
Preparation of Ohmic contacts to GaAs/AlGaAs-core/shell-nanowires
S. Wirths, M. Mikulics, P. Heintzmann, A. Winden, K. Weis et al. 
 

Citation: Appl. Phys. Lett. 100, 042103 (2012); doi: 10.1063/1.3678639 

View online: http://dx.doi.org/10.1063/1.3678639 

View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v100/i4 

Published by the American Institute of Physics. 
 

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/ 
Journal Information: http://apl.aip.org/about/about_the_journal 
Top downloads: http://apl.aip.org/features/most_downloaded 

Information for Authors: http://apl.aip.org/authors 

Downloaded 14 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions

http://apl.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1227442675/x01/AIP-PT/APL_APLCoverPg_042413/AIP_APL_SubmissionsAd_1640x440_r2.jpg/6c527a6a7131454a5049734141754f37?x
http://apl.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=S. Wirths&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://apl.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=M. Mikulics&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://apl.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=P. Heintzmann&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://apl.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=A. Winden&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://apl.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=K. Weis&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://apl.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3678639?ver=pdfcov
http://apl.aip.org/resource/1/APPLAB/v100/i4?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://apl.aip.org/?ver=pdfcov
http://apl.aip.org/about/about_the_journal?ver=pdfcov
http://apl.aip.org/features/most_downloaded?ver=pdfcov
http://apl.aip.org/authors?ver=pdfcov


Preparation of Ohmic contacts to GaAs/AlGaAs-core/shell-nanowires

S. Wirths,1,2 M. Mikulics,1,2 P. Heintzmann,1,2 A. Winden,1,2 K. Weis,1,2 Ch. Volk,1,2

K. Sladek,1,2 N. Demarina,1,2 H. Hardtdegen,1,2 D. Grützmacher,1,2 and Th. Schäpers1,2,a)
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Ohmic contacts to GaAs/AlGaAs core/shell nanowires are prepared by using a Ni/AuGe/Ni/Au

layer system. In contrast to Ohmic contacts to planar GaAs/AlGaAs layer systems here, relatively

low alloying temperatures are used in cylindrical geometry. Lowest resistances are found for

annealing temperatures of 320 �C and 340 �C. For annealing temperatures exceeding 360 �C, the

nanowires degraded completely. Nanowires annealed under optimized conditions preserved their

Ohmic characteristics even down to temperatures of 4K. VC 2012 American Institute of Physics.

[doi:10.1063/1.3678639]

In recent years, III-V semiconductor nanowires experi-

enced an increasing interest in the quest of finding solutions

in shrinking the size and increasing the speed of electronic

devices.1,2 In this respect, GaAs is an interesting candidate

owing to the relatively small effective electron mass and the

resulting expected high mobility. However, due to the sur-

face depletion layer, GaAs is not suitable for single material

nanowires. An elegant solution of this problem is to epitax-

ially coat the nanowire by a shell semiconductor with a

higher energy band gap.3–10 Here, AlGaAs is the perfectly

suitable shell material as it supplies charge carriers to the

GaAs core by modulation doping10–12 as well as preserves

the carriers from the direct influence of the surface defects

without additionally introduced strain due to the lattice

matching between GaAs and AlGaAs.

In order to use GaAs/AlGaAs core/shell nanowires in

electronic devices, electron transport through the wire has to

be accomplished. A serious challenge in this respect is the

access to the conductive GaAs/AlGaAs interface, since it is

isolated by the AlGaAs shell layer. In this letter, we report

on transport measurements of modulation-doped GaAs/

AlGaAs core/shell nanowires. In order to gain Ohmic con-

tacts, we used an Ni/AuGe/Ni/Au layer system,13,14 which is

common for contacting 2-dimensional electron gases based

on GaAs/AlGaAs layer systems.15,16 During the contact

annealing, Ge diffuses into the semiconductor and occupies

Ga vacancies leading to an effective n-type doping.14

Regarding GaAs/AlGaAs core/shell nanowires, one has to be

cautious, since NiAs(Ge,Ga) and Au(Ga,As) phases might

extend into the nanowire during the annealing process and

short-circuit two closely spaced contacts. In order to prevent

extensive diffusion at the interface, we alloyed our contacts

at relatively low temperatures in the range of 300 �C and

370 �C, which is considerably lower than the commonly

used annealing temperatures around 430 �C. However, as

reported by Werthen,17 the formation of Ohmic contacts can

already be expected at temperatures as low as 275 �C.

The growth of modulation-doped GaAs/AlGaAs core/

shell nanowires consists of two steps.10 First, GaAs nano-

wires were grown at 750 �C on a GaAs (111)B substrate by

selective area metal-organic vapor phase epitaxy using tri-

methylgallium and arsine (AsH3) as precursors in an N2 am-

bient. Subsequently, the GaAs nanowires were covered by

conformal overgrowth of Al0.3Ga0.7As and GaAs at 690 �C,

using triethylgallium and dimethylethylamin alane. The

structure of the modulation-doped GaAs/AlGaAs core/shell

nanowires consists of an 80 nm thick GaAs core, a 20 nm

thick intrinsic Al0.3Ga0.7As-layer, a 10 nm thick doped

(nd¼ 2� 1018 cm�3) Al0.3Ga0.7As-layer, a 20 nm thick

intrinsic Al0.3Ga0.7As layer, and finally a 10 nm thick GaAs

cap layer. The length of the as-grown nanowires was 1.4 lm.

In Fig. 1(a), the conduction band profile and the electron

density along the radial direction calculated by a self-

consistent Schrödinger-Poisson solver are shown. As can be

seen here, the carriers are expected to be confined close to

the inner GaAs/AlGaAs interface within the GaAs core. The

expected carrier concentration at the interface GaAs/AlGaAs

is 2.8� 1011 cm�2.

For the preparation of Ohmic contacts, the nanowires

were transferred onto an n-type doped Si (100) wafer cov-

ered by a 100-nm-thick SiO2 layer. By means of electron

beam lithography and lift-off, contact fingers to the nano-

wires were defined. The contact layer system consisted of

5 nm Ni, 90 nm AuGe of eutectic composition (12wt. % Ge),

25 nm Ni, and 100 nm Au. Afterwards, the contacts were

annealed in a rapid thermal processing (RTP) furnace under

N2 flow. The distance of the contacts was between 400 and

900 nm. Five different annealing temperatures Ta were inves-

tigated, i.e., 300 �C, 320 �C, 340 �C, 360 �C, and 370 �C.

For each annealing temperature, six to nine contacted nano-

wires were studied. The annealing time ta was increased in

steps of 5 s or 10 s. Due to the different annealing results for

certain annealing temperatures, the total maximum annealing

time varied from 75 s (Ta¼ 320 �C) to 140 s (300 �C). In

Figs. 1(b)–1(d), typical scanning electron micrographs

(SEM) are shown for samples annealed at different tempera-

tures. While for the sample annealed at 320 �C, no degrada-

tion of the nanowire was observed [cf. Fig. 1(b)]; brighter

areas of the nanowire surface are visible at the boundary of

the contact fingers at 360 �C [cf. Fig. 1(c)]. A completea)Electronic mail: th.schaepers@fz-juelich.de.
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degradation of the GaAs/AlGaAs core/shell nanowire was

observed at an annealing temperature of 370 �C, which is

above the eutectic temperature of AuGe (361 �C).

The current-voltage (I-V) characteristics of the annealed

contacts were measured in a two-terminal configuration after

each annealing step. For the room-temperature measure-

ments, a semiconductor probe station was employed, while

the low temperature measurements were performed in a He-

4 flow cryostat. Due to the small length of the nanowires, the

usual transmission-line method could not be employed.

Since only two contact fingers could be placed on the nano-

wire, information on the contact properties was gained from

two-terminal measurements, i.e., the additional contribution

of the nanowire resistance is included. Without annealing,

all measured wires had a resistance larger than 1 GX.

Figures 2(a) and 2(b) exemplarily show the resulting char-

acteristics for annealing temperatures of 320 �C and 360 �C, at

5 different annealing times, respectively. For both tempera-

tures, a single nanowire was investigated, respectively. In

between each annealing step, the I-V characteristic was

measured. As can be seen in Fig. 2(a), after a short annealing

time of 20 s at 320 �C, only a small current of less than

10 nA is measured at 0.5V. If the annealing time is increased

up to 45 s, a diode-like behavior is observed, i.e., the I-V

characteristics are asymmetric with respect to bias voltage

reversal. Presumably, only for one of the contacts a sufficient

amount of Ge-atoms diffused into the nanowire underneath

the contact area. Further increase of the annealing time up to

75 s finally leads to an almost linear I-V characteristic in the

complete bias voltage range. Now, both contacts are

annealed sufficiently, and Ohmic contacts are achieved. A

possible reason for this behavior might be connected to the

area of the nanowire, which is covered by the contact metal.

On AlGaAs/GaAs layer systems it has been shown that for a

larger contact area, the contact resistance decreases.18 In our

case, this relation could not clearly be verified. Due to the

small dimensions of the nanowires, we did not succeed in

processing equally sized contact areas on both sides of the

FIG. 1. (Color online) (a) Simulation of

the conduction band profile and the elec-

tron density of a modulation-doped GaAs/

AlGaAs core/shell nanowire in radial direc-

tion. (b)-(d) SEM images of contacted

GaAs/AlGaAs-core/shell-nanowires after

annealing at 320 �C for 75 s, at 360 �C for

105 s, and at 370 �C for 10 s, respectively.

FIG. 2. (Color online) (a) I-V characteristics

of a GaAs/AlGaAs nanowire annealed at

320 �C, for different annealing times. The

inset shows the corresponding resistance R0

at zero bias. (b) Corresponding measure-

ments for an annealing temperature of

360 �C, with R0 shown in the inset.
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nanowire. Because of the small wire dimensions, we also

cannot distinguish which type of diffusion, i.e., from the sur-

face through the layer system or from the wire terminals, has

a larger impact on the contact resistance. The zero-bias two-

terminal resistance R0 of this nanowire is plotted in Fig. 2(a)

(inset). As shown here, R0 decreases by almost three orders

of magnitude from a value of 80 MX after an annealing time

of 20 s to 110 kX after 75 s.

As can be seen in Fig. 2(b) for the sample annealed at

360 �C, the opposite behavior compared to the sample

annealed at 320 �C is observed, i.e., with increasing anneal-

ing time, the resistance increases, as indicated by the

decreasing slope of the I-V characteristics. All I-V character-

istics are Ohmic. At short annealing times of 25 s and 45 s, a

resistance below 100 MX is found, whereas at longer times,

the resistance increases to the order of 1 GX.

In Fig. 3, the two-terminal zero-voltage conductance

G0¼ 1/R0 at different annealing times and temperatures of

different samples is compared. A homogeneous coverage of

the contact fingers on the nanowires still has to be achieved,

in order to get more congruent results for different samples

with equal annealing parameters. This would be a condition

precedent to achieve reliable statistic values from our meas-

urements. Thus, here, we present the conductance of 4 differ-

ent nanowires exhibiting representative characteristics of

GaAs/AlGaAs core/shell nanowires for the presented times

and temperatures. For each annealing temperature, one nano-

wire was measured at incremental annealing times. As can

be seen in Fig. 3, the best results are achieved for an anneal-

ing temperature of 320 �C and an annealing time of 65 s. For

annealing temperatures lower or higher than 320 �C, some-

what lower maximum conductance values are obtained.

Interestingly, the annealing time for the obtained maximum

conductance is decreasing with increasing annealing temper-

ature. The maximum conductance of the samples annealed at

300 �C is found at a relatively long annealing time of around

120 s, while for the samples annealed at 360 �C, the maxi-

mum conductance is gained already after 45 s. The observa-

tion that, for an annealing temperature of 360 �C, a lower

conductance is measured probably is concerned with the par-

tial degradation of the nanowire, as can be seen in Fig. 1(c).

Indeed, for samples annealed at 370 �C, a very low resistance

in the order of kX was measured, which indicates that the

metal diffusion into the nanowire short-circuited the contact

fingers [cf. Fig. 1(d)].

A crucial question is whether or not the contacts to the

GaAs/AlGaAs core/shell nanowires are still Ohmic at low

temperatures. Since the AlGaAs layer serves as a barrier, it

has to be shown that the carriers are not mainly transferred to

the core by thermionic emission, which should be consider-

ably reduced at low temperatures. In Fig. 4(a), the I-V charac-

teristics of a nanowire annealed at 320 �C for 55 s are shown

for different temperatures. Even at 4K, an Ohmic behavior is

observed. The corresponding resistance determined from a

linear fit of the I-V characteristics increases by about a factor

of three when the temperature is decreased from room tem-

perature to 4K [cf. Fig. 4(b)]. Since four-terminal measure-

ments could not be performed due to the short nanowire

length, it is not possible at this stage to assign the temperature

dependence of the resistance to the intrinsic properties of the

nanowire or to thermal excitation at the metal/semiconductor

interface. However, it can be excluded that extensive diffu-

sion into the nanowire occurred, since in this case a

FIG. 3. (Color online) Conductance G0 for a set of nanowires for different

annealing times ta and temperatures Ta.

FIG. 4. (Color online) (a) I-V characteristics

of a GaAs/AlGaAs core/shell nanowire with

a contact separation of 900 nm at various

temperatures. (b) Resistance as a function of

temperature.
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metal-type temperature dependence, opposite to the one found

here, would be expected. Furthermore, control experiments

were performed on nanowires consisting of only the GaAs

core. Here, the resistance was extremely high in the GX range,

which confirms that the carriers in our GaAs/AlGaAs nano-

wires are supplied by the dopants in the AlGaAs shell.

In summary, by systematically varying the annealing

time and temperature, optimal parameters to achieve low

resistive Ohmic contacts to a modulation-doped GaAs/

AlGaAs core/shell nanowire were determined. The results

found here can be regarded as an important step towards

nanowire devices based on modulation-doped GaAs/AlGaAs

core/shell structures. Based on the results obtained here, it

might be interesting for future studies to investigate the size-

dependence of the contact resistance and to get a deeper

understanding of the diffusion.
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