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ABSTRACT The increasing demand of clean water and ef-
fective way to recycle industrial wastewater has offered a new
application for carbon-based three-dimensional (3D) porous
networks as sorbents due to their superior sorption abilities.
Through the surface modification and hybridization with
functional materials, the physical and chemical properties of
the 3D carbon-based materials can be engineered. In this
work, graphene-MoS2 aerogels (GMAs) with bulky shape are
synthesized via a one-pot hydrothermal method. The obtained
GMAs show quick sorption rate and high sorption capacity
towards a wide variety of contaminants. The sorption covers
not only organic solvents or organic dyes, but also toxic heavy
metals ions such as Hg2+ and Pb2+. More importantly, the
sorption capacity towards metal ions can be optimized by
simply changing the loading amount of MoS2.

Keywords: Graphene, MoS2, aerogels, multifunctional sorbents,
water remediation

INTRODUCTION
Carbon-based three-dimensional (3D) architectures have
attracted considerable attention in the past two decades
due to their unique properties, such as huge surface area,
interconnected porous structures, and macroscopic bulky
shape, enabling them to be one of the most promising
materials for water treatment [1–6]. However, the car-
bon-based 3D porous networks have limited compat-
ibility and most of them only show affinity to certain
category of contaminants [7–11]. This limitation hinders

the real industrial wastewater treatment since it normally
contains diverse types of pollutants (e.g., heavy metal
ions, dyes, oils, and other organic compounds) [12–15].
Therefore, it is desired to develop new hybrid carbon-
based sorbents, i.e., porous carbon networks incorporated
with other functional materials to enhance their sorption
capabilities and simultaneously absorb multiple types of
pollutants from wastewater [16–18].
Recent studies have demonstrated that the graphene-

like two-dimensional (2D) transition metal dichalcogen-
ides (TMDs) are promising sorbents for removal of
contaminants due to their unique layered structures and
large surface area [19–21]. For example, Chao et al. [22]
used ultra-thin MoS2 nanosheets to remove toxic or-
ganics. Our previous work also indicated that organic
dyes could be absorbed onto the surface of MoS2 na-
nosheets to facilitate the photocatalytic degradation of
dyes by TiO2 nanobelts [23]. However, MoS2 nanosheets
cannot be completely recycled from treated water, which
might lead to the secondary environmental pollution. In
contrast, the carbon-based 3D materials in macro-
scopically bulky shape are easy to be collected and re-
cycled. Therefore, it is reasonable to combine MoS2 with
3D carbon networks to prepare hybrid materials, which
could have both excellent sorption performance and good
recyclability.
Here, a series of graphene-MoS2 aerogels (GMAs) with

porous architectures and bulky shapes are prepared via a
facile hydrothermal method using graphene oxide (GO)
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as carbon source. The prepared GMAs are then used as
multifunctional sorbents for water remediation, which
exhibit outstanding sorption performance for organic
compounds in wastewater. In addition, GMAs also show
good sorption ability towards both heavy metal ions and
dyes.

EXPERIMENTAL SECTION

Preparation of GO
GO was produced according to the Hummers method
[24]. Typically, 4 g of graphite powders, 2 g of sodium
nitrate and 92 mL of sulfuric acid (98 wt.%) were added
into a 500-mL flask and mixed together. To prevent the
temperature exceeding 20°C, the flask was immersed into
an ice bath and then 12 g of potassium permanganate was
slowly added into it. After that, the flask temperature was
increased to 35°C and kept for one day, followed by ad-
dition of 184 mL deionized (DI) water. The obtained
suspension was heated to 98°C for 15–30 min to increase
the oxidation degree of the GO product. After mixing
with 560 mL of DI water, the brown suspension was
further treated with 12 mL of hydrogen peroxide (30 wt.
%). Finally, the mixture was separated by filtration or
centrifugation and washed several times using diluted
hydrochloric acid (5 vol%) and DI water followed by
drying at 40°C in the vacuum oven for two days.

Preparation of aerogels
After 10 mL of GO solution (2.5 mg mL−1) was mixed
with 15 mg of thioacetamide (C2H5NS) and 30 mg of
sodium molybdate (Na2MoO4). The suspension was so-
nicated for 10 min and placed into a polytetra-
fluoroethylene (PTFE)-lined autoclave. Then the
autoclave was heated to 200°C for one day. After naturally
cooled down to room temperature, the black product was
washed with DI water several times and subsequently
freeze-dried for two days to form porous aerogel struc-
ture, referred as GMA-1. As for the GMA-2, GMA-3 and
GMA-4, all experimental procedures were similar with
those for preparation of GMA-1, except for the amounts
of C2H5NS and Na2MoO4. 60 mg of C2H5NS and 30 mg of
Na2MoO4 were used for preparation of GMA-2. 90 mg of
C2H5NS and 45 mg of Na2MoO4 were used for prepara-
tion of GMA-3. 120 mg of C2H5NS and 60 mg of Na2
MoO4 were used for preparation of GMA-4. As for the
pure reduced graphene oxide aerogel (PGA), the experi-
mental procedures were similar with those for prepara-
tion of GMAs, but without adding any C2H5NS or
Na2MoO4. In order to measure the loading amount of

MoS2 in GMAs, GMAs were immersed into Aqua Regia
overnight, and the corresponding solutions were diluted
and filtrated before the inductively coupled plasma-op-
tical emission spectrometry (ICP-OES) measurements.

Characterization of materials
Scanning electron microscopy (SEM) images were col-
lected using a JSM-7600F field-emission SEM (FESEM)
operated at 5 kV. The transmission electron microscopy
(TEM) samples were prepared by dropping about 5 μL
sample solutions on copper grid (200 mesh) with lacey
carbon-coating and then drying at ambient condition.
High-resolution TEM (HRTEM) and high-angle annular
dark-field scanning TEM (HAADF-STEM) images were
collected using a JEM 2100F transmission electron mi-
croscope operated at an accelerating voltage of 200 kV.
The X-ray photoelectron spectroscopy (XPS) data were
collected using a theta probe electron spectrometer
(ESCA-Lab-200i-XL, Thermo Scientific). The XPS sam-
ples were prepared by drying the droplets of sample so-
lutions on Si/SiOx substrates under ambient condition.
Ion concentrations were measured using an ICP-OES
(Perkin Elmer). UV-vis spectra were collected using
a Shimadzu UV-2550 spectrometer.

Sorption capacity measurements for oils and organics
The obtained GMAs were immersed into the oils and
organic solvents for 2 min before weight measurements.
Note that these measurements should be done in a short
time to avoid the evaporation of absorbed organics. The
weights of GMAs before and after sorption tests were
recorded to calculate the weight gain (g g−1), which was
defined as the mass of contaminants absorbed per unit
mass of sorbent. The recyclability test was performed with
the distillation method. For example, after hexane (boil-
ing point 68.5°C) was fully absorbed into GMA, the GMA
was heated to 80°C to evaporate the absorbed hexane. The
residual mass was then weighed. This cycle was repeated
10 times.

Sorption capacity measurements for organic dyes and
heavy metal ions
Various amounts of dyes (methyl orange (MO) and me-
thylene blue (MB)) and salts of heavy metals (HgCl2 and
PbCl2) were dissolved in DI water with a specific con-
centration. A piece of GMA was immersed into the so-
lution for one to four days. The dye concentrations in the
solution were then measured with a UV-vis spectro-
photometer, and the concentrations of heavy metal ions
in solutions were measured with ICP-OES. The weight
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gains (mg g−1) were calculated.

RESULTS AND DISCUSSION
GMAs with black spongy texture were prepared via a
simple one-pot hydrothermal method (see the EXPERI-
MENTAL SECTION for details). Briefly, after the C2H5

NS (used as sulphur source) and Na2MoO4 (used as
molybdenum source) were added into a GO solution, the
mixed solution was transferred into a PTFE-lined auto-
clave and then heated at 200°C for one day. The final
products were washed and subsequently freeze-dried for
two days to form porous GMA, referred as GMA-1. A
typical TEM image of GMA-1 confirms the ultrathin
nature of obtained hybrid sheets (Fig. 1a). These na-
nosheets are highly wrinkled, which are different from the
reduced GO (rGO) nanosheets (Fig. S1, Supplementary
information). As shown in the HRTEM image of the
obtained hybrid nanosheets (Fig. 1b), the lattice spacing
of 0.64 nm corresponds to the (002) planes of MoS2 [25].
The HAADF-STEM image and the corresponding energy
dispersive spectroscopy (EDS) mappings of GMA-1 (Fig.
1c) reveal the uniform distribution of Mo and S on rGO
nanosheets.
The electron binding energy of GMA-1 was analyzed by

XPS (Fig. 2). The XPS survey spectrum contains several
sharp peaks (Fig. 2a), suggesting the presence of Mo, S,
and C elements. The electron at C 1s level can be ob-
served from two peaks. As shown in Fig. 2b, the main
peak at around 284.6 eV matches the C–C bonds of rGO
nanosheets, while the lower peak at 286.0 eV corresponds
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Figure 1 (a) Low-magnification TEM image, (b) HRTEM image and (c)
STEM image of GMA-1 and its corresponding EDS elemental mapping
of Mo, S, and C.
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Figure 2 XPS spectra of GMA-1 showing its electronic binding energy. (a) XPS survey spectrum of GMA-1. (b–d) XPS spectra of C 1s (b), Mo 3d (c),
and S 2p (d).
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to C–O bond [26]. In addition, the chemical states of Mo
and S in GMA-1 were also investigated (Fig. 2c, d). The
peaks of Mo 3d3/2 and Mo 3d5/2 were located at 232.1 and
228.8 eV, respectively, revealing the characteristic of Mo4+

state in MoS2 (Fig. 2c) [27]. The peaks at 161.7 and
162.8 eV in S 2p spectrum separated by a spin-orbit
splitting of 1.1 eV were attributed to the S2− of MoS2 (Fig.
2d) [28]. All the aforementioned results confirm the
formation of MoS2 on rGO nanosheets.
The morphology of GMA-1 was further investigated by

SEM (Fig. 3). Microscopic pores with interconnected
networks were clearly observed in the prepared GMA-1.
Importantly, a mirror reflection was observed when a
piece of GMA-1 was immersed into water (Fig. S2a),
indicating its high hydrophobicity [29], which was further
confirmed by the water contact angle of 130°±3° mea-
sured on the GMA-1 surface (Fig. S2b). Interestingly, the
GMA-1 can be shaped into a cylinder in centimeter scale
(inset of Fig. 3a), making it easy to be collected and re-
cycled after it is used for water treatment which is shown
below [30].
Given its 3D porous structure and surface hydro-

phobicity, the prepared GMA-1 is an ideal candidate for
the removal of contaminants, such as oils and organic
solvents, from wastewater. The sorption capacities of
GMA-1 were evaluated by sorption of a series of organic
liquids, such as chloroform, benzyl alcohol, heptane, and
acetone. The GMA-1 shows high sorption capacities to-
wards them. Especially, about 65 times its weight of
chloroform can be absorbed (Fig. S3). As known, surface
area, porosity, and surface functionality are among the
most important factors which affect the sorption capacity
of sorbents [31]. There are two main sorption mechan-
isms for GMAs during the liquid sorption. One is the
surface adsorption, i.e., the organic liquids are adsorbed
onto the surface of sorbents. The other one is absorption.
It is believed that the latter gives greater contribution to a
high sorption capacity in aerogels [31]. Note that when a
piece of GMA-1 (15 mg) was in contact with cyclohexane
(200 mg, dyed with Sudan red 5B), it quickly absorbed the
cyclohexane within 9 s (Fig. S4a–d). Moreover, the ob-
tained GMA-1 can also selectively absorb heavy organics
under water. As shown in Fig. S4e–h, chloroform
(300 mg, dyed with Sudan red 5B) at the bottom of water
was entirely absorbed into a piece of GMA-1 (11 mg)
within 12 s. In addition to its high sorption capacity and
fast sorption rate, GMA-1 also showed good recyclability
towards organic solvents. No obvious change in the
sorption ability of GMA-1 was observed even after 10
cycles of tests using the distillation method. After each

cycle, the weight of residual hexane in the GMA-1 is less
than 5% of the absorbed hexane, indicating the highly
stable recycling performance (Fig. S5).
As known, industrial wastewater usually contains var-

ious kinds of pollutants. As a proof-of-concept applica-
tion, the obtained GMA-1 was used to absorb several
pollutants from wastewater, not only oils and organic
solvents, but also dyes and heavy metal ions. The sorption
capacities of GMA-1, compared with those of PGA, are
quite different (Fig. 4). The GMA-1 shows superior
sorption capacities towards both Hg2+ (719 mg g−1) and
Pb2+ (449 mg g−1), while the sorption capacities of PGA
are only 55 and 72 mg g−1 for Hg2+ and Pb2+, respectively
(Fig. 4a, b). Furthermore, in sorption of anionic methyl
orange, GMA-1 still shows better performance than PGA
(Fig. 4c), although for the sorption of cationic methylene
blue, GMA is not as good as PGA (Fig. 4d). Moreover, in
the sorption of organic solvents (e.g., hexane and
chloroform), GMA-1 could not complete with PGA (Fig.
4e, f).
To investigate the effect of the loading amount of MoS2

in GMAs on the sorption capacity, a series of GMAs,
referred as GMA-1, GMA-2, GMA-3, and GMA-4 with
different wt.% of MoS2, were prepared. The correspond-
ing morphologies of GMAs with increased loading
amount of MoS2, i.e., GMA-1 (22.9 wt.%), GMA-2 (25.8
wt.%), GMA-3 (28.0 wt.%) and GMA-4 (34.8 wt.%), were
shown in Fig. S6. The one-day sorption capacities for
Hg2+ are 719, 876, 930 and 970 mg g−1 for GMA-1, GMA-
2, GMA-3, and GMA-4, respectively, and the corre-
sponding four-day sorption capacities for Hg2+ are 897,
1015, 1188, and 1245 mg g−1, respectively (Fig. 5a). The
sorption capacity of GMA-4 is much higher than or
comparable with many previously reported materials,
such as GO nanosheets [32] (Table S1, Supplementary
information).
Generally, the sorption capacity and sorption rate of

water-soluble ions and dyes are influenced by the specific

a b

5 2

Figure 3 (a, b) SEM images of GMA-1 under different magnifications.
Inset in (a): photograph of GMA-1.
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surface area of sorbents and the interaction between
sorbents and sorbates [33]. To deduce the possible
sorption mechanism, the zeta potentials and surface areas
of GMAs were measured. It is noted that the surfaces of
the GMAs are negatively charged which become more
negative as the wt.% of MoS2 increased from GMA-1 to
GMA-4 (Fig. 5b). Meanwhile, the surface area of GMAs
decreased as the wt.% of MoS2 increased (Table S2). These
results suggest that the electrostatic interaction between

the surfaces of GMAs and the sorbates is the dominant
sorption mechanism for water-soluble ions.

CONCLUSIONS
In summary, we report that 3D GMAs with high porosity
can be simply synthesized by hydrothermal method fol-
lowed by a typical freeze-drying process. The structural
modification by MoS2 equips the GMAs with good
sorption ability towards several organic contaminants,

1000

800

600

400

200

0

600

500

400

300

200

100

0

110

105

100

95

90

85

400

350

300

250

200

150

100

50

25

0

125

100

75

50

25

0

PGA         GMA-1 PGA         GMA-1 PGA        GMA-1

PGA         GMA-1 PGA         GMA-1 PGA         GMA-1

W
ei

gh
t g

ai
n 

(m
g 

g–1
)

W
ei

gh
t g

ai
n 

(m
g 

g–1
)

W
ei

gh
t g

ai
n 

(m
g 

g–1
)

W
ei

gh
t g

ai
n 

(m
g 

g–1
)

W
ei

gh
t g

ai
n 

(m
g 

g–1
)

W
ei

gh
t g

ai
n 

(m
g 

g–1
)

Hg2+ Pb2+ Methyl orange

Methylene blue Hexane Chloroform

a b c

d e f

Figure 4 The comparison of performances between PGA and GMA-1 in removal of heavy metal ions (a, b), organic dyes (c, d), and organic solvents
(e, f).

GMA-1

GMA-2

GMA-3

GMA-4

25

30

35

40

45

50

Ze
ta

 p
ot

en
tia

l (
m

V
)

Hg2+ - 1 day
Hg2+ - 4 days

GMA-1      GMA-2      GMA-3      GMA-4

1500

1000

500

0

W
ei

gh
t g

ai
n 

(m
g 

g–1
)

a b

Figure 5 (a) The sorption capabilities of GMAs towards Hg2+ ions. (b) Zeta potentials of the respective GMAs before sorption.

SCIENCE CHINA Materials

November 2017 | Vol. 60 No.11
© Science China Press and Springer-Verlag GmbH Germany 2017



such as organic solvents and dyes. Impressively, the
prepared GMAs can absorb Hg2+ ions up to 1245 mg g−1.
It is believed that GMAs are highly promising as multi-
functional sorbents for real-life industry wastewater re-
mediation.
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