were more frag‐

ile, and their compressive strength was decreased (HG‐1: 138 kPa, HG‐3: 85 kPa, and HG‐

5: 49 kPa)  [32]. The compressive strength and compressive modulus of HGH were  in‐

creased after hydroxyapatite was added (the compressive strength of HGH‐1 increased to 

254 kPa, and the compressive modulus of HGH‐5 increased to 50 kPa). Hydroxyapatite 

could increase the density of hydrogel crosslinking network through interaction with hy‐

drogel matrix, such as hydrogen bond interaction, thus improving the strength of hydro‐

gel [33,34]. In addition, catechol groups have a strong affinity to hydroxyapatite [24,35]. 

Therefore, the mechanical properties of hydrogel were enhanced by  the  interaction be‐

tween catechol and hydroxyapatite. 

 

Figure 4. (A,B) Compressive stress–strain curves of HG and HGH hydrogels. (C,D) Histogram of 

the compressive strength and compressive modulus of HG and HGH hydrogels. 
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compressive strength and compressive modulus of HG and HGH hydrogels.

2.4. Swelling and Degradation of Hydrogels

Both HG and HGH have good hydrophilicity and reach a swelling equilibrium in
approximately 10 h (Figure 5A,B). With the increased degree of methacrylate anhydride
substitution, the hydrogel network becomes denser, resulting in a decrease in the equi-
librium swelling rate (HG-1: 632%, HG-3: 502%, HG-5: 482%, Figure 5A). Further, the
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hydroxyapatite interacted with the polymer and increases the cross-linking density of
the hydrogels, which endowed the hydrogel with higher porosity, thus improved the
swelling performance of hydrogels to a certain extent (HGH-1: 754%, HGH-3: 647%, and
HGH-5: 567%, Figure 5B). Additionally, the dense polymer network made the hydrogel
structure more stable and the degradation rate (DR) lower. Particularly, HG-5 was com-
pletely degraded on the 13th day, but HGH-5 was not completely degraded on the 14th
day (Figure 5C,D). The hydroxyapatite further improved the stability of the hydrogel.
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3. Materials and Methods
3.1. Materials

HA (Mw = 340 kDa) was purchased from Shandong Furuda Biotechnology Company
(Linyi, China). Gelatin (from cowhide) is purchased from Amresco (USA). Methacrylate
anhydride (MA, 94%), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, 98.5%), and
N-hydroxysuccinimide (NHS, 99%) were purchased from Shanghai Maclean Biochemical
Technology Co., Ltd. (Shanghai, China). DA, phenyl (2, 4, 6-trimethylbenzoyl) lithium
phosphate (LAP, 98.0%) and sodium periodate were purchased from Sigma-Aldrich (St.
Louis, MO, USA). N, N-dimethylformamide (DMF, 99.5%) and hyaluronidase (563 unit/mg)
were obtained from Aladdin (Shanghai, China).

3.2. Synthesis of HA Derivatives (HM and HMD) and GelMA

HMD were synthesized in two steps per the method previously reported [36]. First,
HM was prepared by modifying HA with methacrylate anhydride. Specifically, 600 mg HA
was completely dissolved in ultra-pure water at a concentration of 2% w/v. Second, DMF
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was dropped into the HA solution (water: DMF = 3:2 v/v), and the mixture was cooled to
4 ◦C. Third, methacrylate anhydride was added to the mixture (The molar ratio between
methacrylic anhydride and carboxylic groups of HA was 1, 3 and 5). Particularly, the pH
value was maintained between 8 and 9 for 4 h by 0.5 M of NaOH solution, and the reaction
was maintained at 4 ◦C for 20 h. The polymer was precipitated by adding ethanol into this
solution and then dissolved in ultra-pure water. It was further purified via dialysis against
ultra-pure water for 72 h (MWCO = 14 kDa). Finally, the solution was freeze-dried for 72 h
to obtain HM, which was stored at −20 ◦C for later use.

HM was further modified by DA to prepare HMD. HM was completely dissolved in
ultra-pure water at a concentration of 1% w/v. The pH value was adjusted to approximately
5.5 by 0.5 M HCl, and nitrogen was continuously introduced into the solution. EDC and
NHS were added to the HM solution (molar ratio of HM: EDC: NHS = 1:3:3), and then the
solution was stirred continuously for 30 min. DA hydrochloride (equal to the amount of
the EDC substance) was added to the mixture. The reaction was stirred overnight at room
temperature, maintaining a pH of 5.5 throughout the process. The solution was dialyzed in
an acidic aqueous solution (HCl solution with pH 5.5) for 72 h (MWCO = 14 kDa). Finally,
the solution was freeze-dried for 72 h to obtain HMD, which was stored at −20 ◦C for
later use.

GelMA was synthesized as the method of previously reported [37]. At 50 ◦C, 1 g
of type A Gel was dissolved into 10 mL phosphate buffer saline (PBS). Methacrylate
anhydride was dropped into the Gel solution at a rate of 0.5 mL/min at 0.1 mL/g of Gel
under continuous agitation. The mixture was allowed to react at 50 ◦C for 3 h. Finally,
it was diluted five times with warm PBS at 40 ◦C to stop the reaction. The solution was
dialyzed for 72 h in ultra-pure water (MWCO = 14 kDa) at 40 ◦C to remove unreacted
methacrylate anhydride. Finally, it was freeze-dried for 72 h to obtain GelMA, which was
stored at −20 ◦C for later use.

3.3. Characterization of HMD and GelMA

FT-IR: An appropriate amount of the product (HA, HM, HMD-1, HMD-3, HMD-5, Gel
and GelMA) was mixed with potassium bromide and ground into fine powder. A Fourier
infrared spectrometer (TENSOR27, BRUKER, Billerica, MA, USA) was used to scan the
FT-IR spectrum at a range of 400–4000 cm−1.

UV–visible spectroscopy test (UV–vis): Catechol was determined via UV spectropho-
tometry. HA, HM, HMD-1, HMD-3, HMD-5 and DA were dissolved in 2 mg/mL ultra-pure
water to prepare the sample solution, respectively. The UV–vis absorption spectra of the
solution were measured in the range of 200–400 nm.

1H-NMR: The 1H-NMR spectrum was determined by dissolving HA, HM, HMD, Gel,
and GelMA in D2O at a concentration of 2% (w/v) and by measuring using a magnetic
resonance spectrometer (Bruker-600 NUCLEAR; Bruker, Fällanden, Switzerland). All 1H
NMR spectra refer to the peak values of residual proton impurities in D2O at δ = 4.75 ppm.

GPC: It was used to test the molecular weight and distribution of the molecular weight
of the material. The detector was the RID-20 differential refractive index from Shimadzu
Company in Japan. The column was TSKgel GMPWXL aqueous gel from TOSOH Company
in Japan. The mobile phase was the 0.1 N NaNO3 + 0.06%NaN3 aqueous solution at a flow
rate of 0.6 mL/min, with a column temperature of 35 ◦C. Using polyethylene glycol as
calibration, the sample was dissolved at a concentration of 3–5 mg/mL, with an injection
volume of 20 µL.

3.4. Preparation of HA/Gel Hydrogel

Three groups of HMD samples were dissolved in ultra-pure water at a concentration
of 2% w/v, respectively. Then, at 50 ◦C, GelMA was dissolved in the above solution to get
the solution which contains 2% w/v of HMD and 5% w/v GelMA, and 0.5% photoinitiator
phenyl (2, 4, 6-trimethylbenzoyl) lithium phosphate was added to the solution and mixed
evenly. The double-crosslinked network hydrogels (HG) were obtained by pouring the
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precursor solution into the silica gel mold and exposing it to a 365 nm UV lamp for 5
min. Subsequently, a 5% sodium periodate solution was poured on the surface of the
hydrogel to oxidize the catechin group. Additionally, HGH was obtained by adding 5%
w/v hydroxyapatite before photo-crosslinking in the same manner.

3.5. Hydrogel Morphology and Structure

After freeze-drying, the hydrogel was immersed in liquid nitrogen before being trun-
cated. The cross-section of the hydrogel was gilded by sputtering. Subsequently, its
morphology and internal structure were observed by using a scanning electron microscope
(SEM, HITACHI S-800, Tokyo, Japan). Image J software was used to calculate the porosity
of the hydrogel based on the SEM image.

3.6. XRD

An X-ray diffractometer (BRUKER, Billerica, MA, USA) was used to analyze the XRD
patterns of the hydrogel using CuKa characteristic radiation (wavelength λ = 0.154 nm,
voltage 40 kV, 50 mA, scanning speed 1◦/min, 2θ range 5–80◦).

3.7. Mechanical Properties of Hydrogels

INSTRON 2345 compression test was conducted to evaluate the mechanical properties
of hydrogels. The hydrogel with a diameter of 10 mm and a thickness of 3 mm was tested
to determine its compression performance. The sample was placed in a testing machine
and compressed at a constant speed of 1 mm/min until the sample broke. The slope of the
first 10% linear part of the obtained stress–strain curve was regarded as the compression
modulus. Three samples were tested in each group.

3.8. Swelling Property of Hydrogels

After freeze-drying, the original weight W0 of each hydrogel was recorded. Subse-
quently, the hydrogel was placed in PBS solution at 37 ◦C to observe its swelling changes.
The samples were obtained at 2, 6, 12, 24, 48, and 72 h using filter paper to absorb water on
the surface of the hydrogel, and the weight Wi of the hydrogel sample was recorded. Three
samples were tested in each group. If the mass does not change, the swelling equilibrium
of the hydrogel is achieved. The following formula is used to calculate the swelling degree
(W) of the hydrogel:

Swelling degree (W) = (Wi − W0)/W0 × 100%.

3.9. Degradation In Vitro

After freeze-drying each group of hydrogels, the original weight M0 was recorded.
Subsequently, the hydrogels were placed in a PBS degradation solution containing 100
units/mL of hyaluronidase and incubated at 37 ◦C. Three samples were tested in each
group. The degradation solution was replaced daily, and the hydrogel was removed at a
predetermined time, freeze-dried, and weighed again, and its mass Mi was recorded. The
hydrogel’s degradation rate (DR) can be calculated by using the following formula:

Degradation rate (DR) = (M0 − Mi)/M0 × 100%.

4. Conclusions

In this study, HG based on HA and Gel derivatives was prepared through photo-
crosslinking of double bonds and oxidative-crosslinking of catechins. Meanwhile, HGH
was also prepared by introducing hydroxyapatite to HG. With an increase in the substitu-
tion degree of the methyl propylene group in HMD, the HG crosslinking density increases.
This leads to lower porosity, mechanical strength increasing, brittleness increasing, equi-
librium swelling rate decreasing, and degradation time becoming longer. Hydroxyapatite
retained the pore structure of the hydrogel and greatly improved the mechanical properties
and stability of hydrogel scaffolds to a certain extent. In general, we prepared hydrogels
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with controllable properties by changing the substitution degree of precursors, and thus im-
proved their properties by introducing inorganic phases. This simple preparation strategy
for hydrogels is expected to be applied to tissue engineering scaffolds.
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