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Abstract: Iron is one of the most important strategic materials in national production, and the demand
for iron ore is huge in the world. High quality iron ore reserves have been almost exhausted, and it
is necessary to develop a technology that utilizes low-grade iron ore. Limonite is a representative
low-grade iron ore due to its complex mineral and elemental composition. In this paper, the union
process was employed to separate the iron elements in low-grade limonite. Firstly, a rough iron
concentrate was obtained under 1.0 T of magnetic field intensity and −0.074 mm > 94.84% of grinding
fineness; then, the rough iron concentrate was magnetization roasted under a temperature of 700 ◦C,
60 min of retention time, 3 wt% of biochar consumption, and 0.15 T of magnetic field intensity.
The grade of iron concentrate was 59.57% and the recovery of iron was 90.72%. Finally, the red
iron pigment was produced via a high temperature hydrothermal method in order to increase the
additional value of this ultra-low-grade limonite. The optimal parameters were 10.0 g/L of solution
acidity, a 200 ◦C reaction temperature, 5 h of reaction time, and a 6:1 solid-to-liquid ratio. The reaction
mechanism was also discussed.

Keywords: ultra-low-grade; limonite; magnetization roasting; iron red; high-temperature hydrothermal

1. Introduction

Iron is a widely distributed element in the earth’s crust, constituting up to 4.75% [1].
The raw ores in the earth’s crust that are used for industrial ironmaking include hematite,
magnetite, and siderite [2]. With high-quality iron ores having been almost exhausted [3,4],
processing methods for low-grade iron ores should be developed and utilized.

Limonite is a representative low-grade iron ore that possesses the oxides and hydrox-
ides of amorphous iron; it is primarily composed of goethite (α-FeOOH), acicular hydro-
goethite (α-FeOOH·nH2O), varying amounts of lepidocrocite (γ-FeOOH), and hydrolepi-
docrocite (γ-FeOOH·nH2O) [5,6]. Limonite is generally earthy, colloidal (kidney-shaped,
stalactite, etc.), amorphous, or cryptocrystalline, and often develops in hematite–goethite
fissures and geodes, filled with metasomatism and cementation [7,8]. Except for in low-
grade iron, limonite features large differences in its chemical composition and moisture
content, and it is easy to overgrind, which causes argillization [9]. Currently, the treatments
used for limonite mainly include washing, gravity separation, magnetic separation, gravity–
magnetic separations, flotation, high-intensity magnetic separation–direct flotation, and
high-intensity magnetic separation–reverse flotation, etc. [10–12]. Among these, the magne-
tization roasting–magnetic separation process is the most efficient technology. Commonly,
magnetization roasting technology is applied to iron ores with weak magnetic properties
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(hematite, limonite, etc.), and these weak magnetic iron ores react with the reducing agents
(coal, biochar, etc.) to change into strong magnetic magnetite under certain temperature
and atmospheric conditions; meanwhile there is no significant change in the magnetism of
the gangue connected with these iron-bearing minerals. Hence, the generated magnetite
could be separated using low-intensity magnetic separation technology [13,14]. Coal is the
common reducing agent for magnetization roasting, but excessive sulfur emission from
coal causes serious environmental pollution [15]. Biochar, with an extremely low sulfur
concentration, is an environmentally friendly reducing agent [16]; however, few studies
reporting on the application of biochar in magnetization roasting have been published. In
addition, the consumption of biochar would not cause the extra CO2 emission. Therefore,
it is interesting to use biochar as the reducing agent in the magnetization roasting process.

The generated magnetite is the raw material of red iron pigments, which are widely
applied in architectural coatings, cosmetics, and the art and painting industries because of
their water insolubility, nontoxicity, wide chromatogram, low cost, and high concealing
power [17,18]. However, a method that combines pyro- and hydro-metallurgical processes
is the common production process for red iron; meanwhile, the final product always has
an unsatisfactory purity, and produces harmful flue gases (SO2). Conversely, the high-
temperature hydrothermal method is an efficient and environmentally friendly technology
that is able to prepare pure red iron during its short technological process without the
emission of SO2 flue gas [19].

Hence, the research object of this study was ultra-low-grade limonite, and thus the
elemental and mineral compositions of this raw ore were analyzed. Then, high-intensity
magnetic separation was employed to separate the iron-containing minerals. The magneti-
zation roasting–grinding classification–weak magnetic separation method was selected,
and the parameters, including roasting temperature, roasting time, reducing agent amount,
and grinding fineness, were explored. Next, the red iron was produced via the high-
temperature hydrothermal method, and the reaction parameters were explored, including
solution acidity, reaction temperature, reaction time, and the solid–liquid ratio. Finally, the
reaction mechanism of this high-temperature hydrothermal process was also discussed.

2. Materials and Methods
2.1. Reagents and Materials

The raw ore was collected from Sichuan province, China. Carboxymethylcellulose
sodium (CMC, AR) was used as the adhesive in the magnetization roasting experiment.
Biochar preparation was detailed in our past studies [19], and corn straw was used as the
raw material for the biochar preparation. The corn straw was collected from an agricultural
area in Ninghe District, Tianjin, China. It was washed with deionized water and dried in
air. Subsequently, the biomass was ground and passed through a 0.5 mm mesh sieve, which
was converted to biochar via slow anaerobic pyrolysis at 600 ◦C for 2.0 h at a heating rate
of 4.0 ◦C/min under a continual N2 flow. The samples prepared at different temperatures
were named B600.

2.2. Experimental Methods
2.2.1. Grinding Fineness

High-intensity magnetic separation is directly influenced by the fineness of raw ore, and
a suitable fineness results in the high grade and recovery of the concentrate. Meanwhile, the
extremely fine particles can cause argillization, resulting in the loss of iron components. The
experimental parameters of the grinding fineness were as follows: 1.0 kg of sample was selected
each time, and it was ground in a XMB-Φ200 × 240 rod mill. The fineness was controlled by
changing the grinding time, and the best fineness was determined based on the grade and
recovery of the iron element in the concentrate under high-intensity magnetic separation.
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2.2.2. High-Intensity Magnetic Separation

The raw ore was an ultra-low-grade limonite, and continuing directly with the process of
magnetization roasting without any pre-treatment would cause a serious waste of energy and
reducing agent. Thus, high-intensity magnetic separation was employed to roughly separate
the iron-bearing minerals in raw ore. The experimental parameters were as follows: 1.0 kg of
ground sample was selected each time, and the magnetic separation was executed in a Slon
100 periodic pulsating high-gradient magnetic separator. The grade and the recovery of the
rough iron concentrate were controlled by changing the magnetic field intensity.

2.2.3. Magnetization Roasting

During this section, the rough iron concentrate was mixed with biochar in a certain
proportion, and the adhesive (CMC) and water were also added to this mixture with the mass
ratios of 0.3% and 15%. Then, the mixed sample was manually rubbed into pellets with a
diameter of 10–15 mm and dried in the air at a low temperature. The orthogonal method
was used to design the experimental scheme for the magnetization roasting, and the pri-
mary experiment parameters were explored, including the roasting temperature (600–900 ◦C,
100 ◦C interval), roasting time (30–60 min, 10 min interval), and the reducing agent dosage
(3–10%). This experiment was executed in a SK-G12123K-610 tube furnace under the reaction
atmosphere of nitrogen (flow rate: 100 mL/min). After completion, the pellets subjected to
magnetization roasting were quickly transferred into cold water for quenching.

2.2.4. Weak Magnetic Separation

The magnetization roasting pellets were milled, and the magnetite in the sample was
separated in the XCGS-Φ50 magnetic separator tube with a weak magnetic field intensity.
The beneficiation efficiency η was defined and expressed in Formula (1), the recovery of
iron ε was expressed in Formula (2), and the yield of iron γ was expressed in Formula (3):

η =
ε − γ

100 − γ ·
β − α

βmax − α
(1)

ε =
mc × cc

mr × cr
× 100% (2)

γ =
mc × cc

mr
× 100% (3)

where ε was the recovery of iron in the concentrate (%), γ was the yield of iron in the
concentrate (%), β was the grade of iron in the iron concentrate, βmax was the theoretical
iron grade of magnetite, α was the grade of iron in the magnetization roasting sample, mr
was the mass of raw ore, mc was the mass of iron concentrate, cr was the grade of iron in
the raw ore, and cc was the grade of iron in the iron concentrate.

2.2.5. Red Iron Preparation

The preparation of red iron was executed in a YZPR-250 stainless steel high-pressure
reactor. The experimental parameters were as follows: 10.0 g of iron concentrate was
selected each time, sulfuric acid aqueous solutions with different concentrations were
added according to a certain solid-to-liquid ratio, the reactor was purified with N2 and
screwed tightly, and the stirring speed was set to 500 r/min at the set temperature for
a period of time. After completion, the reactor was quickly cooled, and the solid–liquid
separation was implemented and washed three times with sulfuric acid aqueous solution
with pH = 2. Finally, red iron was dried in a vacuum oven at a low temperature.

2.3. Characterizations

XRD analyses were performed using an X-ray Diffractometer (X’Pert PRO, PANa-
lytical, Almelo, The Netherlands) with a Cu-Kα (λ = 0.15418 nm) radiation source. A
continuous scan mode was used to collect the 2θ scan XRD data. Element concentrations of
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the raw material were measured by Elemental Analyzer (Euro EA3000, Leeman, WI, USA).
The morphology analysis of the red iron sample was determined by scanning electron
microscopy (SEM) (UItra55, Carl Zeiss Irts Corp., Oberkochen, Germany), and chemical
components analyses were performed using Energy Dispersive Spectroscopy. X-ray flu-
orescence (XRF) analysis was performed using the energy dispersive X-ray fluorescence
(ED-XRF) spectrometer from Axios, equipped with a Rhodium X-ray tube and an X-Flash
SDD detector. Then, 0.3 g of dry sample and 4 g of KBr were placed inside a pellet box and
were compacted using a hydraulic press for 1 min at a pressure of 3 × 103 kg.

3. Results and Discussions
3.1. Physicochemical Properties of Raw Material
3.1.1. Raw Ore

The X-ray diffraction (XRD) pattern (Figure 1) shows that the mineral component in the
raw ore was complex and that the primary minerals were quartz (pdf = No. 46-1045), muscovite
(pdf = No. 21-0993), ferrihydrite (pdf = No. 29-0712), and lepidocrocite (pdf = No. 44-1415).
The semiquantitative analysis (XRF, Table 1) result of the raw ore showed that the raw ore
had a complex elemental composition, and that the primarily elements were Si, Al, Mg, K, Ti,
and Fe. In addition, the accurate grade of iron was 9.63% in the raw ore, measured by the
chemical titration. Hence, these results demonstrated that this raw ore was attributable to the
ultra-low-grade limonite.
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Figure 1. X-ray diffraction (XRD) pattern of limonite.

Table 1. XRF result of limonite.

Elements SiO2 Al2O3 Fe2O3 K2O MgO TiO2

Content 53.54 24.48 9.48 3.01 1.77 1.43

3.1.2. Biochar

The basic physicochemical properties of the biochar sample are summarized in Table 2,
and the XRD spectrum of the biochar sample is illustrated in Figure 2. As shown in Table 2,
(i) the concentration of C element in biochar sample was 77.19%, which would be beneficial
to the magnetization roasting of limonite; (ii) there was no S element in the biochar sample.
As shown in Figure 2, the XRD spectrum of the biochar sample shows that, (i) the broad
diffraction peak from 2θ = 15–25◦ was attributed to the aliphatic chain, suggesting that
cellulose and hemicellulose in the biomass were low [20]; (ii) the diffraction peaks near
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2θ = 28.5◦ and 40.6◦ were all ascribed to sylvite (pdf = No. 41-1476). This good-quality
biochar was a good reducing agent and was similar to the traditional coal.

Table 2. Basic physicochemical properties of biochar sample.

Sample
Elements (%)

Ash (%) H/C O/C (O + N)/C
N C H O

B600 0.86 77.19 3.14 7.81 11.00 0.49 0.08 0.09

Sample Yield (%) pH SSA/(m2·g−1) PV/(cm3·g−1) CEC/(cmol·kg−1)

B600 32.41 10.61 136.13 0.1721 10.62
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3.2. Grinding Fineness

The technological process and curve of grinding fineness are shown in Figure 3, and
the effect of particle size on magnetic separation is shown in Figure 4. Figure 3 shows that,
(i) the percentage of particles that had sizes less than 0.074 mm increased with an increasing
grinding time; (ii) approximately 94.84% of raw ore exhibited a particle size less than
0.074 mm after grinding for 90 min; (iii) when the grinding time exceeded 90 min, there
was no change in the content of particles whose sizes were less than 0.074 mm. Figure 4
suggests that, (i) as the content of the particles with a size less than 0.074 mm increased,
the grade of iron in the rough iron concentrate increased with the increasing recovery
of iron; (ii) when the content of the particle size was less than 0.074 mm, accounting for
approximately 94.84%, the grade of iron in the rough iron concentrate was 22.64%, with
a recovery of 58.25%; (iii) when the particle size was too small, both the grade and the
recovery of iron in the rough iron concentrate decreased; this was caused the argillization
of raw ore. Hence, the suitable grinding time was selected as 90 min.
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3.3. High-Intensity Magnetic Separation

The technological process and curve of high-intensity magnetic separation are shown
in Figure 5. The results show that, (i) the grade and recovery of iron in rough iron concen-
trate increased with the increasing magnetic field intensity; (ii) when the magnetic field
intensity was 1.0 T, the grade and recovery of iron in rough iron concentrate was 25.45%
with a recovery of 78.42%; (iii) when the magnetic field intensity increased to 1.2 T, there
was no obvious change in both the grade and the recovery of the iron concentrate. Hence,
the suitable magnetic field intensity was selected as 1.0 T.
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3.4. Magnetization Roasting-Weak Magnetic Separation
3.4.1. Orthogonal Test

In this section, the effects of roasting temperature, roasting time, and biochar dosage
on the magnetization roasting–weak magnetic separation method are explored. Tables 3–5
present the values of each factor at different levels, the results of the orthogonal test, and the
results of the range analysis, respectively. The results of the range analysis suggest that the
sequences of these three factors that influenced the beneficiation efficiency were in the order
of time > temperature > coal consumption. The appropriate parameters were as follows: a
roasting temperature of 700 ◦C, 60 min of roasting time, and 3 wt% of biochar dosage.

Table 3. Effect of the factors at different levels on the magnetization roasting–weak magnetic separa-
tion method.

Level Roasting Temperature/◦C Roasting Time/Min Addition Amount of
Reducing Agent/wt%

1 600 30 3
2 700 40 5
3 800 50 8
4 900 60 10

Table 4. The results of orthogonal test on the magnetization roasting–weak magnetic separation method.

Test No.

Level of Factors
Fe

Recovery/%
Fe

Grade/% Efficiency/%Roasting
Temperature/◦C

Roasting
Time/Min

Addition amount
of Reducing

Agent/%

1 600 30 3 59.99 58.16 31.86
2 600 40 5 52.50 58.22 26.76
3 600 50 8 72.69 56.06 38.61
4 600 60 10 77.40 55.58 41.70
5 700 30 5 72.08 56.34 38.55
6 700 40 3 76.93 51.31 34.53
7 700 50 10 59.73 58.18 31.71
8 700 60 8 78.43 51.87 36.53
9 800 30 8 86.90 41.03 23.75
10 800 40 10 77.99 49.41 32.25
11 800 50 3 71.37 56.74 38.57
12 800 60 5 85.08 46.07 31.55
13 900 30 10 55.90 60.38 31.47
14 900 40 8 53.72 65.89 35.83
15 900 50 5 54.69 60.81 31.06
16 900 60 3 55.68 65.51 37.06

Table 5. The results of range analysis on the magnetization roasting–weak magnetic separation method.

Factor
Average Beneficiation Efficiency at Each Level

Range Comparatively
Excellent LevelLevel 1 Level 2 Level 3 Level 4

Temperature 34.71 35.33 31.53 33.86 3.80 2
Time 31.41 32.32 34.99 36.71 5.30 4

Biochar 35.51 31.96 33.68 34.28 3.55 1

3.4.2. Optimization Verification

According to the results of the orthogonal test, the optimization verification test was
executed and the results are shown in Table 6. Compared with the results of the orthogonal
test, the results of the optimization verification test show that the grade and recovery of
iron in rough iron concentrate was higher, while the grade of iron was still low. This may
be caused by the non-monomer dissociation of magnetite. Therefore, the grinding fineness
was determined, and the results are shown in Figure 6. The results indicate that, (i) with the
increasing content of particles with a size less than 0.045 mm, the grade and the recovery
of iron in rough iron concentrate increased; (ii) when the content of particles with a size
less than 0.045 mm was 83.84%, there was no obvious relationship between the grinding
time and particle size. Additionally, the intensity of the magnetic field had a greater impact
on the recovery of magnetite. Thus, the effect of a weak magnetic field intensity on the
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grade and recovery of iron was explored, and the results are shown in Figure 7. The results
indicate that, (i) the grade of iron decreased, while the recovery of iron increased with the
increasing intensity of the weak magnetic field; and (ii) when the intensity of the weak
magnetic field was higher than 0.15 T, there was no obvious change in both the grade and
the recovery of iron. Therefore, the optimum intensity of the weak magnetic field was
0.15 T.

Table 6. Optimization verification test results.

Product Name Yield/% Fe Grade/% Fe Recovery Rate/%

Rough concentrate 40.63 55.87 89.19
Tailings 59.37 4.36 10.81

Ore feeding 100.00 25.45 100.00
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3.5. Preparation of Red Iron

The solution acidity is an important parameter in the preparation of red iron. Sulfuric
acid aqueous solution was selected as the acidity regulator, and the results are shown
in Figure 8a. The results suggest that the grade of iron in red iron increased slowly and
then decreased significantly with the increasing solution acidity; meanwhile, the recovery
decreased, which the high concentration of sulfuric acid dissolve to generate iron oxide.
Hence, the suitable solution acidity was 10.0 g·L−1. The effect of the reaction temperature
on the grade and the recovery of iron in red iron products was studied, and the results are
shown in Figure 8b. The results indicate that, (i) when the reaction temperature increased
from 160 ◦C to 240 ◦C, the grade of iron in red iron product increased rapidly and then
changed little, while the recovery of iron decreased; and (ii) when the reaction temperature
was 200 ◦C, the grade of iron was 67.06% and the recovery was 84.25%. Hence, the reaction
temperature was selected as 200 ◦C. The effect of the reaction time on the grade and the
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recovery of iron in red iron product was studied, and the results are shown in Figure 8c.
The results suggest that when the reaction time increased, the grade of iron in red iron
increased rapidly and then changed little, while the recovery decreased. When the reaction
time was 5 h, the grade of iron was 68.52%, and the recovery was 82.49%. The effect of
the solid-to-liquid ratio on the grade and the recovery of iron in red iron product was
also studied, and the results are shown in Figure 8d. The results suggest that when the
solid-to-liquid ratio increased, the grade of iron in red iron product increased and then
changed little. When the solid-to-liquid ratio was 6:1, the grade of iron in red iron product
was 68.53% and the recovery was 82.49%. Hence, the preferable solid-to-liquid ratio in the
reaction was 6:1. However, the pressure of the process at 200 ◦C was not observed during
the process.
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acidity, experiment parameter: 10.0 g of iron concentrate was weighed each time, and the temperature
was set to 220 ◦C, the reaction time to 3 h, the solid-to-liquid ratio to 1:6, and the stirring speed to
500 r/min; (b) reaction temperature, experiment parameter: 10.0 g of iron concentrate was weighed
each time, and the solution acidity was set to 10.0 g·L−1, the reaction time to 3 h, the solid-to-liquid
ratio to 1:6, and the stirring speed to 500 r/min; (c) reaction time, experiment parameter: 10 g of iron
ore was weighed each time, and the solution acidity was set to 10 g·L−1, the solid-to-liquid ratio to
6:1, the reaction temperature to 200 ◦C, and the stirring speed to 500 r/min; (d) solid-to-liquid ratio,
experiment parameter: 10 g of iron concentrate was weighed each time, and the solution acidity was
set to 10.0 g·L−1, the reaction temperature to 200 ◦C, the reaction time to 5 h, and the stirring speed
to 500 r/min).

3.6. Reaction Mechanism

The possible stability region of the impurities in rough iron concentrate is shown
in Figure 9. Under the optimal solid-to-liquid ratio, the impurities in the magnetizing
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roasted sample changed from the stable region to the unstable region with the increasing
solution acidity. When the solution acidity was higher than pH = 1, the impurities (such
as ferroaluminum) were decomposed. With the acidity of the reaction system increasing
continually, S components were released from the undissolved substances (such as ferric
subsulfate) and dissolved in the reaction system in the form of sulfate radical, decreasing
the concentration of S in red iron. Meanwhile, when the acidity of the reaction system was
too high, the stability of red iron decreased firstly and then dissolved. Hence, the acidity of
the reaction system should not be too high. Under the suitable acidity and solid-to-liquid
ratio, the reaction temperature has a significant effect on S removal of red iron product.
With the increase in the reaction temperature, the thermodynamically stable region of
the stable phases increased, while that of the metastable phases (e.g., ferric subsulfate,
ferroaluminum) decreased, resulting in a decrease in the stability. Then, these metastable
phases dissolved and S components entered into the reaction system in the form of a sulfate
radical. Meanwhile, the ferric ion in these metastable phases generated Fe2O3, and the
relevant chemical equations are as follows. Hence, the quality of the red iron improved.
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3.7. Quality Inspection

Based on the above results, the schematic flow of red iron preparation from ultra-
low-grade limonite is presented in Figure 10. According to the process flow, the optimal
parameters for the preparation of red iron from rough iron concentrate are described
as follows: the solution acidity was 10.0 g·L−1, the reaction temperature was 200 ◦C,
the reaction time was 5 h, the solid-to-liquid ratio was 6:1, and the stirring speed was
500 rpm. Then, the phase analysis, morphology analysis, and quality inspection of this
red iron product was carried out. The XRD pattern (Figure 11) shows that the primary
mineral in the red iron product was iron oxide (Fe2O3, pdf: 33-0664), without other obvious
impurities. According to the microscopic morphology analysis (Figure 12), the red iron
mainly comprised irregular particles with a relatively uniform particle size distribution and
an average size of approximately 15–35 µm. The EDS analysis results reveal that the red
iron product was primarily composed of Fe and O. Six indicators were selected to detect
the quality of the red iron, including color, iron oxide content, water-soluble substance
content, water-soluble chloride, and sulfate content of red iron oxide products. This red
iron product was red with up to 97.24% the iron oxide content; the mass fraction of chloride,
sulfate, and water-soluble matter in this red iron product was 1.8 × 10−4, 1.32%, and 0.23%,
respectively; the sieve residue (<45 µm) of this iron red product accounted for 0.051%; and
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the volatile matter at 105 ◦C accounted for only 0.83%. Hence, the quality of this red iron
product was high.
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