179. Preparation and Transmetallation of a Triphenylstannyl β-d-Glucopyranoside: A Highly Stereoselective Route to β-d-C-Glycosides via Glycosyl Dianions

by Oliver Frey, Matthias Hoffmann, Valentin Wittmann, and Horst Kessler*
Institut für Organische Chemie und Biochemie der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching
and Peter Uhimann and Andrea Vasella*
Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich

(30.VIII.94)

Abstract

The triphenylstannyl β-n-glucopyranoside 4 was synthesized in one step from the 1,2 -anhydro- α-Dglucopyranose 3 with (triphenylstannyl) lithium (Scheme 1). Transmetallation of $\mathbf{4}$ with excess BuLi, followed by quenching the dianion 7 with $\mathrm{CD}_{3} \mathrm{OD}$ gave ($1 S$)-1,5-anhydro-3,4,6-tri- O-benzyl-[1-2 H$]$-d-glucitol (8) in 81% yield (Scheme 2). Trapping of 7 with benzaldehyde, isobutyraldehyde, or acroleine gave the expected β-Dconfigurated products 11, 12, and 13 in good yields. Preparation of C-acyl glycosides from acid chlorides, such as acetyl or benzoyl chloride was not practicable, but addition of benzonitrile to 7 yielded 84% of the benzoylated product 14. Treatment of 7 with MeI led to $15(30 \%)$ along with 40% of $18, C$-alkylation being accompanied by halogen-metal exchange. Prior addition of lithium 2-thienylcyanocuprate increased the yield of 15 to 50% and using dimethyl sulfate instead of Mel led to 77% of 15 . No α-D-anomers could be detected, except with allyl bromide as the electrophile, which yielded in a $1: 1$ mixture of the anomers $\mathbf{1 6}$ and $\mathbf{1 7}$.

Introduction. - The occurrence as natural products, the biological activity, and the analogy to O - and N-glycosides have led to intense efforts for the synthesis of C glycosides [1-8]. Most of these syntheses are based on the reaction of nucleophiles with the electrophilic anomeric center, while syntheses based on an inversion of polarity of the anomeric center are relatively rare [1]. Anomeric monoanions are prone to rapid β elimination [9]. The first successful application of the inversion of polarity of the anomeric center was the chain elongation of doubly deprotonated, 2-hydroxy-1,3-dithianes, derivatives of aldehydo-saccharides [10]. The first pyranosidic monoanion avoiding β elimination used the weakly reactive anions derived from 1-deoxy-1-nitroaldoses [11-14]. Reactive glycosyl monoanions usually lack functionality in the 2-position. Such carbanions, based on 2-deoxypyranosides, have been generated by reductive lithiation of 2-deoxy-d-glycopyranosyl chlorides [15], phenyl sulfides [16], or phenyl sulfones [17], by reductive samariation of phenyl sulfones [18], by deprotonation of glycals [19-22], and by transmetalation of 2-deoxy-D-glycopyranosylstannanes [23-26] or of the corresponding alkenylstannanes [23-26].

Fully substituted, reactive carbanions have recently been generated in the context of two strategies for the synthesis of C-glycosides. Sinaÿ and coworkers used the in situ reaction of a transient organosamarium species in a Barbier-type reaction [9]. Even though the protecting group at the 2 -position was varied, β-elimination could not be prevented in all cases, and the yields of β - C-glycosides were rather low. At about the same time, one of our groups reported that β-elimination in the 2 -position is efficiently prevented at low temperatures by using a 2-hydroxypyranosyl dianion [27]. This concept has led to a stereoselective synthesis of α-D-configurated C-glycopyranosides.

We were interested in a stereoselective synthesis of β-d-configurated C glycopyranosides from 2-hydroxy- β-d-glycopyranosylstannanes via 2 -hydroxypyranoside dianions, formed by the concomitant transmetalation of organostannanes by organolithium compounds and deprotonation of $\mathrm{HO}-\mathrm{C}(2)$. Transmetallation of organostannanes to organolithium compounds, followed by their stereoselective reaction with electrophiles [28-30] has been introduced into carbohydrate chemistry by Sinaÿ and coworkers, who synthesized 2-deoxy- β - C-glycopyranosides from β-d-glycopyranosyl-stannanes [23]. Fully protected glycosylstannanes have recently been prepared via glycosylidene carbenes [31]. We now report a convenient route to partially protected 2 -hydroxy- β-Dglycopyranosylstannanes, their deprotonation and transmetalation to a dianion, and its reaction with electrophiles, leading to C-glycosides ${ }^{1}$.

Results and Discussion. - 1. Preparation of the β-D-Glucopyranosylstannanes 2 and 4. First experiments had shown that the reaction of the α-d-chloride 1 with LiSnBu_{3} leads to small amounts only of the β-D-glucopyranosylstannane 2 (Scheme 1), independently of the substituent $(\mathrm{OH}, \mathrm{OAc})$ at $\mathrm{C}(2)$. Hence, we investigated the reactivity of 1,2 -anhydro-$3,4,6$-tri- O-benzyl- α-d-glucopyranose (3) with LiSnR_{3}. The opening of epoxides with tin reagents has been successfully applied in carbohydrate chemistry to introduce the SnR_{3} moiety at positions other than $\left.\mathrm{C}(1)^{2}\right)$ [33]. The epoxide 3 is easily accessible in one step from 3,4,6-tri-O-benzyl-d-glucal [34].

Treatment of 3 with ca. 2 equiv. of LiSnPh_{3} in THF at room temperature followed by aqueous workup with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution led to partial decomposition of the stannanes. However, quenching of the reaction mixture at -78° and removing the frozen aqueous phase by filtration yielded 65% of 4 together with 5 (2%), 6 (18%), and $\left(\mathrm{Ph}_{3} \mathrm{Sn}\right)_{2}$. The α-D-mannopyranosylstannane 5 is presumably formed from 1,2-anhydro-$3,4,6$-tri- O-benzyl- β-D-mannopyranose, an impurity in 3 . The formation of 6 is rationalized by the opening of 3 at $C(2)$, followed by elimination of the $C(3)$-benzyloxy group, addition of LiSnPh_{3} to the resulting unsaturated aldehyde, and cyclization to the pyranose 6. Only the α-D-anomer of 6 was observed. It gives rise to two signals in the ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ spectrum, at -103.43 and -103.87 ppm , suggesting an equilibrium between two species, of which one possesses a stabilizing interaction between the anomeric OH group and the Sn centre of the $\mathrm{Ph}_{3} \mathrm{Sn}$ substituent.

[^0]
Scheme I

The procedure for the preparation of LiSnPh_{3} proved to be of crucial importance. Good results were only obtained, if LiSnPh_{3} was freshly prepared from Li and $\mathrm{Ph}_{3} \mathrm{SnCl}$, according to the procedure of Tamborsky et al. [35]. If LiSnPh_{3} was prepared from $\left(\mathrm{Ph}_{3} \mathrm{Sn}\right)_{2}$ and BuLi , or from $\mathrm{Ph}_{3} \mathrm{SnH}$ and LDA [36], the yield of 4 was significantly lower. The Li salts, which are generated from Li and $\mathrm{Ph}_{3} \mathrm{SnCl}$, may thus play an important role in the reaction.

Treatment of $\mathbf{3}$ with LiSnBu_{3} under analogous conditions as described for LiSnPh_{3} gave only low yields (33%) of the tributylstannane 2 . Considering the difficult purification of 2 , we did not optimize its preparation.
2. Transmetallation of $\mathbf{4}$ and Reaction of the Dianion $\mathbf{7}$ with Electrophiles. To find suitable conditions for the generation of the dianion 7, a solution of 4 in THF at -78° was treated with varying amounts of BuLi , followed by the addition of $\mathrm{CD}_{3} \mathrm{OD}$. Complete transmetallation required 10 equiv. of BuLi . Attempts to reduce the quantity of BuLi either by adding tetramethylethylenediamine, or by using a large excess of LiCl (see, e.g. [37] [38]), or t-BuLi were not successful. As a consequence of these results, 10 equiv. of BuLi and of the electrophile were added to the stannane 4 in all subsequent reactions (Scheme 2). The need for excess BuLi indicates a reversible $\mathrm{Sn} / \mathrm{Li}$ exchange and an unfavorable position of the equilibrium [30] [39]. Alternatively, the excess may be required because of $\mathrm{Ph} / \mathrm{Bu}$ exchange, or the oligomeric structure of the lithium compound. $\mathrm{A} \mathrm{Ph} / \mathrm{Bu}$ exchange is evidenced by the isolation of traces of the tributylstannane 2. The less reactive PhLi, as generated by this process, appears not to undergo transmetallation.

Scheme 2

Table. Yields and Ratios of Products of the Reaction of 4 with BuLi and Electrophiles

Electrophile	Products	Total yield [\%] ${ }^{\text {a }}$)	Ratio of products
MeOD	$\mathbf{8 / 9 / 1 0}$	87	$93: 2: 5$
PhCHO	$\mathbf{1 1 a} / \mathbf{b}$	77	$58: 42$
$\mathrm{Me}_{2} \mathrm{CHCHO}$	$\mathbf{1 2 a / b}$	67	$59: 41$
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$	$\mathbf{1 3 a} / \mathbf{b}$	69	$60: 40$
PhCN	$\mathbf{1 4}$	84	
$\mathrm{MeI})$	$\mathbf{1 5}$	50	
$\left(\mathrm{MeO}_{2} \mathrm{SO}_{2}\right.$	$\mathbf{1 5}$	77	$50: 50$
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br}$	$\mathbf{1 6} / \mathbf{1 7}$	50	

${ }^{\text {a }}$) After FC. ${ }^{\text {b }}$) In the presence of 10 equiv. of lithium 2-thienylcyanocuprate [40].

Deuteration of the dianion 7 resulted in an overall yield of 87% of the equatorially deuterated 8, the axially deuterated 9 [27], and 10 [9] [27] (Table). The yield of $\mathbf{8}$ was calculated to be 81% from data obtained by ${ }^{2} \mathrm{H}$ - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy, indicating that the stereoselectivity is $\geq 25: 1$ (yield of $9<4 \%$). The yield of 10 was 4% and may be due to proton abstraction from the $\mathrm{O}-\mathrm{CH}_{2} \mathrm{Ph}$ groups or from the solvent. The incorporation of D in the PhCH_{2} groups was 14% by ${ }^{2} \mathrm{H}-\mathrm{NMR}$ spectroscopy. The high stereoselectivity of the reaction in favor of the equatorially deuterated product and the similar stereoselectivity observed in the synthesis of α-C-glycopyranosides via an analogous, anomeric glycosyl dianion [27], suggest that these dianions are configuratively stable at low temperature and react with retention of the configuration. The stereoselectivity is higher when the excess of BuLi is reduced, although large amounts of starting material remain [41]. This was shown by treating the tributylstannane 2 with 2 equiv. of BuLi and then with $\mathrm{CD}_{3} \mathrm{OD}$. Although 8
was isolated in only 20% yield (79% based on consumed starting material), 9 could no longer be detected by ${ }^{2} \mathrm{H}-\mathrm{NMR}$ spectroscopy (d.e. $>99 \%$). Similar treatment of the dianion 7 with benzaldehyde, isobutyraldehyde, or acrolein led in good yield to the expected C-glycosides $11-13$ (Table). Whereas $\mathbf{1 2 a} / \mathrm{b}$ and $13 \mathrm{a} / \mathrm{b}$ were easily separated by flash chromatography, 11a was obtained pure by crystallization of $\mathbf{1 1 a} / \mathbf{b}$ from AcOEt/ hexane. The diastereoisomer 11b was enriched in the mother liquor (ca. 80-90\%) and purified by isopropylidenation to 19b (see below) followed by hydrolysis. The diastereoselectivity referring to the newly generated hydroxymethylene center was rather low ($c a .1 .4: 1$), but always in favor of the (R)-diastereoisomer.

The configuration of the epimeric benzyl alcohols 11a and 11b was assigned on the basis of their IR and 'H-NMR spectra, and confirmed by their transformation into the isopropylidene derivatives $\mathbf{1 9 a}$ and 19 b following a procedure described for the analogous C-ethyl diol [22]. The benzyl alcohols 11a and 11b show large values for $J(2,3), J(3,4)$, $J(4,5)$, and $J(5,6)$, evidencing the ${ }^{4} C_{1}$ ring-conformation and the β-D-configuration. The IR spectrum of the crystalline ($1 R$)-isomer 11a displays an OH band at $3580 \mathrm{~cm}^{-1}$, typical for a H -bond in a five-membered ring, and a small value of 2.8 Hz for $J(1,2)$. The ($1 S$) diastereoisomer 11 b is characterized by $J(1,2)=6.3 \mathrm{~Hz}$. Its IR spectrum displays an OH band at 3580 and an additional, slightly stronger one, at $3522 \mathrm{~cm}^{-1}$ (H -bond in a sixmembered ring). The combination of these values is only possible if the benzylic OH group in the major rotamers of 11a and 11b forms different H -bonds, one to the ring O atom in the $(1 R)$-isomer 11a, and one to $\mathrm{HO}-\mathrm{C}(3)$ in the $(1 S)$-isomer 11b. Isopropylidenation of the mixture 11a/b gave selectively the acetal $19 b$ derived from the ($1 S$)-isomer 11b; the ($1 R$)-isomer 11a was only isopropylidenated in the presence of a large excess of dimethoxypropane, and led to poor yields of 19a. Both 19a and 19b showed a large $J(1,2)(8.1$ and 9.4 Hz$)$, hence one of the isomers must adopt a boat-like conformation. The chemical shift values for the Me groups in the ${ }^{13} \mathrm{C}$-NMR spectrum of 19a (26.39 and 24.95 ppm) are indeed typical for a geminal dimethyl group of a boat conformer, while the corresponding values for 19 b (29.68 and 19.22 ppm) evidence a chair conformation (see Scheme 2). This confirms the configurational assignment for 11a/ b. The relative configuration of $\mathbf{1 2 a} / \mathrm{b}$ and of $\mathbf{1 3 a} / \mathrm{b}$ may then be tentatively assigned, based on the relative values for $J(3,4)$ of $\mathbf{1 2 a}$ and $13 \mathbf{a}(<2$ and 3.0 Hz , resp.) and for $J(6,7)$ of $\mathbf{1 2 b}$ and $\mathbf{1 3 b}$ (7.8 and 4.7 Hz , resp.)

Acyl chlorides proved unsuited for the preparation of C-acylated products. When AcCl was added to the dianion 7 at -78°, the mixture turned at once deep black, and a mixture of products were formed. Benzoyl chloride, which cannot enolize, gave small amounts of the desired product besides 12% of $3,4,6$-tri- O-benzyl-d-glucal, suggesting that $\mathrm{O}-\mathrm{C}(2)$ is benzoylated more rapidly than the anomeric center. In agreement with this hypothesis, the less reactive benzonitrile yielded 84% of 14 (Table), and no elimination products were observed.

C-Alkylation of the dianion 7 with MeI resulted in only 30% yield of the expected equatorially methylated $\mathbf{1 5}$ [20] in addition to 40% of $3,4,6$-tri- O-benzyl-d-glucopyranose (18) [42] [43]. The remarkable formation of 18 might result from halogen-metal exchange [44], leading to a glycosyl iodide which is hydrolyzed during workup. The yield of 15 was raised to 50% when the dianion 7 was transformed to a higher order cuprate by adding 10
equiv. of lithium 2-thienylcyanocuprate [40] [45] before the addition of MeI. Only 15% of the by-product 18 were isolated. The yield of 15 was further increased to 77%, and the formation of 18 was suppressed when halogen-metal exchange was avoided by using dimethyl sulfate as methylating agent. EtBr was less reactive. The more highly reactive allyl bromide yielded 25% of the equatorially allylated $\mathbf{1 6}$ together with 25% of the anomer 17. Formation of the α-d-anomer might again reflect halogen-metal exchange, leading to highly reactive allyllithium. That no axial diastereoisomer of the methylated analogue was obtained is then due to the low reactivity of the in situ generated MeLi at -78°.

We thank the Swiss National Science Foundation, F. Hoffmann-La Roche AG, Basel, the Deutsche Forschungsgemeinschaft, and the Fonds der Chemischen Industrie for generous support.

Experimental Part

General. Solvents were freshly distilled. Dimethyldioxirane was prepared according to the procedure described by Adam et al. [46]. Anal. TLC: Merck precoated silica gel 60 F 254 plates; detection by treatment with a soln. of $5 \%\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{26} \cdot 4 \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, and $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH. Flash chromatography (FC): silica gel Merck $60(40-63 \mu \mathrm{~m})$, HPLC: Nucleosil Si50 $(7 \mu \mathrm{~m})$. M.p.'s are uncorrected. IR Spectra: $1-10 \%$ in CCl_{4}, CHCl_{3}, or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ soln. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra: at 300,400 , and $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and at 50,75 , and $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$); chemical shifts are given in ppm relative to TMS. ${ }^{2} \mathrm{H}-\mathrm{NMR}$ Spectra $\left(\mathrm{CHCl}_{3}\right)$ at $76.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$ as internal standard. Coupling constants (J) are in Hz . In ambiguous cases, ' $\mathrm{H}-\mathrm{NMR}$ assignments by selective homonuclear decoupling experiments. Tin coupling constants for the isotope ${ }^{119} \mathrm{Sn}$. FAB-MS: in NBA matrix.
$P h_{3} \mathrm{SnLilB} u_{3} \mathrm{SnLi} . \mathrm{Ph}_{3} \mathrm{SnCl}(2.5 \mathrm{~g}, 6.5 \mathrm{mmol})$ and $\left.\mathrm{Bu} \mathbf{3 n C l}_{3} \mathrm{Sn} 2.1 \mathrm{~g}, 6.5 \mathrm{mmol}\right)$ were added to a mixture of $\mathrm{Li}(550$ $\mathrm{mg}, 79 \mathrm{mmol})$ in THF (10 ml) under Ar. Within $10-30 \mathrm{~min}$, heat was evolved, and the mixture became dark olivegreen. It was stirred for 2 h and directly used (ca. 0.3-0.5m $\mathrm{LiSnPh}_{3} / \mathrm{LiSnBu}_{3}$ in THF).

Reaction of $\mathbf{3}$ with LiSnPh_{3}. At 24° and under Ar, a soln. of $\mathbf{3}[34](430 \mathrm{mg}, 1 \mathrm{mmol})$ in THF (10 ml) was treated with LiSnPh_{3} in THF (4 ml , ca. $1.5-2 \mathrm{mmol}$) . The mixture was stirred for 30 min , cooled to -78°, diluted with $\mathrm{Et}_{2} \mathrm{O}$ (50 ml), and quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(10 \mathrm{ml})$. The frozen aq. phase was filtered off and washed with cold $\left(-78^{\circ}\right) \mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$. The combined org. filtrates were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 1 g of a yellow oil. The crude was dissolved in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$, cooled to -20° and the precipitated $\left(\mathrm{Ph}_{3} \mathrm{Sn}\right)_{2}$ was filtered off. The filtrate was concentrated to $c a .5 \mathrm{ml}$ and filtered again. Evaporation and $\mathrm{FC}\left(50 \mathrm{~g} \mathrm{of} \mathrm{SiO}_{2}\right.$, hexane/AcOEt 3:1) of the remaining oil gave $511 \mathrm{mg}(65 \%)$ of $4,15 \mathrm{mg}(2 \%)$ of 5 , and $120 \mathrm{mg}(18 \%)$ of $\mathbf{6}$. An anal. sample of 6 was recrystallized in hexane/AcOEt.

Triphenyl(3,4,6-tri-O-benzyl- β-D-glucopyranosyl)stannane (4): R_{f} (hexane/AcOEt 2:1) $0.46 .[\alpha]_{\mathrm{D}}^{2 s}=+2.7(c=$ $\left.1.09, \mathrm{CHCl}_{3}\right) . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 3592 w, 3067 m, 3052 m, 2905 m, 2867 m, 1954 w, 1879 w, 1815 w, 1497 m, 1481 m, 1454 m$, $1430 s, 1363 \mathrm{~m}, 1352 \mathrm{~m}, 1306 \mathrm{w}, 1261 \mathrm{~m}, 1089 \mathrm{~s}$, 1075s, $1028 \mathrm{~s}, 998 \mathrm{~s}, 911 w, 869 w, 604 w$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.73-7.19(\mathrm{~m}, 30$ arom. H$) ; 4.97\left(d, J=11.2,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.84(d, J=10.9,1 \mathrm{H}, \mathrm{PhCH}) ; 4.77(d, J=11.2$, $\left.\left.1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.67\left(d, J=10.8,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.59(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH} 2) ; 4.53(d, J=12.2,1 \mathrm{H}, \mathrm{PhCH})_{2}\right) ; 4.16(d$, $J=10.9, \mathrm{H}-\mathrm{C}(1)) ; 3.95$ ($\left.{ }^{\prime} d d d^{\prime}, J \approx 3.4,8.7,11.5, \mathrm{H}-\mathrm{C}(2)\right) ; 3.76(d, J=2.7,2 \mathrm{H}-\mathrm{C}(6)) ; 3.67\left({ }^{\prime} t ', J \approx 9.3, \mathrm{H}-\mathrm{C}(4)\right)$; $3.55-3.45(m, \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5)) ; 2.20(d, J=3.4, \mathrm{OH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) ; 139.41(\mathrm{~s}) ; 139.16(\mathrm{~s}) ; 139.08$ $(s) ; 138.64(3 s, J(\mathrm{Sn}, \mathrm{C})=497) ; 138.04(6 d, J(\mathrm{Sn}, \mathrm{C})=35.7) ; 129.29-127.58(\mathrm{~m}) ; 88.90(d, J(\mathrm{Sn}, \mathrm{C})=67.9, \mathrm{C}(3)) ;$ $83.89(d, J(\mathrm{Sn}, \mathrm{C})=58.7, \mathrm{C}(5)) ; 78.89(d, \mathrm{C}(4)) ; 78.34(d, J(\mathrm{Sn}, \mathrm{C})=502, \mathrm{C}(1)) ; 75.10(t) ; 74.91(t) ; 74.06(d, J(\mathrm{Sn}, \mathrm{C})$ $=9.9, \mathrm{C}(2)$); $73.59(t) ; 69.63(t, \mathrm{C}(6))$. ${ }^{19} \mathrm{Sn}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):-136.57$. FAB-MS (calc. for $\left.\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{O}_{5}{ }^{130} \mathrm{Sn}\right): 718$ (3, $\left[\left(\mathrm{Ph}_{3} \mathrm{Sn}_{2} \mathrm{O}^{+}\right]^{+}, 707\left(13,[M-\mathrm{Ph}]^{+}\right), 351\left(55,\left[\mathrm{SnPh}_{3}\right]^{+}\right), 187(22), 149(33), 107(13), 91\right.$ (100). Anal. calc. for $\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Sn}$ (783.55): C 68.98, H 5.66; found: C 68.98, H 5.74.

Triphenyl(3,4,6-tri-O-benzyl- α-D-mannopyranosyl)stannane (5): R_{f} (hexane/AcOEt 2:1) $0.22 .[\alpha]_{\mathrm{D}}^{25}=+21.4$ $\left(c=0.99, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3556 w, 3067 m, 2907 w, 2868 m, 1954 w, 1880 w, 1817 w, 1496 m, 1481 m, 1454 m$, $1430 s, 1362 m, 1333 w, 1259 w, 1090 s, 1074 s, 1043 s, 1028 m, 998 m, 910 w, 859 w, 607 w .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.70-7.11(m, 30$ arom. H$) ; 5.31(d, J=2.2, J(\mathrm{Sn}, \mathrm{H})=39.6, \mathrm{H}-\mathrm{C}(1)) ; 4.74\left(d, J=11.5,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.59$ $\left.(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH})_{2}\right) ; 4.47\left(d, J=11.3,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.45\left(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.29(d, J=11.4,1 \mathrm{H}, \mathrm{PhCH})$; 4.27-4.24 ($m, \mathrm{H}-\mathrm{C}(2)$); $4.22\left(d, J=11.6,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 3.87$ (${ }^{\prime} t$ ', $\left.J \approx 8.8, \mathrm{H}-\mathrm{C}(4)\right) ; 3.69(d d, J \approx 3.2,8.4, \mathrm{H}-\mathrm{C}(3))$; $3.68\left(d d, J \approx 4.2,10.9, \mathrm{H}_{\mathrm{A}}-\mathrm{C}(6)\right) ; 3.60\left(d d, J=2.2,10.7, \mathrm{H}_{\mathrm{B}}-\mathrm{C}(6)\right) ; 3.54(d d d, J=2.1,4.5,8.8, \mathrm{H}-\mathrm{C}(5)) ; 2.75(d$, $J=2.8, J(\mathrm{Sn}, \mathrm{H})=17.4, \mathrm{OH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 139.47(s) ; 139.10(s) ; 138.67(4 s, J(\mathrm{Sn}, \mathrm{C})=463) ; 137.75$ $(6 d, J(\mathrm{Sn}, \mathrm{C})=36.1) ; 129.51-127.12(m) ; 81.58(d, \mathrm{C}(4)) ; 80.23(d, J(\mathrm{Sn}, \mathrm{C}) \approx 15, \mathrm{C}(3)) ; 78.22(d, J(\mathrm{Sn}, \mathrm{C})=418$, $\mathrm{C}(1)) ; 75.21(d, J(\mathrm{Sn}, \mathrm{C})<10, \mathrm{C}(5)) ; 74.27(t) ; 73.54(t) ; 71.68(t) ; 71.04(d, J(\mathrm{Sn}, \mathrm{C})=55.4, \mathrm{C}(2)) ; 69.74(t, \mathrm{C}(6))$. ${ }^{119} \mathrm{Sn}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):-140.83 . \mathrm{FAB}-\mathrm{MS}\left(\right.$ calc. for $\left.\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{O}_{5}{ }^{120} \mathrm{Sn}\right): 718\left(4,\left[\left(\mathrm{Ph}{ }_{3} \mathrm{Sn}\right)_{2} \mathrm{O}\right]^{+}\right), 716(5), 707\left(2,[\mathrm{M}-\mathrm{Ph}]^{+}\right)$, $351\left(54,\left[\mathrm{SnPh}_{3}\right]^{+}\right), 181(19), 91$ (100). Anal. calc. for $\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Sn}(783.55)$: C68.98, H5.66; found: C68.73, H 5.55.

4,6-Di-O-benzyl-2,3-dideoxy-3-C-(triphenylstannyl)- α-D-ribo-hexopyranose (6): R_{f} (hexane/AcOEt 2:1) 0.32. M.p. $123^{\circ} .[\alpha]_{\mathrm{D}}^{25}=+143.8\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CCl}_{4}\right): 3600 w, 3380 w$ (br.), $3065 m, 3050 w, 2988 w, 2905 w, 2865 w$, $1949 w, 1890 w, 1824 w, 1496 w, 1481 w, 1454 w, 1428 m, 1361 w, 1305 w, 1258 w, 1206 w, 1148 w, 1118 m, 1091 s$, $1074 s, 1024 m, 999 m, 901 w, 841 w, 699 s, 656 w, 607 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 7.84-6.80(\mathrm{~m}, 25$ arom. H); 4.92 (br. $s, \mathrm{H}-\mathrm{C}(1)) ; 4.37\left(d, J=12.4,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.32\left(d, J=12.4,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.24\left(d, J=10.9,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.10$ $(d d d, J=1.8,4.6,9.3, \mathrm{H}-\mathrm{C}(5)) ; 4.06\left(d, J=11.0,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 3.90(d d, J=5.9,9.5, \mathrm{H}-\mathrm{C}(4)) ; 3.69(d d, J=4.8$, $\left.10.7, \mathrm{H}_{\mathrm{A}}-\mathrm{C}(6)\right) ; 3.55\left(d d, J=1.9,10.6, \mathrm{H}_{\mathrm{B}}-\mathrm{C}(6)\right) ; 2.59\left({ }^{\prime} d t^{\prime}, J \approx 2.6,5.5, \mathrm{H}-\mathrm{C}(3)\right) ; 2.10\left({ }^{\prime} d t^{\prime}, J \approx 14.3,2.1\right.$; irrad. at 4.92: $d d, J=2.6,13.8, \mathrm{H}_{\text {equ }}-\mathrm{C}(2)$); 2.09 (br. s, exchanged with $\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}$); 1.92 ('dquint', $J=14.0,2.6$; after addn. of $\mathrm{D}_{2} \mathrm{O}: d d d, J=2.8,5.3,14.0$; irrad. at $4.92: d d, J=5.3,14.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 141.86(3 s)$; $139.00(s) ; 138.40(s) ; 138.15(6 d, J(\mathrm{SnC})=37.9) ; 129.11-127.79(\mathrm{~m}) ; 90.94(d, J(\mathrm{Sn}, \mathrm{C})<5, \mathrm{C}(1)) ; 76.87(d$, $J(\mathrm{Sn}, \mathrm{C})=29.4, \mathrm{C}(4)) ; 72.90(t) ; 72.57(t) ; 70.67(d, J(\mathrm{Sn}, \mathrm{C})<5, \mathrm{C}(5)) ; 69.81(t, \mathrm{C}(6)) ; 32.24(t, \mathrm{C}(2)) ; 28.08(d$, $J(\mathrm{Sn}, \mathrm{C})=449, \mathrm{C}(3)) .{ }^{119} \mathrm{Sn}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):-103.43 ;-109.88(d) . \mathrm{FAB}-\mathrm{MS}$ (calc. for $\left.\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{4}{ }^{120} \mathrm{Sn}\right): 601(7,[M-$ $\left.\mathrm{Ph}]^{+}\right), 493(7), 351\left(90,\left[\mathrm{SnPh}_{3}\right]^{+}\right), 275\left(41,\left[\mathrm{SnPh}_{2}+1\right]^{+}\right), 197\left(38,[\mathrm{SnPh}]^{+}\right), 91(100)$. Anal. calc. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Sn}$ (677.43): C 67.38, H 5.65 ; found: C 67.18, H 5.81 .

General Procedure for the Synthesis of β-C-Glucosides with 4 . Under Ar at $-78^{\circ}, \operatorname{BuLi}(0.81 \mathrm{ml}$ of a 1.6 m soln. in hexane, 1.28 mmol) was added within $5-10 \mathrm{~min}$ to a soln. of $4(100 \mathrm{mg}, 0.128 \mathrm{mmol})$ in THF (ca. 2 ml). The color of the soln. changed from yellow to green. After the addition of the electrophile (1.28 mmol$)^{3}$), the mixture was stirred for $15-45 \mathrm{~min}$, diluted with $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{ml})$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. (6 ml), allowed to warm to 0°, and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{ml})$. The org. phase was dried $\left(\mathrm{MgSO}_{4}\right)$ evaporated, and dried in high vacuum for 2 h . The products of the reaction with isobutyraldehyde, acrolein, and allyl bromide (see the Table for yields and ratios) were easily separated by FC (hexane/AcOEt $5: 1 \rightarrow 1: 2$). FC of the crude product obtained from the reactions of $\mathrm{CD}_{3} \mathrm{OD}$ and benzaldehyde gave mixtures of $8 / 9 / 10$ and $11 \mathrm{a} / \mathrm{b}$, resp. Crystallization of $11 \mathrm{a} / \mathrm{b}$ from $\mathrm{AcOEt} / \mathrm{hexane}$ gave pure 11a, whereas the mother liquor consisted of 11 b containing 11 a (ca. 10-20\%).
(lS)-1,5-Anhydro-3,4,6-tri-O-benzyl-[1-2 H]-D-glucitol (8): R_{f} (hexane/AcOEt 1:1) 0.33 . ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.34-7.15(m, 15$ arom. H$) ; 4.92-4.52\left(m, 3 \mathrm{PhCH}_{2}\right) ; 3.70(m, \mathrm{H}-\mathrm{C}(2)) ; 3.68-3.64(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(6)) ; 3.56(d d$, $J=8.7,9.4, \mathrm{H}-\mathrm{C}(4)) ; 3.45\left({ }^{\prime} t^{\prime}, J=8.6, \mathrm{H}-\mathrm{C}(3)\right) ; 3.39(d d d, J=2.7,3.8,9.4, \mathrm{H}-\mathrm{C}(5)) ; 3.17(d, J=10.3, \mathrm{H}-\mathrm{C}(1))$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 138.5(\mathrm{~s}) ; 137.9(\mathrm{~s}) ; 137.7(\mathrm{~s}) ; 128.5-127.6(\mathrm{~m}) ; 86.7(d, \mathrm{C}(3)) ; 79.3(d, \mathrm{C}(5)) ; 77.8$ (d, C(4)); $75.0(t) ; 74.7(t) ; 73.5(t) ; 70.0(d, \mathrm{C}(2)) ; 69.1(t, \mathrm{C}(1)) ; 68.7(t, \mathrm{C}(6))$.
(1R)-1,5-Anhydro-3,4,6-tri-O-benzyl-[1-2H]-D-glucitol [27] (9). Except for the ${ }^{1} \mathrm{H}$-NMR spectrum (3.95 (d, $J=5.3, \mathrm{H}-\mathrm{C}(1))$), 9 shows the same anal. and spectroscopic data as 8 .
(IR)-2,6-Anhydro-4,5,7-tri-O-benzyl-1-C-phenyl-D-glycero-d-gulo-heptitol (11a): R_{f} (hexane/AcOEt 2:1)
 $2911 \mathrm{w}, 2870 \mathrm{~m}, 1952 \mathrm{w}, 1880 \mathrm{w}, 1811 \mathrm{w}, 1605 \mathrm{w}, 1496 \mathrm{~m}, 1454 \mathrm{~m}, 1396 \mathrm{w}, 1360 \mathrm{~m}, 1310 \mathrm{w}, 1262 \mathrm{w}, 1099 \mathrm{~s}, 1047 \mathrm{~s}$, $1028 s, 947 w, 912 w, 862 w, 646 w, 600 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.41-7.20(\mathrm{~m}, 20$ arom. H); 4.94-4.91(m , $\left.\left.2 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{H}-\mathrm{C}(1)\right) ; 4.80\left(d, J=10.9,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.76\left(d, J=11.5,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.58(d, J=10.9,1 \mathrm{H}, \mathrm{PhCH})_{2}\right) ;$ $4.52\left(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.48\left(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 3.72$ (' $d t$ ', $\left.J \approx 2.9,9.1, \mathrm{H}-\mathrm{C}(3)\right) ; 3.67(d, J=3.4,2$ $\mathrm{H}-\mathrm{C}(7)) ; 3.58$ (' t ', $J \approx 9.1, \mathrm{H}-\mathrm{C}(5)$); 3.53 (${ }^{\prime} t$ ', $J=8.8, \mathrm{H}-\mathrm{C}(4)$); $3.47\left(d d, J=2.8,9.5, \mathrm{H}-\mathrm{C}(2)\right.$); 3.43 (${ }^{\prime} t d$ ', $J=3.1$, $9.4, \mathrm{H}-\mathrm{C}(6)) ; 3.15(d, J=8.4, \mathrm{HO}-\mathrm{C}(1)) ; 2.34(d, J=3.0, \mathrm{HO}-\mathrm{C}(3)) .{ }^{3} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 141.52(s) ; 138.71$

[^1](s); $138.10(2 s) ; 128.62-126.77(\mathrm{~m}) ; 86.73(d) ; 81.50(d) ; 78.83(d) ; 77.91(d) ; 75.39(t) ; 74.92(t) ; 73.40(t) ; 72.20$ (d); $70.77(d) ; 68.87(t)$. FAB-MS: $1081\left(22,[2 M+1]^{+}\right), 539\left(25,[M-1]^{+}\right), 415(56), 307(36), 181(91), 154(100)$, 136 (98), 107 (81), 91 (94). Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{6}$ (540.66): C 75.53, H 6.71 ; found: C 75.35, H 6.81.
(1S)-2,6-Anhydro-4,5,7-tri-O-benzyl-1-C-phenyl-d-glycero-D-gulo-heptitol (11b). Pure 11b was obtained by deisopropylidenation (48 h at r.t.) of 19 b in toluene/ $\mathrm{MeOH} 4: 1$ in the presence of 5 equiv. of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. $\mathrm{FC}(15$ g of SiO_{2}; hexane/AcOEt 2:1 $\rightarrow 1: 2$) gave 19b (15\%) and 11b (78\%). R_{f} (hexane/AcOEt 2:1) 0.13. [$\left.\alpha\right]_{\mathrm{D}}^{25}=+29.7$ $\left(c=0.89, \mathrm{CHCl}_{3}\right) . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 3580 w, 3522 w, 3488 w(\mathrm{sh}), 3090 w, 3067 w, 3042 w, 2870 m, 1952 w, 1878 w, 1811 w$, $1605 w, 1496 \mathrm{~m}, 1454 \mathrm{~s}, 1363 \mathrm{~m}, 1330 \mathrm{w}, 1264 \mathrm{~m}, 1096 \mathrm{~s}, 1050 \mathrm{~s}, 1028 \mathrm{~s}, 912 \mathrm{~m}, 830 \mathrm{w}, 643 \mathrm{w}, 610 \mathrm{w}$. 'H-NMR (300 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 7.50-7.07(m, 20 \operatorname{arom} . \mathrm{H}) ; 4.91\left(d, J=11.8,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.86\left(d, J=11.8,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.81$ (br. $d, J=4.9, \mathrm{H}-\mathrm{C}(1)) ; 4.78\left(d, J=11.2,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.52\left(d, J=11.2,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.31(d, J=12.2,1 \mathrm{H}, \mathrm{PhCH})$; $4.23\left(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 3.69$ (br, $\left.t, J \approx 8.0, \mathrm{H}-\mathrm{C}(3)\right) ; 3.59-3.53(\mathrm{~m}, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5)$); 3.50-3.48($\mathrm{m}, 2 \mathrm{H}-$ $\mathrm{C}(7)$); $3.45(d t, J=6.3,9.3, \mathrm{H}-\mathrm{C}(2)) ; 3.29$ (br. $s, \mathrm{HO}-\mathrm{C}(1)$); $3.22-3.18(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6)$); 3.07 (br. $s, \mathrm{HO}-\mathrm{C}(3)) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $140.61(s) ; 138.60(s) ; 138.26(s) ; 138.06(s) ; 128.63-127.27(m) ; 86.45(d) ; 80.84(d) ;$ $79.10(d) ; 77.87(d) ; 75.55(d) ; 75.39(t) ; 74.90(t) ; 73.38(d$ and $t) ; 68.88(t)$. FAB-MS: $1081\left(2,[2 M+1]^{+}\right), 539$ (4, $\left.[M-1\}^{\prime}\right), 415(15), 207(12), 193(12), 181(48), 154(20), 147(25), 136(31), 107(32), 91$ (100). Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{6}(540.66)$: $\mathrm{C} 75.53, \mathrm{H} 6.71$; found: C 75.29, H 6.96.

4,8-Anhydro-6,7,9-tri-O-benzyl-1,2-dideoxy-2-C-methyl-D-erythro-L-galacto-nonitol(12a): R_{f} (hexane/AcOEt 1:1) 0.34. M.p. $161^{\circ} \cdot[\alpha]_{\mathrm{D}}^{25}+19.6\left(c=0.7, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.37-7.20(\mathrm{~m}, 15$ arom. H$) ; 4.95-$ $4.50\left(m, 3 \mathrm{PhCH}_{2}\right) ; 3.78(d d, J=7.8,8.5, \mathrm{H}-\mathrm{C}(5)) ; 3.69(m, 2 \mathrm{H}-\mathrm{C}(9)) ; 3.56(m, \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(7)) ; 3.45(m, \mathrm{H}-$ $\mathrm{C}(8)) ; 3.40(\mathrm{br} . d, J=7.7, \mathrm{H}-\mathrm{C}(3)) ; 3.29(\mathrm{br} . d, J=8.5, \mathrm{H}-\mathrm{C}(4)) ; 2.93(s, \mathrm{OH}) ; 2.14(s, \mathrm{OH}) ; 1.87(m, \mathrm{H}-\mathrm{C}(2)) ; 1.03$ $(d, J=6.7, \mathrm{Me}) ; 0.90(d, J=6.7, \mathrm{Me}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 139.0(\mathrm{~s}) ; 138.6(\mathrm{~s}) ; 138.2(\mathrm{~s}) ; 128.9-127.8$ $(m) ; 87.2(d, \mathrm{C}(6)) ; 79.1(d, \mathrm{C}(8)) ; 78.8(d, \mathrm{C}(4)) ; 78.2(d, \mathrm{C}(7)) ; 75.4(t) ; 75.0(t) ; 74.5(d, \mathrm{C}(3)) ; 73.6(t) ; 70.3(d$, $\mathrm{C}(5)$); $69.3(t, \mathrm{C}(9)) ; 31.5(d, \mathrm{C}(2)) ; 19.5(q, 2 \mathrm{Me})$. Anal. calc. for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{6}(506.65)$: $\mathrm{C} 73.49, \mathrm{H} 7.56$; found: C 73.28, H 7.51 .

2,6-Anhydro-1,3,4-tri-O-benzyl-8,9-dideoxy-8-C-methyl-L-erythro-L-gulo-nonitol (12b): R_{f} (hexane/AcOEt 1:1)0.54. M.p. $107^{\circ} \cdot[\alpha]_{D}^{25}=+18.0\left(c=0.95, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.33-7.17(\mathrm{~m}, 15$ arom. H$) ; 4.90-$ $4.48\left(m, 3 \mathrm{PhCH}_{2}\right) ; 3.68$ (' t ', $J \approx 8.7, \mathrm{H}-\mathrm{C}(5)$); $3.66(m, 2 \mathrm{H}-\mathrm{C}(1)$); $3.64(d d, J=3.2,7.8, \mathrm{H}-\mathrm{C}(7)$); 3.58 (' t ', $J=$ $9.0, \mathrm{H}-\mathrm{C}(3)) ; 3.53$ (' $\left.t^{\prime}, J \approx 8.9, \mathrm{H}-\mathrm{C}(4)\right) ; 3.39(d d d, J=2.5,3.4,9.2, \mathrm{H}-\mathrm{C}(2)) ; 3.20(s, \mathrm{OH}) ; 3.17(d d, J=7.8,8.9$, $\mathrm{H}-\mathrm{C}(6)) ; 2.77(s, \mathrm{OH}) ; 2.07(m, \mathrm{H}-\mathrm{C}(8)) ; 0.96(d, J=6.9, \mathrm{Me}) ; 0.88(d, J=6.9, \mathrm{Me}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $138.7(s) ; 138.4(s) ; 137.9(s) ; 128.5-127.7(m) ; 86.8(d, \mathrm{C}(4)) ; 79.2(d, \mathrm{C}(2)) ; 78.8(d, \mathrm{C}(7)) ; 78.0(d, \mathrm{C}(3)) ; 77.9$ $(d, \mathrm{C}(6)) ; 75.5(t) ; 75.3(d, \mathrm{C}(5)) ; 75.0(t) ; 73.6(t) ; 69.2(t, \mathrm{C}(1)) ; 29.4(d, \mathrm{C}(8)) ; 19.4(q, \mathrm{Me}) ; 15.4(q, \mathrm{Me})$. Anal. calc. for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{6}(506.65)$: C 73.49, H 7.56; found: C 73.63, H 7.31.

4,8-Anhydro-6,7,9-tri-O-benzyl-l,2-dideoxy-d-erythro-t-galacto-non-I-enitol (13a). Separated by HPLC (hexane/AcOEt 2:1). R_{f} (AcOEt/hexane 1:1) 0.31. M.p. $131^{\circ} .[\alpha]_{\mathrm{D}}^{25}=+53.1\left(c=0.38, \mathrm{CHCl}_{3}\right)$. IR (KBr): 3376 m . $3034 w, 2930 \mathrm{~m}, 2864 \mathrm{~m}, 1674 \mathrm{w}, 1496 w, 1452 \mathrm{~m}, 1090 \mathrm{~s}, 1058 \mathrm{~m}, 1040 \mathrm{~m}, 990 \mathrm{~m}, 744 \mathrm{~s}, 698 \mathrm{~s}$. 'H-NMR (500 MHz , CDCl_{3}): 7.34-7.18 ($\mathrm{m}, 15$ arom. H); $6.00\left(d d d, J=5.4,10.5,17.2, \mathrm{H}-\mathrm{C}(2)\right.$); $5.36\left(d, J=17.2, \mathrm{H}_{z}-\mathrm{C}(1)\right) ; 5.22(d$, $J=10.5, \mathrm{H}_{E}-\mathrm{C}(1)$) $4.93-4.50\left(\mathrm{~m}, 3 \mathrm{PhCH}_{2}\right) ; 4.34$ (br. $s, \mathrm{H}-\mathrm{C}(3)$); $3.73-3.66(m, \mathrm{H}-\mathrm{C}(5), 2 \mathrm{H}-\mathrm{C}(9)$); 3.57 (' t ', J $=9.1, \mathrm{H}-\mathrm{C}(7)$); 3.53 (${ }^{\prime} t$ ', $J=8.7, \mathrm{H}-\mathrm{C}(6)$); 3.44 (${ }^{\prime} t d^{\prime}, J=3.0,9.3, \mathrm{H}-\mathrm{C}(8)$); $3.27(d d, J=3.0,9.6, \mathrm{H}-\mathrm{C}(4)$); 2.52 ($s, \mathrm{HO}-\mathrm{C}(3)$); $2.37(s, \mathrm{HO}-\mathrm{C}(5)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 138.4(s) ; 137.9(s) ; 137.8(s) ; 136.5(d, \mathrm{C}(2))$; $128.8-127.4(m) ; 116.7(t, \mathrm{C}(1)) ; 86.3(d, \mathrm{C}(6)) ; 80.5(d, \mathrm{C}(4)) ; 78.9(d, \mathrm{C}(8)) ; 77.8(d, \mathrm{C}(7)) ; 75.3(t) ; 74.9(t) ; 73.7$ $(t) ; 73.4(d, \mathrm{C}(3)) ; 72.4(d, \mathrm{C}(5)) ; 68.7(t, \mathrm{C}(9))$. Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6}(490.60)$: $\mathrm{C} 73.43, \mathrm{H} 6.99$; found: C 71.93 , H 7.08 .

2,6-Anhydro-1,3,4-tri-O-benzyl-8,9-dideoxy-L-erythro-L-gulo-non-8-enitol(13b). Separated by HPLC (hexane/ $\mathrm{AcOEt} 2: 1) . R_{f}($ hexane $/ \mathrm{AcOEt} 1: 1) 0.26 .[\alpha]_{\mathrm{D}}^{25}=+24.6\left(c=0.56, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.36-7.18$ $(m, 15$ arom. H$) ; 6.00(d d d, J=6.3,10.6,17.2, \mathrm{H}-\mathrm{C}(8)) ; 5.37\left(d, J=17.2, \mathrm{H}_{2}-\mathrm{C}(9)\right) ; 5.22\left(d, J=10.6, \mathrm{H}_{E}-\mathrm{C}(9)\right)$; $4.96-4.50\left(m, 3 \mathrm{PhCH}_{2}\right) ; 4.34(d d, J=4.7,6.3, \mathrm{H}-\mathrm{C}(7)) ; 3.72-3.66(m, 2 \mathrm{H}-\mathrm{C}(1)) ; 3.62\left({ }^{\prime} t^{\prime}, J \approx 8.9, \mathrm{H}-\mathrm{C}(5)\right) ; 3.57$ (' $\left.t^{\prime}, J=9.1, \mathrm{H}-\mathrm{C}(3)\right) ; 3.52\left({ }^{\circ} t^{\prime}, J=8.6, \mathrm{H}-\mathrm{C}(4)\right) ; 3.46\left({ }^{\prime} t d^{\prime}, J=3.0,9.4, \mathrm{H}-\mathrm{C}(2)\right) ; 3.27(d d, J=4.7,9.4, \mathrm{H}-\mathrm{C}(6))$; $2.73(s, \mathrm{HO}-\mathrm{C}(7)) ; 2.51(s, \mathrm{HO}-\mathrm{C}(5)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCL}_{3}\right): 138.6(s) ; 138.2(s) ; 138.0(s) ; 137.7(d, \mathrm{C}(8)) ;$ 128.7-127.5 (m); $116.0(t, \mathrm{C}(9)) ; 86.6(d, \mathrm{C}(4)) ; 80.2(d, \mathrm{C}(6)) ; 79.1(d, \mathrm{C}(2)) ; 78.0(d, \mathrm{C}(3)) ; 75.3(t) ; 74.9(t) ; 73.4$ $(t) ; 71.6(d, \mathrm{C}(7)) ; 70.6(d, \mathrm{C}(5)) ; 68.9(t, \mathrm{C}(1))$. Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6}(490.60): \mathrm{C} 73.43, \mathrm{H} 6.99$; found: C 72.68 , H7.37.

2,6-Anhydro-4,5,7-tri-O-benzyl-1-C-phenyl-D-glycero-D-gulo-heptose (14): R_{f} (hexane/AcOEt 1:1) 0.67. $[\alpha]_{\mathrm{D}}^{2 s}=-16.7\left(c=1.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.07(d, J=7.8,2$ arom. H$) ; 7.57(t, J=7.5,1$ arom. H) : 7.43-7.21 ($m, 17$ arom. H); 5.06-4.45 $\left(m, 3 \mathrm{PhCH}_{2}\right) ; 4.39(d, J=9.3, \mathrm{H}-\mathrm{C}(2)) ; 4.19\left({ }^{\prime} t^{\prime}, J=9.0, \mathrm{H}-\mathrm{C}(3)\right) ; 3.80-$ $3.72\left(m, \mathrm{H}_{\mathrm{A}}-\mathrm{C}(7), \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(6)\right) ; 3.64\left(d d, J=5.6,10.7, \mathrm{H}_{\mathrm{B}}-\mathrm{C}(7)\right) ; 3.60\left({ }^{\prime} t^{\prime}, J=9.3, \mathrm{H}-\mathrm{C}(5)\right) ; 2.98(s, \mathrm{HO}-$ $\mathrm{C}(3)$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 196.7(s, \mathrm{C}(1)) ; 138.7(s) ; 138.1(2 s) ; 135.2(s) ; 133.7(d) ; 129.7(d) ; 128.5-$
$127.4(m) ; 85.7(d, \mathrm{C}(4)) ; 80.3(d, \mathrm{C}(6)) ; 80.0(d, \mathrm{C}(2)) ; 77.4(d, \mathrm{C}(5)) ; 75.4(t) ; 75.1(t) ; 73.3(t) ; 72.2(d, \mathrm{C}(3)) ;$ $69.2(t, \mathrm{C}(7))$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{6}$ (538.64): C 75.82, H 6.36; found: C 75.77, H 6.56.

2,6-Anhydro-4,5,7-tri-O-benzyl-l-deoxy-D-glycero-D-gulo-heptitol [20] (15): R_{f} (hexane/AcOEt 1:1) 0.51 . M.p. $85-86^{\circ}\left(\{20]: 85-86^{\circ}\right) \cdot[\alpha]_{\mathrm{D}}^{25}=+46.6\left(c=1.04, \mathrm{CHCl}_{3} ;[20]:[\alpha]_{\mathrm{D}}^{25}=+44.1\right) .{ }^{\prime} \mathrm{H} \cdot \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.39-$ $7.16(\mathrm{~m}, 15$ arom. H$) ; 4.97-4.52(\mathrm{~m}, 3 \mathrm{PhCH}) ; 3.70(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(7)) ; 3.61$ (${ }^{\prime} t, J=9.2, \mathrm{H}-\mathrm{C}(5)$); 3.46 (${ }^{\prime} t, J=9.1$, $\mathrm{H}-\mathrm{C}(4)) ; 3.45(d d d, J=2.1,4.4,9.4, \mathrm{H}-\mathrm{C}(6)) ; 3.31(m, \mathrm{H}-\mathrm{C}(2)) ; 3.23\left({ }^{\prime} t^{\prime}, J=9.2, \mathrm{H}-\mathrm{C}(3)\right) ; 2.09(s, \mathrm{OH}) ; 1.31(d$, $J=6.1,3 \mathrm{H}-\mathrm{C}(1)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 138.5(\mathrm{~s}) ; 138.2(\mathrm{~s}) ; 137.8(\mathrm{~s}) ; 129.4-127.5(\mathrm{~m}) ; 86.6(d, \mathrm{C}(4))$; $78.7(d, \mathrm{C}(6)) ; 78.4(d, \mathrm{C}(5)) ; 75.5(d, \mathrm{C}(2)) ; 75.2(d, \mathrm{C}(3)) ; 75.0(t) ; 74.7(t) ; 73.4(t) ; 68.9(t, \mathrm{C}(7)) ; 18.2(t, \mathrm{C}(1))$. Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{5}$ (448.56): C 74.98, H 7.19; found C 75.04, H 7.82.

4,8-Anhydro-6,7,9-tri-O-benzyl-1,2,3-trideoxy-D-glycero-d-gulo-non-1-enitol (16): R_{f} (hexane/AcOEt 1:1) 0.63. $[\alpha]_{\mathrm{D}}^{25}=+11.4\left(c=0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.34-7.16(\mathrm{~m}, 15$ arom. H$) ; 5.91(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2))$; $5.12\left(d, J=17.0, \mathrm{H}_{Z}-\mathrm{C}(1)\right) ; 5.06\left(d, J=10.1, \mathrm{H}_{E}-\mathrm{C}(1)\right) ; 4.96-4.51\left(\mathrm{~m}, 3 \mathrm{PhCH}_{2}\right) ; 3.73-3.69(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(9)) ; 3.59$ $(d d, J=8.9,9.4, \mathrm{H}-\mathrm{C}(7)) ; 3.47\left({ }^{\prime} t^{\prime}, J=9.0, \mathrm{H}-\mathrm{C}(6)\right) ; 3.41(d d d, J=1.9,3.4,9.4, \mathrm{H}-\mathrm{C}(8)): 3.36\left({ }^{\prime} t^{\prime}, J=9.0, \mathrm{H}-\right.$ $\mathrm{C}(5)$); 3.26-3.22 ($\mathrm{m}, \mathrm{H}-\mathrm{C}(4)$); $2.56\left(\mathrm{~m}, \mathrm{H}_{\mathrm{A}}-\mathrm{C}(3), \mathrm{HO}-\mathrm{C}(5)\right) ; 2.30\left(m, \mathrm{H}_{\mathrm{B}}-\mathrm{C}(3)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $139.6(s) ; 139.3(s) ; 138.7(s) ; 134.6(d, \mathrm{C}(2)) ; 129.4-128.3(m) ; 117.0(t, \mathrm{C}(1)) ; 86.7(d, \mathrm{C}(6)) ; 79.2(d, \mathrm{C}(8)) ; 78.7$ $(d, \mathrm{C}(4)) ; 78.5(d, \mathrm{C}(7)) ; 75.2(t) ; 74.8(t) ; 73.5(t) ; 73.5(d, \mathrm{C}(5)) ; 68.9(t, \mathrm{C}(9)) ; 36.2(t, \mathrm{C}(3))$. Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{5}$ (474.60): C 75.92, H 7.22; found: C 75.83, H 7.02 .

2,6-Anhydro-1,3,4-tri-O-benzyl-7,8,9-trideoxy-D-glycero-1-gulo-non-8-enitol (17): R_{f} (hexane/AcOEt 1:1) $0.59 .[\alpha]_{1}^{25}=+7.1\left(c=0.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.33-7.22(\mathrm{~m}, 15$ arom. H$) ; 5.82(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8)) ; 5.12$ $\left(d, J=17.1, \mathrm{H}_{2}-\mathrm{C}(9)\right) ; 5.05\left(d, J=10.1, \mathrm{H}_{E}-\mathrm{C}(9)\right) ; 4.64-4.47\left(m, 3 \mathrm{PhCH} H_{2}\right) ; 4.05(t d, J=5.2,9.8, \mathrm{H}-\mathrm{C}(2)) ; 3.92$ $(d d d, J=3.0,5.4,8.5, \mathrm{H}-\mathrm{C}(6)) ; 3.81\left(d d, J=5.2,10.2, \mathrm{H}_{\mathrm{A}}-\mathrm{C}(1)\right) ; 3.75\left({ }^{\prime} t^{\prime}, J=9.9, \mathrm{H}-\mathrm{C}(3)\right) ; 3.69(d d, J=5.8,10.2$, $\left.\mathrm{H}_{\mathrm{B}}-\mathrm{C}(1)\right) ; 3.64-3.62(\mathrm{~m}, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5)) ; 2.91(\mathrm{~s}, \mathrm{OH}) ; 2.46-2.34(m, 2 \mathrm{H}-\mathrm{C}(7)) .{ }^{19} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $139.7(s) ; 139.5(s) ; 138.8(s) ; 134.7(d, \mathrm{C}(8)) ; 128.5-127.6(\mathrm{~m}) ; 117.0(t, \mathrm{C}(9)) ; 77.5(d, \mathrm{C}(4)) ; 76.8(t) ; 74.8(d$, $\mathrm{C}(3)) ; 73.5(d, \mathrm{C}(2)) ; 73.3(t) ; 73.2(d, \mathrm{C}(5)) ; 72.8(t) ; 71.0(d, \mathrm{C}(6)): 68.0(t, \mathrm{C}(1)) ; 33.3(t, \mathrm{C}(7))$. Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{5}(474.60)$: C $75.92, \mathrm{H} 7.22$; found: C 75.96 , H 6.93 .

Isopropylidenation of 11a and 11b. a) A soln. of $11 \mathrm{a} / \mathbf{1 1 b}$ ca. $1.4: 1$ ($230 \mathrm{mg}, 0.43 \mathrm{mmol}$) in THF (5 ml) was treated with 2,2-dimethoxypropane ($31 \mu \mathrm{I}, 0.25 \mathrm{mmol}$) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(9 \mathrm{mg}, 0.047 \mathrm{mmol})$ and stirred for 12 h at 25°. After neutralization with NaHCO_{3} and filtration, evaporation of the filtrate and $\mathrm{FC}\left(15 \mathrm{~g}\right.$ of SiO_{2}, hexane/ AcOEt $2: 1 \rightarrow 1: 2$) gave $19 \mathrm{~b}(46 \mathrm{mg}, 19 \%)$ and 11a/11b ca. 2:1 ($178 \mathrm{mg}, 77 \%$).
b) Treatment of a soln, of 11 a in THF with ca. 10 equiv. of 2,2 -dimethoxypropane and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.1$ equiv. $)$ gave 19a in low yields.
(lR)-2,6-Anhydro-4,5,7-tri-O-benzyl-1,3-O-isopropylidene-l-C-phenyl-D-glycero-D-gulo-heptitol (19a): R_{t} (hexane/AcOEt 2:1) 0.52. M.p. $91^{\circ} \cdot[\alpha]_{D}^{2 s}=-19.9\left(c=1.11, \mathrm{CHCl}_{3}\right)$ IR $\left(\mathrm{CHCl}_{3}\right): 3090 w, 3067 w, 3043 w, 2908 m$, $2868 \mathrm{~m}, 195 \mathrm{l} w, 1875 \mathrm{w}, 1810 \mathrm{w}, 1752 \mathrm{w}, 1606 \mathrm{w}, 1497 \mathrm{~m}, 1454 \mathrm{~m}, 1381 \mathrm{~m}, 1317 \mathrm{w}, 1153 \mathrm{~s}, 1101 \mathrm{~s}, 1061 \mathrm{~s}, 1028 \mathrm{~s}, 990 \mathrm{~m}$, $912 w, 879 m, 834 w, 822 w, 635 w, 622 w, 605 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 7.48-7.07(m, 20$ arom. H); $5.11(d, J$ $\approx 8.1, \mathrm{H}-\mathrm{C}(1)) ; 5.10(d, J \approx 10.9, \mathrm{IH}, \mathrm{PhCH}) ; 4.97\left(d, J=11.2,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.83\left(d, J=11.5,1 \mathrm{H}, \mathrm{PhCH} H_{2}\right) ; 4.60$ $\left(d, J=11.3,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.18\left(d, J=12.7,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.09\left(d, J=12.6,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.09\left({ }^{\prime} f\right.$ ', $\left.J \approx 9.4, \mathrm{H}-\mathrm{C}(3)\right)$; $3.75\left({ }^{\prime} t^{\prime}, J \approx 8.8, \mathrm{H}-\mathrm{C}(4)\right) ; 3.66\left(t^{\prime}, J \approx 9.0, \mathrm{H}-\mathrm{C}(5)\right) ; 3.53\left(d d, J=4.4,11.9, \mathrm{H}_{\mathrm{A}}-\mathrm{C}(7)\right) ; 3.47\left(d d, J \approx 1.7,12, \mathrm{H}_{\mathrm{B}}-\right.$ $\mathrm{C}(7)$); $3.44(d d, J=7.8,9.8, \mathrm{H}-\mathrm{C}(2)) ; 3.35-3.30(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6)) ; 1.43(\mathrm{~s}, \mathrm{Me}) ; 1.32(\mathrm{~s}, \mathrm{Me}) .{ }^{19} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 138.91(s) ; 138.80(s) ; 138.35(s) ; 136.81(s) ; 128.38-127.20(\mathrm{~m}) ; 101.27(s) ; 84.02(d) ; 80.74(d) ; 77.70$ $(d) ; 76.37(d) ; 75.34(t) ; 74.68(t) ; 73.22(t) ; 72.71(d) ; 71.59(d) ; 68.71(t) ; 26.39(q) ; 24.95(q)$. FAB-MS: $579(22$, $\left.[M-1]^{+}\right), 415(27), 271(13), 181(98), 105(71), 92(100), 91(93)$. Anal. calc. for $\mathrm{C}_{37} \mathrm{H}_{413} \mathrm{O}_{6}(580.72): \mathrm{C} 76,53, \mathrm{H}$ 6.94, found: C 76.41, H 6.87.
(IS)-2,6-Anhydro-4,5,7-tri-O-benzyl-1,3-O-isopropylidene-1-C-phenyl-D-glycero-i-gulo-heptitol (19b): R_{r} (hexane/AcOEt 2:1) 0.52. $[\alpha]_{\mathrm{D}}^{25}=+9.6\left(c=1.10, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3090 \mathrm{w}, 3067 \mathrm{~m}, 2872 \mathrm{~m}, 1952 \mathrm{w}, 1878 \mathrm{w}$, $1811 w, 1727 w, 1606 w, 1496 m, 1453 m, 1383 m, 1366 m, 1310 w, 1258 m, 1149 s, 1101 s, 1028 s, 987 m, 949 w, 893 m$, $857 w, 833 w, 658 w, 633 w, 606 w$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 7.62-7.05(\mathrm{~m}, 20 \operatorname{arom~H}) ; 5.07(d, J=11.8,1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right) ; 5.01\left(d, J=11.3,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.84\left(d, J=11.8,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.76(d, J=9.4, \mathrm{H}-\mathrm{C}(1)) ; 4.63(d, J=11.2$, $\left.1 \mathrm{H}, \mathrm{PhCH})_{2}\right) ; 4.33\left(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.25\left(d, J=12.1,1 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 3.92\left({ }^{2} t^{\prime}, J \approx 9.2\right), 3.91\left({ }^{\prime} t^{\prime}, J \approx 9.1, \mathrm{H}-\right.$ $\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(5)) ; 3.72\left({ }^{\prime} t^{\prime}, J=8.8, \mathrm{H}-\mathrm{C}(4)\right) ; 3.55\left(d d, J=3.7,11.0, \mathrm{H}_{A}-\mathrm{C}(7)\right) ; 3.46\left(d d, J=1.6,10.9, \mathrm{H}_{8}-\mathrm{C}(7)\right)$; $3.20-3.11(m, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(6)) ; 1.53(\mathrm{~s}, \mathrm{Me}) ; 1.31(\mathrm{~s}, \mathrm{Me}) .{ }^{12} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{2}\right) ; 138.99$ (2s); 138.37 (s); $138.29(\mathrm{~s}) ; 128.38-127.26(\mathrm{~m}) ; 99.96(\mathrm{~s}) ; 83.89(\mathrm{~d}) ; 79.74(d) ; 77.32(d) ; 76.69(d) ; 75.25(2 t) ; 74.92(d): 74.03(d)$; $73.38(t) ; 68.77(t) ; 29.68(q) ; 19.92(q)$. FAB-MS: $579\left(7,[M-1]^{+}\right), 415(13), 181(55), 91$ (100). Anal. calc. for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{O}_{6}(580.72)$: С 76.53. H 6.94; found: C 76.43, H 7.02.

REFERENCES

[1] M. H. D. Postema, Tetrahedron 1992, 48, 8545.
[2] S. Czemecki, in 'Carbohydrates - Synthetic Methods and Applications in Medicinal Chemistry', Eds. H. Ogura, A. Hasegawa, and T. Suami, VCH, Weinheim, 1992, p. 28.
[3] G. D. Daves, in 'Carbohydrates - Synthetic Methods and Applications in Medicinal Chemistry', Eds. H. Ogura, A. Hasegawa, and T. Suami, VCH, Weinheim, 1992, p. 49.
[4] C. U. Hacksell, G. D. Daves., Jr., Proc. Med. Chem. 1985, 22, 1.
[5] S. Hanessian, 'Total Synthesis of Natural Products: The 'Chiron' Approach', Pergamon Press, Oxford, 1983.
[6] J. Asakawa, Prog. Chem. Org. Natl. Prod. 1982, 42, 154.
[7] S. Hanessian, A. G. Pernet, Adv. Carbohydr. Chem. Biochem. 1976, 33, 111.
[8] L. J. Haynes, Adv. Carbohydr. Chem. 1965, $20,357$.
[9] P. de Pouilly, A. Chénedé, J.-M. Mallet, P. Sinä̈, Bull. Soc. Chim. Fr. 1993, I30, 256.
[10] H. Paulsen, K. Roden, V. Sinnwell, P. Luger, Liebigs Ann. Chem. 1981, 2009.
[11] B. Aebischer, J. H. Bieri, R. Prewo, A. Vasella, Helv. Chim. Acta 1982, 65, 2251.
[12] F. Baumberger, A. Vasella, Helv. Chim. Acta 1983, 66, 2210.
[13] F. Baumberger, A. Vasella, Helv. Chim. Acta 1986, 69, 1205.
[14] K. Mahmood, A. Vasella, B. Bernet, Helv. Chim. Acta 1991, 74, 1555.
[15] J.-M. Lancelin, L. Morin-Allory, P. Sinaÿ, J. Chem. Soc., Chem. Commun. 1984, 355.
[16] J.-M. Beau, P. Sinaÿ, Tetrahedron Lett. 1985, 26, 6189.
[17] J.-M. Beau, P. Sinaÿ, Tetrahedron Lett. 1985, 26, 6193.
[18] P. de Pouilly, B. Vauzeilles, J.-M. Mallet, P. Sinaÿ, C. R. Acad. Sci., Ser. 2 1991, 313, 1391.
[19] K. C. Nicolaou, C.-H. Hwang, M. E. Duggan, J. Chem. Soc., Chem. Commun. 1986, 925.
[20] S. Hanessian, M. Martin, R. C. Desai, J. Chem. Soc., Chem. Commun. 1986, 926.
[21] R. R. Schmidt, R. Preuss, R. Betz, Tetrahedron Lett. 1987, 28, 6591.
[22] R. Preuss. R. R. Schmidt, Liebigs Ann. Chem. 1989, 429.
[23] P. Lesimple, J.-M. Beau, P. Sinaÿ, Carbohydr. Res. 1987, 171, 289.
[24] D. K. Hutchinson, P. L. Fuchs, J. Am. Chem. Soc. 1987, 109, 4930.
[25] P. Lesimple, J.-M. Beau, P. Sinaÿ, J. Chem. Soc., Chem. Commun. 1985, 894.
[26] P. Lesimple, J.-M. Beau, P. Sinaÿ, Tetrahedron Lett. 1986, 27, 6201.
[27] V. Wittmann, H. Kessler, Angew. Chem. 1993, 105, 1138.
[28] W. C. Still, C. Sreekumar, J. Am. Chem. Soc. 1980, 102, 1201.
[29] J. S. Sawyer, T. L. Macdonald, G. J. McGarvey, J. Am. Chem. Soc. 1984, 106, 3376.
[30] J. S. Sawyer, A. Kucerovy, T. L. Macdonald, G. J. McGarvey, J. Am. Chem. Soc. 1988, 110, 842.
[31] P. Uhlmann, D. Nanz, E. Bozó, A. Vasella, Helv. Chim. Acta 1994, 77, 1430.
[32] V. Bellosta, S. Czernecki, Carbohydr. Res. 1993, 244, 275.
[33] L. D. Hall, P. R. Steiner, D. C. Miller, Can. J. Chem. 1979, 57, 38.
$[34]$ R. L. Halcomb, S. Danishefsky, J. Am. Chem. Soc. 1989, 111, 6661.
[35] C. Tamborsky, F. C. Ford, E. J. Solosky, J. Org. Chem. 1962, 28, 181.
[36] W. C. Still, J. Am. Chem. Soc. 1978, 100, 1481.
[37] D. Seebach, H. Bossler, H. Gründer, S. Shoda, Helv. Chim. Acta 1991, 74, 197.
[38] D. Seebach, Angew. Chem. Int. Ed. 1988, 27, 1624.
[39] D. E. Applequist, D. F. O'Brien, J. Am. Chem. Soc. 1963, 85, 743.
[40] B. H. Lipshutz, M. Koerner, D. A. Parker, Tetrahedron Lett. 1987, $28,945$.
[41] V. Wittmann, Ph. D., Technische Universität München, 1994.
[42] G. Ekborg, B. Lindberg, J. Lönngren, Acta Chem. Scand. 1972, 26, 3287.
[43] P. A. Gent, R. Gigg, Carbohydr. Res. 1976, 49, 325.
[44] J. Barluenga, J. M. Montserrat, J. Flórez, J. Org. Chem. 1993, 58, 5976.
[45] J. Prandi, C. Audin, J.-M. Beau, Tetrahedron Lett. 1991, 32, 769.
[46] W. Adam, J. Bialas, L. Hadjiarapoglou, Chem. Ber. 1991, 124, 2377.

[^0]: ${ }^{1}$) Presented in part at the VIIth European Carbohydrate Symposium, Cracow, Poland, 22.-27.8.1993, Abstract No. A 100.
 ${ }^{2}$) In an approach to C-glycosides from electrophilic saccharide derivatives, Bellosta and Czernecki have shown that 1,2-anhydrosaccharides react with organocuprates to yield C-glycosides [32].

[^1]: ${ }^{3}$) In the reaction with MeI as the electrophile, the soln. was treated with lithium 2-thienylcyanocuprate [40] (10 equiv.), stirred for 5 min , and then treated with MeI (1.28 mmol).

