
Preparation Behaviour Synthesis with

Reinforcement Learning

Hubert P. H. Shum

Northumbria University

hubert.shum@northumbria.ac.uk

Ludovic Hoyet

Trinity College Dublin

hoyetl@tcd.ie

Edmond S. L. Ho

Hong Kong Baptist University

edmond@comp.hkbu.edu.hk

Taku Komura

University of Edinburgh

tkomura@info.ed.ac.uk

Franck Multon

University Rennes 2

fmulton@irisa.fr

Abstract
When humans perform a series of motions,

they prepare for the next motion in advance

so as to enhance the response time of their

movements. This kind of preparation behaviour

results in a natural and smooth transition of the

overall movement. In this paper, we propose a

new method to synthesize the behaviour using

reinforcement learning. To create preparation

movements, we propose a customized motion

blending algorithm that is governed by a single

numerical value, which we called the level of

preparation. During the offline process, the

system learns the optimal way to approach

a target, as well as the realistic behaviour to

prepare for interaction considering the level of

preparation. At run-time, the trained controller

indicates the character to move to a target with

the appropriate level of preparation, resulting

in human-like movements. We synthesized

scenes in which the character has to move in a

complex environment and interact with objects,

such as a character crawling under and jumping

over obstacles while walking. The method is

useful not only for computer animation, but

also for real-time applications such as computer

games, in which the characters need to accom-

plish a series of tasks in a given environment.

Keywords: Preparation Behaviour, Motion

Synthesis, Reinforcement Learning, SARSA,

Motion Blending

1 Introduction

In an environment where humans have to

quickly conduct one motion after another, they

adapt their behaviours and prepare for the next

motion while approaching the target. This al-

lows smooth transition to the target action, as

well as a quicker activation to interact with the

target. For example, when a human anticipated

that he/she has to crawl under an obstacle while

running, it is unlikely that he/she runs straight

to the obstacle, stops suddenly and starts crawl-

ing. Instead, one usually slows down and lowers

the body before reaching the obstacle, in order

to prepare for the crawling action.

Traditional kinematic motion synthesis ap-

proaches such as motion graph [1, 2] does not

alter the movement behaviour based on the po-

tential next motion. As a result, awkward be-

haviours, although kinematically correct, such

as running to an obstacle and stopping absurdly

to crawl may be created. A naive solution

would be capturing different levels of prepara-

tion movements for all combinations of motions,

and manually crafting the motion graph such

that the character applies the appropriate move-

ments to prepare for the target motion. However,

this requires a huge amount of labour works, and

the size of the motion database increases expo-

Figure 1: A motion sequence created using our method. The character prepares for the crawling

motion by lowering its pelvis and crouches its torso while walking.

nentially with respect to the number of actions,

making it cost inefficient.

We observe that when a human approaches

a target, the preparation behaviours usually in-

volve (1) a movement to prepare for launching

the target motion, and (2) a change of move-

ment speed. To enable efficient control over

the synthesis process, we propose a single con-

trol parameter called the level of preparation for

both behaviours. We design a customized mo-

tion blending algorithm to generate the overall

movement. Given the current and target mo-

tions, as well as a corresponding level of prepa-

ration, we can create the movement with the

same content as the current motion, with a new

movement style to prepare for the target motion.

As a result, our system can efficiently generate

natural preparation behaviour without capturing

extra motions.

We further propose a unified controller based

on reinforcement learning that controls a charac-

ter to approach a target with the proper prepara-

tion behaviour in real-time. During the training

stage, our system learns the optimal motion to

approach the target, and more importantly, the

level of preparation that should be applied to

create realistic preparation behaviour. At run-

time, the trained controller anticipates how the

preparation behaviour may affect the movement.

It controls the character by indicating the op-

timal motion and the optimal level of prepara-

tion. The system can then synthesize the re-

sultant movements with human-like preparation

behaviour.

We conducted experiments for various target

actions, such as punching, crawling, kicking and

jumping. We show that our system can produce

realistic preparation behaviour in real-time. The

proposed algorithm is computationally efficient,

making it suitable for applications such as inter-

active animation creation and computer games.

The rest of the paper is organized as follow.

We first review previous work in Section 2. We

then explain how we prepare the captured mo-

tion in Section 4. Our algorithm involves two

major parts. Section 5 explains how to syn-

thesize a preparation movement, and Section

6 explains how to create a controller to con-

trol a character with preparation behaviour. We

present experimental results in Section 7, and

conclude the paper in Section 8.

2 Related Works

Our idea to adapt motions towards the sub-

sequent motion is related to motion blending,

motion-style translation and spacetime motion

editing. We first compare our method with such

methodologies. Then, we evaluate algorithms

involving data-driven approaches, which per-

form sub-optimally in our problem. Finally, we

discuss long horizon techniques to intelligently

control the characters by predicting the future.

Motion blending is a traditional technique to

synthesize new motions by interpolating exist-

ing motion data. Motion warping [3] edits a

motion by inserting an intermediate posture as

an offset. Boulic et al. [4] blend several mo-

tions simultaneously by changing the weights

for different degrees of freedom. Ménardais et

al. [5] propose a method to compute the ap-

propriate weights for blending different motions

based on intuitive input by the user. Shum et al.

[6] propose to blend motions considering the an-

gular momentum profile. In these methods, the

change of weights has to be hand-tuned during

synthesis to create a realistic motion. We need

an automatic method to compute the weights in

order to control agents intelligently.

Motion style translation extracts movement

style based on two motions, which are a plain

motion without any style and a style-added mo-

tion. A style is extracted using Hidden Markov

Models [7] or linear time invariant models [8].

It is then injected to other plain motions in order

to synthesize new style-added motions. A ma-

jor problem is the need of capturing styled mo-

tions. Preparation movements of different de-

gree of preparation are different, and hence us-

ing these approaches requires a large amount of

captured motions. Moreover, it is difficult to ask

human to precisely conduct preparation move-

ment with small changes on the degree of prepa-

ration. On the contrary, our method computes

the styled motion and minimizes the amount of

labour works.

Spacetime optimization [9] is a method for

optimizing a motion when the objectives of

the motion conversion are known. It has been

used to satisfy kinematic constraints [10], main-

tain kinematics similarity to the original motion

while retargeting the character [11] and convert

manually designed motions to physically plau-

sible motions [12, 13]. The major problem is

its computational cost: each motion computa-

tion requires an optimization of hundreds of pa-

rameters, which can hardly be done in real-time,

especially when synthesizing motions in a dy-

namic environment.

With data driven motion synthesis, all mo-

tions including those preparing for the target

motions are captured to compose data struc-

tures such as motion graphs [1, 2] or finite

state machines [14, 15]. One can also inter-

polate/blend motions to synthesize intermediate

motions [16, 17, 18]. However, such methods

are data intensive, making it unsuitable for ap-

plications such as 3D computer games. In our

approach, we represent the style of the motion

by a single posture in the target motion. As a

result, we can enhance the re-usability of the in-

dividual motions and reduce the total amount of

data to be pre-captured.

Approaches involving future prediction pre-

dict upcoming situation and select the most

appropriate motion. Support vector machine

has been used to select the appropriate motion

and avoid external disturbances [19]. Min-max

search can control a character to intelligently

fight with another character [20, 21]. Reinforce-

ment learning produces control system for char-

acters to fight [22], avoid obstacles [23], control

pedestrians [24], and prepare for user controls

[25]. In these works, the optimal sequence of

Figure 2: The overview of our method.

captured motion clips are selected and concate-

nated. Thus, they can only reproduce the cap-

tured sequence of motions. In this research, we

also apply reinforcement learning to learn the

optimal motions for approaching a target while

preparing for the up-coming event. The ma-

jor difference with previous approaches is that

we include an addition dimension in the ac-

tion space, which is called the level of prepara-

tion. This allows us to adjust a basic motion for

synthesizing a large variety of preparation be-

haviour.

3 Methodology Overview

In this paper, we synthesize the behaviour to ap-

proach a target while preparing for the subse-

quent action to interact. The outline of our ap-

proach is shown in Figure 2. A hierarchical mo-

tion graph is used as the motion database. As an

offline process, reinforcement learning is used

to train a controller that decides the optimal mo-

tion and level of preparation. Based on a given

environment and the information from the con-

troller, we synthesize movement with prepara-

tion behaviour.

We have two contributions in this paper:

• We propose a customized motion blending

algorithm to synthesize preparation move-

ments with a given level of preparation,

which is a single numerical parameter to

describe the movement style and move-

ment trajectory when preparing for a target

motion. The algorithm allows synthesis of

preparation movements without capturing

extra motions.

Figure 3: A hierarchical motion graph that

includes cyclic locomotion as core

nodes and target motions to interact

with the environment.

• To control a character to approach a target

and with the proper preparation behaviour,

we propose a controller created by rein-

forcement learning. Unlike traditional re-

inforcement learning approaches, we alter

a motion based on the level of preparation,

and thus create a large variety of move-

ments.

4 Motion Database

In this section, we explain how we organize the

motion database, as well as extracting the refer-

ence postures in the motions, which contain the

preparation characteristics.

4.1 Hierarchical Motion Graph

Here, we explain the motion graph constructed

in this research.

We construct a hierarchical motion graph

structure [26, 14, 15] that includes cyclic lo-

comotion as core nodes, such as standing and

walking, as well as target motions to interact

with the environment, such as crawling, jumping

and attacking. Edges in the motion graph repre-

sent valid transition of motion with no kinemat-

ics artifacts. Figure 3

the motion graph. Notice that while the char-

acter can conduct a specific target motion from

the locomotion, the behaviour when switching

to the target motion is unnatural. One example

is walking in full speed and ducking suddenly.

The overall movement is kinematically correct,

but the behaviour is unrealistic.

4.2 Reference Posture Extraction

Here, we explain how we extract a reference

posture from each target motion, which repre-

Figure 4: A typical target motion consisting of

three parts.

sents the corresponding preparation style.

Let us assume L to be a locomotion and T

to be a target motion. Searching T for a pos-

ture that represents the style of the preparation

behaviour is a semi-automatic process. Assum-

ing T is connectible to L in the motion graph,

it contains three major parts: (1) a kinematically

smooth transition from ending posture of L, (2)

a duration that involves that target movement,

and (3) a transition to the starting posture of L

or another locomotion. Figure 4 shows an ex-

ample with a jumping motion. In our system,

the user identifies the first frame of the target

movement, Tt. Our system then automatically

scans from Tt towards the first frame of T , T0,

and monitors the following conditions:

1. The center of mass of the body is within the

supporting area.

2. The contact foot pattern is the same as that

of T0.

3. The sum of squares of the posture differ-

ence of the legs with respect to T0 is within

a predefined threshold.

Condition 1 ensures us to obtain a stable pos-

ture. Conditions 2 and 3 ensure the reference

posture does not change the edge connectivity in

the motion graph when synthesizing the prepa-

ration movement in Section 5. The first frame

that satisfies all of conditions is used as the ref-

erence posture of the target motion, Tp. If we

cannot find such a frame, T0 is used as the ref-

erence posture.

5 Movement Synthesis

In this section, we explain our system to synthe-

size preparation movement.

We define the term preparation movement as

the movement when a character is preparing to

conduct a specific target motion. We observed

that preparation movement usually involves two

characteristics: (1) a change in movement style,

and (2) a change in movement trajectory. To fa-

cilitate efficient behaviour control, we declare a

parameter α ∈ R called the level of preparation,

which is a numerical value to control the two as-

pects of the preparation movement.

5.1 Movement Style Synthesis

Here, we explain our customized motion blend-

ing algorithm to create the preparation move-

ment style.

When given two motions, previous tech-

niques of parametric motion blending use linear

blending weight to interpolate the movement of

all the degrees of freedom. However, we ob-

serve that when humans shift their motions from

one to another, the joint movements are not lin-

early warped altogether. For example, when we

prepare for actions such as punching or crawl-

ing while walking, we usually adapt the arms

and torso quickly in the beginning stage of the

preparation movement, while the joints of the

lower body are adapted gradually. This is be-

cause of the dominant role of the arms in the

target motion, while the gait movement does not

affect the target motion heavily. Such an obser-

vation leads us to control the joints separately

during blending.

The blending behaviour for a joint is approx-

imated with a curve equation. The blending

weight of joint i is calculated as:

wi =
Ci
√

1− (1−α)Ci (1)

where α is the level of preparation given by a

high level controller that will be explained in

Section 6, Ci is a constant individually set for

each joint. The blended joint angles of joint i is

calculated as:

qi = (1−wi)qi
L+wiqi

Tp
(2)

where qi
L

and qi
Tp

represent the joint angles in

the locomotion L and reference posture Tp re-

spectively. When α = 0, the character is unpre-

pared and the blending weights are zero. The

posture is the same as those in L. When α = 1,

the character is fully prepared and the weights

become one. The resultant posture becomes the

reference posture Tp.

The constant Ci in equation 1 represents the

blending behaviour of the joint, as it affects the

curvature of the blending curve as shown in Fig-

ure 5. While it is possible to design the suitable

Ci for each joint, we observe that for our motion

database, the human joints can roughly be clas-

sified into the upper body and the lower body.

In our system, we suggest the user with Ci = 1.0

for the lower body joints including the root and

the legs, and Ci = 0.5 for the upper body joints.

For other combinations of locomotion and target

actions, the user can further edit Ci for specific

joints to obtain satisfactory transitions.

An example of using traditional blending

method [3] to prepare for a boxing motion is

shown in (Figure 6 Top). Notice that the arms

raise gradually in increasing level of prepara-

tion because a single linear blending parame-

ter is used. The behaviour of the third and

fourth postures appears unnatural, as the char-

acter raises the arm horizontally while walking.

On the other hand, with our approach, the arms

quickly switch to the boxing style when the level

of preparation increase, while the lower body is

adapted linearly (Figure 6 Bottom).

5.2 Movement Trajectory Adjustment

Here, we explain how we adjust the position of

the root in the blended motion, which affects

the movement trajectory of the character. No-

tice that the root orientation is scaled in the same

way as other joints with Equation 2.

The displacement of the root on the horizon-

tal plane (X-Z plane) depends on the lower body

movement. In theory, the best way of calculation

is based on the stride of the legs. However, be-

cause of the concern of computational cost, we

Figure 5: The blending curves for (Left) the up-

per body with Ci set to 0.5, and (Right)

the lower body with Ci set to 1.0.

Figure 6: A walking motion with the prepara-

tion behaviour to boxing created by

(top) traditional blending methods and

(bottom) our method.

approximate the horizontal displacement by the

blending weight of the root:

PX = (1−wroot)PXL (3)

PZ = (1−wroot)PZL (4)

where wroot is the blending weight of the root

calculated by Equation 1, PXL and PZL repre-

sents the horizontal displacement of the locomo-

tion L.

The displacement in the vertical direction (y

direction) is calculated based on the difference

of the height of the feet before and after the

blending. The average difference of the left

and right feet height is computed and subtracted

from the root height:

PY = PYL−
1

2
(∆Yl+∆Yr) (5)

where PYL is the root height in L, and ∆Yl, ∆Yr

are the height of the left and right feet relative to

the root caused by blending the joint angles.

Finally, we use inverse kinematics to adjust

the location of the feet. We detect the foot con-

tact information from the original locomotion

data, which is kept the same in the blended mo-

tion. When a foot is supposed to support the

body, its location is kept the same throughout the

supporting phase on the ground. In our imple-

mentation, we apply inverse kinematics based

on a particle system to solve for the final pos-

ture [27].

6 Behaviour Controller

In this section, we explain how we apply rein-

forcement learning to train a unified controller,

Figure 7: The separated goal and source of in-

fluence in our state representation.

which controls the motion that the character

should perform to move towards a target, as well

as the level of preparation that should be applied.

We define the term preparation behaviour as

the high level behaviour to approach a target and

prepare to interact. The behaviour involves mul-

tiple motions with a change of level of prepara-

tion throughout the series of movement.

6.1 State Space and Action Space

Here, we first explain the states and actions de-

signed in our system.

We assume the character has a goal that it has

to reach, and there is a source of influence that

affects the preparation behaviour. The goal of

movement and source of influence are usually

identical, such as approaching a ball and prepar-

ing to kick it. The advantage of separating them

into two variables is that it allows more general

definition and thus a wider range of synthesis.

For example, we can simulate a character walk-

ing in one direction, while preparing to avoid a

nearby obstacle that blocks the way.

We create a state space S in which every state

is defined as:

s = {α, Next(m), dg, θg, di, θi}, s ∈ S (6)

where α is the level of preparation in the current

time instance, m is the last action performed,

Next(m) is the set of available actions to be per-

formed after m according to the motion graph,

dg and θg are the distance and relative orienta-

tion between the character and the goal, di and θi
are those with respect to the source of influence

(Figure 7). Except from Next(m), the parame-

ters in the state are continuous numerical value.

We create an action space A, in which each

action is defined as:

a = {m, α},a ∈ A (7)

where m is the action to be performed, α is the

corresponding level of preparation. Notice that

different from traditional reinforcement learn-

ing [28], the action in our system is not sim-

ply a movement. Instead, it involves the level

of preparation, α, that adjusts the movement. α

is quantized during training. Because using dis-

continuous values of α in simulation could result

in discrete behaviours, we apply a Gaussian fil-

ter on α to smooth the value of time.

6.2 Reward Function

Here, we explain the reward function, which

evaluates the actions in a given state.

Let us assume the current state to be st, and

the next state after performing the chosen action

at+1 to be st+1. α in the action is feedback to the

state whenever an action is selected: st+1.α←

at+1.α.

The reward function that evaluates at+1 con-

sists of three terms. The first term evaluates how

much the character faces the target:

fθ = −|st+1.θg| (8)

where st+1.θg denotes the angle with respect to

the goal for the state st+1. The second term eval-

uates how much the character approaches the

goal:

fd = |st+1.dg− st.dg| (9)

where st+1.dg and st.dg denote the distance to the

goal for the two states. The last term evaluates

how steadily the level of preparation changes:

fα = −|st+1.α− st.α|
2. (10)

where st+1.αcurrent and st.αcurrent denote the

level of preparation of the two states. This term

is used to penalize sudden change of preparation

level, and the square operator is used to magnify

the difference between small and large changes.

During training, when a character reaches the

source of influence, α is forced to 1.0. There-

fore, the trained system increases α gradually

before reaching the source of influence to mini-

mize this term.

Finally, the reward function is defined as:

rt = wθ fθ +wd fd +wα fα (11)

(12)

where wθ, wd, wα are constant weights, and are

empirically set to 0.1, 0.5, and 0.8 respectively.

6.3 SARSA Learning

Here, we explain the concept of the return, and

the SARSA approach that is used to solve it.

The return is the long term benefit of launch-

ing a series of actions based on a control policy,

which tells the action to be performed in a given

state:

R =

n
∑

t=0

γtrt (13)

where γ is called a discount value that reduces

the influence of future states due to their uncer-

tainties, and n is the number of steps until the

character reaches the terminal state.

To find an optimal policy that maximizes R

in Equation 13 at every state, we apply SARSA

learning because it is efficient and the explo-

ration decreases in a proper manner. Here, we

briefly explain the SARSA framework. The

reader is referred to [29, 30] for further details.

Using SARSA, the system learns the state ac-

tion value Q(s,a), which is the estimated return

of launching an action a at state s, for all possi-

ble state-action combinations. A control policy

is defined as the optimal choice of action based

on the set of the state action values for all states.

The objective is to learn the optimal policy by

converging Q(s,a) to the maximum R in Equa-

tion 13.

The training is divided into episodes. At each

episode, we randomly pick a state s ∈ S, allow

the character to perform an action a ∈ A based

on the current policy, and observe the reward r.

The character keeps launching actions until the

terminal state, for which we define as reaching

the goal position. SARSA represents Equation

13 as:

Q(st,at)← Q(st,at)+

λ(rt+1+γQ(st+1,at+1)−Q(st,at)) (14)

where λ is the rate of learning, which is set to

0.7 in our experiments, and γ refers to the dis-

count value as shown in Equation 13, which is

set to 0.3.

The control policy is updated whenever a state

action value is changed. Training is conducted

using a large number of episodes until the policy

becomes optimal (i.e. the policy cannot be im-

proved further). The algorithm converges pro-

vided that all state-action pairs are visited infi-

nite number of times. In practice, to reduce the

convergence time, we keep track of the number

of state action values updated per episode. If the

number drops below 2% of total number of state,

we terminate the training and assume the policy

to be optimal.

6.4 Maintaining Exploration

It is important to maintain exploration during the

training process in order to obtain a global opti-

mal policy. We apply two strategies to do so.

Exploring Starts: We attach a flag for each

action in all the states to indicate if the ac-

tions have been selected or not. During training,

higher selection priority is given to the actions

that have not been selected. This ensures uni-

form exploration in the state action space during

the early stage of training.

ǫ-Greedy Policy: When selecting an action,

there is an ǫ chance that the system randomly se-

lects an action, instead of picking the one with

the best state-action value. This ensures explo-

ration throughout the training. We set ǫ to 0.1 in

our system.

7 Experiments

In this section, we explain the experiments we

conducted to evaluate our system.

7.1 System Setup

All experiments are performed using a computer

with an Intel Dual-Core 3.0GHz CPU and 2GB

of RAM.

We created a motion database with 78 mo-

tions, including walking, crawling, ducking,

jumping, punching and kicking. The cyclic

walking motions including stepping to different

directions were used as the core nodes in the

hierarchical motion graph, while the rest were

used as target motions. The created graph con-

tained 4 core nodes.

We quantized the state and action spaces for

the SARSA learning. The sampling steps and

number of sample for each variable are shown

in Table 1. The training stage took around 1

hour, while the run-time system was conducted

in real-time.

di θi dg θg α

Steps 60cm 90◦ 60cm 45◦ 0.2

Number 5 4 2 8 5

Table 1: The sampling steps and number of

samples in the state space.

Figure 8: Preparation behaviours created by our

system for different target motions.

7.2 Preparation Control

An interactive 3D application prototype was de-

veloped to show the effectiveness of our system.

Notice that our preparation control system does

not involve launching the target motions. While

it is possible to define procedural rules that con-

trol the character launching such motions, we

prefer an interactive system where the user can

indicate the timing that the motions are launched

for better flexibility.

In the first experiment, we created an inter-

face for the user to select a ball in a given envi-

ronment, which was used as both the goal lo-

cation and the source of influence. The sys-

tem controlled the character to approach the ball

with the appropriate preparation behaviour. The

user then indicated when a kicking motion is

launched to interact with the ball. Notice that

when the character approached the ball, it low-

ers its center of mass and slows down to prepare

for the kicking motion (Figure 8 Left).

The second experiment involved interacting

with NPCs that were controlled by a procedural

controller to move towards the user controlled

character. The user used the keyboard to indi-

cate the goal, while using the mouse to launch

target motions. The closest NPC was consid-

ered as the source of influence. As a result, the

user controlled character raised the arm, slowed

down and prepared the punch whenever a NPC

was nearby. Notice that the left punch and the

right punch motion had the same reference pos-

ture Tp, and thus the preparation styles were the

same (Figure 8 Middle).

In the third environment, the character had to

navigate through a complex environment with

different obstacles. Again, the user controlled

the goal and the launch of the target motions.

The source of influence was set as the closest

obstacle in the facing direction, and the prepara-

tion style was based on the corresponding tar-

get motion to interact with the obstacle. The

system created different levels of preparation

behaviours to perform crawling, ducking and

jumping. Notice that with our system, the char-

acter maintained a preparation style when get-

ting through two nearby obstacles, generating a

human-like behaviour (Figure 8 Right).

8 Conclusion and Discussions

In this paper, we proposed a method to synthe-

size preparation behaviour for the next motion

to be launched. Using our method, we could

generate realistic behaviours to prepare for the

next action as humans do. Our system can

produce convincing results in real-time, which

makes it suitable for real-time applications such

as games.

We observe that in console games nowadays,

due to the lack of preparation movement, char-

acter movement is usually unrealistic. Because

the character does not consider the next motion,

it is common that a character performs a target

motion, runs in full speed, and performs a target

motion again. In our system, the character main-

tains the preparation style if there are remaining

targets nearby.

A possible solution for preparation behaviour

synthesis is the data-driven approach [17, 16].

For every pair of locomotion and subsequent ac-

tion, one can capture different levels of prepara-

tory motions. However, this approach is not pre-

ferred due to the large amount of motion that

has to be captured. Also, it is difficult for a hu-

man to exhibit preparatory behaviour properly

with small change of level of preparation, be-

cause the movements are usually performed sub-

consciously in daily life.

The major challenge of creating preparation

behaviour is that it affects the movement of the

locomotion. The character needs to approach

the target quickly, while adjusting movement

trajectory to prepare the target motion in ad-

vance. We set up cost functions and conducted

reinforcement learning to solve the multi-modal

problem as a whole.

A feature of our design is that the state space

representation in Equation 6 contains the loco-

motion only without the target motion. This

design allows us to reuse a trained system for

different target motions, as long as the bending

curve of the lower body remains unchanged. If

the bending curves for two target motions are

different, the lower body, and hence the move-

ment trajectory, in the synthesized motion will

be different. As a result, a controller has to be

trained for each motion.

At the current stage, our system cannot syn-

thesize the preparation behaviour when there are

multiple potential target motions, unless they

have the same reference posture and blending

curve. As a future direction, we plan to con-

trol the character intelligently in a dynamic envi-

ronment where arbitrary events can happen in a

probabilistic manner. We could apply Bayesian

models to let the characters predict what kind

of behaviours could benefit them the most under

different environments.

References

[1] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jes-

sica K. Hodgins, and Nancy S. Pollard. Interactive

control of avatars animated with human motion data.

ACM Trans. Graph., 21(3):491–500, 2002.

[2] Lucas Kovar, Michael Gleicher, and Frédéric H.

Pighin. Motion graphs. ACM Trans. Graph.,

21(3):473–482, 2002.

[3] Andrew Witkin and Zoran Popovic. Motion warp-

ing. In Proceedings of the 22nd annual conference on

Computer graphics and interactive techniques, SIG-

GRAPH ’95, pages 105–108, New York, NY, USA,

1995. ACM.

[4] Ronan Boulic, Pascal Bécheiraz, Luc Emering, and

Daniel Thalmann. Integration of motion control tech-

niques for virtual human and avatar real-time ani-

mation. In Proceedings of the ACM symposium on

Virtual reality software and technology, VRST ’97,

pages 111–118, New York, NY, USA, 1997. ACM.

[5] S. Ménardais, F. Multon, R. Kulpa, and B. Arnaldi.

Motion blending for real-time animation while ac-

counting for the environment. In Computer Graphics

International, pages 156–159, Crete, Greece, June

2004.

[6] Hubert P. H. Shum, Taku Komura, and Pranjul Ya-

dav. Angular momentum guided motion concatena-

tion. Comput. Animat. Virtual Worlds, 20(2-3):385–

394, 2009.

[7] Matthew Brand and Aaron Hertzmann. Style ma-

chines. In SIGGRAPH ’00: Proceedings of the 27th

annual conference on Computer graphics and inter-

active techniques, pages 183–192, New York, NY,

USA, 2000. ACM Press/Addison-Wesley Publishing

Co.

[8] Eugene Hsu, Kari Pulli, and Jovan Popović. Style

translation for human motion. ACM Trans. Graph.,

24(3):1082–1089, 2005.

[9] Andrew Witkin and Michael Kass. Spacetime con-

straints. In SIGGRAPH ’88: Proceedings of the 15th

annual conference on Computer graphics and inter-

active techniques, pages 159–168, New York, NY,

USA, 1988. ACM.

[10] Michael Gleicher and Peter Litwinowicz. Constraint-

based motion adaptation. The Journal of Visualiza-

tion and Computer Animation, 9(2):65–94, – 1998.

[11] Michael Gleicher. Retargetting motion to new char-

acters. In Proceedings of the 25th annual conference

on Computer graphics and interactive techniques,

SIGGRAPH ’98, pages 33–42, New York, NY, USA,

1998. ACM.

[12] C. Karen Liu and Zoran Popović. Synthesis of com-

plex dynamic character motion from simple anima-

tions. In SIGGRAPH ’02: Proceedings of the 29th

annual conference on Computer graphics and inter-

active techniques, pages 408–416, New York, NY,

USA, 2002. ACM.

[13] Anthony C. Fang and Nancy S. Pollard. Efficient syn-

thesis of physically valid human motion. ACM Trans.

Graph., 22(3):417–426, 2003.

[14] Manfred Lau and James J. Kuffner. Behavior plan-

ning for character animation. In SCA ’05: Pro-

ceedings of the 2005 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pages 271–280,

New York, NY, USA, 2005. ACM.

[15] Taesoo Kwon and Sung Yong Shin. Motion modeling

for on-line locomotion synthesis. In SCA ’05: Pro-

ceedings of the 2005 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pages 29–38,

New York, NY, USA, 2005. ACM.

[16] Lucas Kovar and Michael Gleicher. Automated ex-

traction and parameterization of motions in large data

sets. ACM Trans. Graph., 23(3):559–568, August

2004.

[17] Tomohiko Mukai and Shigeru Kuriyama. Geosta-

tistical motion interpolation. ACM Trans. Graph.,

24(3):1062–1070, 2005.

[18] Alla Safonova and Jessica K. Hodgins. Construction

and optimal search of interpolated motion graphs.

In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers,

page 106, New York, NY, USA, 2007. ACM.

[19] Victor Zordan, Adriano Macchietto, Jose Medin,

Marc Soriano, Chun-Chih Wu, Ronald Metoyer, and

Robert Rose. Anticipation from example. In VRST

’07: Proceedings of the 2007 ACM symposium on

Virtual reality software and technology, pages 81–

84, New York, NY, USA, 2007. ACM.

[20] Hubert P. H. Shum, Taku Komura, and Shuntaro Ya-

mazaki. Simulating interactions of avatars in high

dimensional state space. In I3D ’08: Proceedings of

the 2008 symposium on Interactive 3D graphics and

games, pages 131–138, New York, NY, USA, 2008.

ACM.

[21] H.P.H. Shum, T. Komura, and S. Yamazaki. Simulat-

ing multiple character interactions with collaborative

and adversarial goals. IEEE Transactions on Visu-

alization and Computer Graphics, 18(5):741 –752,

may 2012.

[22] Julian Gold Thore Graepel, Ralf Herbrich. Learning

to fight. In Proceedings of the International Con-

ference on Computer Games: Artificial Intelligence,

Design and Educatio, 2004.

[23] Leslie Ikemoto, Okan Arikan, and David Forsyth.

Learning to move autonomously in a hostile

world. In SIGGRAPH ’05: ACM SIGGRAPH 2005

Sketches, page 46, New York, NY, USA, 2005. ACM.

[24] Adrien Treuille, Yongjoon Lee, and Zoran Popović.

Near-optimal character animation with continuous

control. ACM Trans. Graph., 26(3):7, 2007.

[25] James McCann and Nancy Pollard. Responsive char-

acters from motion fragments. ACM Trans. Graph.,

26(3):6, 2007.

[26] Hyun Joon Shin and Hyun Seok Oh. Fat graphs:

constructing an interactive character with continuous

controls. In SCA ’06: Proceedings of the 2006 ACM

SIGGRAPH/Eurographics symposium on Computer

animation, pages 291–298, Aire-la-Ville, Switzer-

land, Switzerland, 2006. Eurographics Association.

[27] Thomas Jakobsen. Advanced character physics.

Game Developers Conference Proceedings, 2001.

[28] Jehee Lee and Kang Hoon Lee. Precomputing avatar

behavior from human motion data. In SCA ’04: Pro-

ceedings of the 2004 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pages 79–87,

Aire-la-Ville, Switzerland, Switzerland, 2004. Euro-

graphics Association.

[29] G. A. Rummery and M. Niranjan. On-line Q-

learning using connectionist systems. Technical Re-

port CUED/F-INFENG/TR 166, Cambridge Univer-

sity Engineering Department, 1994.

[30] Richard S. Sutton and Andrew G. Barto. Reinforce-

ment Learning: An Introduction. MIT Press, Cam-

bridge, MA, USA, 1998.

