Lawrence Berkeley National Laboratory Recent Work

Title
PREPARATION OF THE FIRST MOELCULAR CARBON MONOXIDE COMPLEX OF URANIUM,
(Me3SiC5H4)3UCO

Permalink

https://escholarship.org/uc/item/2ss7r88n

Authors

Brennan, J.G.
Andersen, R.A.
Bobbins, J.L.
Publication Date
1985-09-01

Submitted to Journal of the American Chemical Society

PREPARATION OF THE FIRST MOLECULAR CARBON MONOXIDE COMPLEX OF URANIUM，$\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right){ }_{3} \mathrm{UCO}$

J．G．Brennan，R．A．Andersen，and J．L．Robbins

September 1985

For Reference

Not to be taken from this room

Prepared for the U．S．Department of Energy under Contract DE－AC03－76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Preparation of the First Molecular Carbon Monoxide Complex of Uranium, $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{UCO}$.

John G. Brennan ${ }^{a}$, Richard A. Andersen ${ }^{a, *}$, and John L. Robbins ${ }^{\text {b }}$. ${ }^{a}$ Chemistry Department and Material and Molecular Research Division of Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 and Exxon Research and Engineering Company, Clinton Township, Route 22 East, Annandale, New Jersey 08801.
*Address all correspondence to this author at the Department of Chemistry, University of California at Berkeley.

Abstract

The trivalent uranium metallocene $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ reversibly adsorbs 1.0 ± 0.05 equivalents of carbon monoxide in hydrocarbon solution at room temperature. The solution infrared spectrum with ${ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}$, and $\mathrm{C}^{18} \mathrm{o}$ contain $v_{\text {CO }}$ stretching frequencies of 1976,1935 , and $1932 \mathrm{~cm}^{-1}$ respectively. The metallocene also adsorbs $C O$ in the solid state, with measured CO stretching frequencies $1969\left({ }^{12} \mathrm{CO}\right)$ and $1922\left({ }^{13} \mathrm{CO}\right) \mathrm{cm}^{-1}$. The structure of the isoelectronic isocyanide complex $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3}$ UCNEt contains a near linear $\mathrm{U}-\mathrm{C}-\mathrm{N}$ angle, $173.6(2.0)^{\circ}$, and $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle, $170.2(2.2)^{\circ}$. The $\mathrm{U}-\mathrm{C}$ (CNEt) distance is $2.57(3)$ A.

Migratory insertion of an anionic group onto coordinated carbon monoxide or an isocyanide is an important mechanistic postulate in organoactinide chemistry ${ }^{1}$. In contrast to transition metals, where carbon monoxide complexes abound, only three examples of carbon monoxide coordination to a uranium have been observed in matrix isolation studies at cyrogenic temperatures. These studies showed that $U(C O)_{6}$ can exist below ca. 20 K and that v_{CO} of $1961 \mathrm{~cm}^{-1}$ is similar to that found for $\mathrm{W}(\mathrm{CO})_{6}$, v_{CO} is $1987 \mathrm{~cm}^{-1}$ under similar conditions ${ }^{2 a, b}$. The $v_{C O}$ is lowered substantially from gaseous CO ($\nu=2145 \mathrm{~cm}^{-1}$) which implies that uranium metal is a π donor, though the bonds are either kinetically labile, thermodynamically weak, or both. In $\mathrm{UF}_{4}(\mathrm{CO})$ the v_{CO} of $2182 \mathrm{~cm}^{-1}$ at $20 \mathrm{~K}^{2 \mathrm{c}}$ shows that the tetravalent compound does not engage in π-backbonding to $C O^{3}$. In another study, UO_{2} has been shown to absorb CO at temperatures below 20 K ; the CO stretching frequency was not measured ${ }^{2 d}$. In this note, we give evidence for $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{UCO}$, the first molecular actinide complex of carbon monoxide, in solution and solid phase.

We have determined, on the basis of equilibrium constant measurements, that the ligand displacement series towards $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ is $\mathrm{PMe}_{3}=\mathrm{P}(\mathrm{OMe})_{3}>$ pyridine> tetrahydrothiophene> tetrahydrofuran and towards $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ the series is EtNC $>E t C N^{4 a}$. The observation that phosphite and isocyanide ligands, which are generally classified as π-acceptor ligands ${ }^{4 b}$, are good ligands toward the trivalent uranium metallocenes suggests that the uranium center can act as a π donor. The extent of π acceptance is difficult to judge on the basis of the infrared spectrum ${ }^{5}$ as $v_{C N}$ of $2160 \mathrm{~cm}^{-1}$ in $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{UCNEt}^{6 \mathrm{a}}$ is slightly higher in energy than that in free CNEt of $2151 \mathrm{~cm}^{-1}$. In $\mathrm{CP}_{3} \mathrm{UCN}(\text { cyclohexyl) })^{6 \mathrm{C}}$, ν_{CN} increases by $25 \mathrm{~cm}^{-1}$ on
coordination. The purported π donating character of $\left(\mathrm{RC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ lead us to expose $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ to one of the best π acids known, carbon monoxide.

The deep green solution of $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ in either pentane or hexane turned purple on exposure to carbon monoxide at 1 atm and $20^{\circ} \mathrm{C}$. Volumetric studies showed that the metallocene absorbs 1.0 ± 0.05 molar equivalents of carbon monoxide at $25^{\circ} \mathrm{C}$. Exposure of the red carbon monoxide complex to either vacuum or purging the solution with argon regenerates the green, carbon-monoxide free, $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$. The carbon monoxide, vacuum cycle may be repeated several times without detectable decomposition. In addition, the red solution may be stored for at least two years at $-80^{\circ} \mathrm{C}$. Clearly, $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right){ }_{3} \mathrm{U}$ reversibly adsorbs a molar equivalent of carbon monoxide in hydrocarbon solution. Examination of the infrared spectrum of the red solution with ${ }^{12} \mathrm{CO}$ shows v_{CO} at $1976 \mathrm{~cm}^{-1}$, with ${ }^{13} \mathrm{CO} v_{\mathrm{CO}}$ is $1935 \mathrm{~cm}^{-1}$, and with $C^{18} 0 v_{C O}$ is $1932 \mathrm{~cm}^{-1}$. Tre predicted values for $v^{13} \mathrm{CO}$ and $C^{18} 0$ are 1931 and $1930 \mathrm{~cm}^{-1}$ respectively ${ }^{7}$.

The $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ also reversibly absorbs ${ }^{12} \mathrm{CO}$ in the solid state. Exposure of $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ in a KBr wafer to ${ }^{12} \mathrm{CO}$ at 1 atm results in the appearance of an absorption at $1969 \mathrm{~cm}^{-1}$ which completely disappears when the sample is evacuated for 1.5 h . Using ${ }^{13} \mathrm{CO}(99 \%)$ causes the absorption to shift to $1922 \mathrm{~cm}^{-1}$.

We assume that the complex is carbon bonded, as are all CO complexes, and the U-C-O unit is linear. Some support for this is derived from the $\mathrm{X}-$ ray crystal structure determination of $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{UCNEt}{ }^{8}$. The averaged U-C (Cp) distance is $2.81 \pm 0.03 \mathrm{~A}$, the $\mathrm{U}-\mathrm{Cp}$ ring centroid distance is 2.53 A , the $U-C$ (CNEt) distance is $2.57(3)$, the ring centroid-U-ring centroid angle is 118.6°, the ring centroid-U-C (CNEt) angle is 97°, and most importantly, the $\mathrm{U}-\mathrm{C}-\mathrm{N}$ angle is $173.6(2.0)^{\circ}$ and the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ (Et) angle is $170.2(2.6)^{\circ}$.

A very crude molecular orbital model, based upon the symmetry orbitals, may be constructed that accounts for the reduction in the $C-0$ stretching frequency in the complex. Assume that the molecule has $C_{3 v}$ symmetry. The e_{1} and $a p \pi$ SALC'S for (Cp) ${ }_{3}$ transform as $2 a_{1}+a_{2}+3 e$. In $C_{3 v}$ symmetry the metal $A O^{\prime}$'s transform as $a_{1}\left[s, z, z^{2}, z^{3}, x\left(x^{2}-3 y^{2}\right)\right], a_{2}\left[y\left(3 x^{2}-y^{2}\right]\right.$, $e[x$, $y, x^{2}-y^{2}, x y, x z, y z, x z^{2}, y z^{2}, x y z$, and $\left.z\left(x^{2}-y^{2}\right)\right]$. If we let the nine $C p$ orbitals overlap with the available metal AO's then we have left over $3 a_{1}+$ 2e symmetry orbitals that contain three electrons to overlap with the filled σ-orbitals and the empty π-orbitals on $C O$. Since the π-orbitals on $C O$ are C-O antibonding, population of these orbitals results in lowering of $v C O$. The lowering of $\nu_{c o}$ may be expressed in valence bond language by the two resonance structures.

$$
\mathrm{Cp}_{3} \mathrm{U}+{ }_{\mathrm{C}}^{\mathrm{C}} \equiv \overline{\mathrm{O}}\left\langle---->\mathrm{Cp}_{3} \mathrm{U}=\mathrm{C}=0\right.
$$

Acknowlegement The work at Berkeley is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract number DE-AC03-76SF00098. We also thank Dr. F.J. Hollander, staff crystallographer at CHEXRAY for solving the structure of $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3}$ UCNEt.

Supplementary Material Avaliable. Listing of positional parameters, general temperature factors and RMS amplitudes of thermal vibration, ORTEP diagrams of the four molecules in the unit cell, tables of bond lengths and angles, crystal data and method of solution, and structure factor tables (46 pages)
for $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3}$ UCNEt. Ordering information is given on any current masthead.

REFERENCES

1. (a) Fagan, P.J.; Manriquez, J.M.; Marks, T.J.; Day, V.W.; Vollmer, S.H.; Day, C.S. J. Am. Chem. Soc. 1980, 102, 5393-5396. (b) Simpson, S.J.; Andersen, R.A. J. Am. Chem. Soc. 1981, 103, 4063-4066. (c) Kramer, R.E.; Maynard, R.B.; Paw, J.C.; Giljie, J.W. Organometallics 1982, 1, 869-871. (d) Sonnenberger, D.C.; Mintz, E.A.; Marks, T.J. J. Am. Chem. Soc. 1984, 106, 3484-3491. (e) Moloy, K.G.; Marks, T.J. J. Am. Chem. Soc. 1984, 106, 7051-7064, and references therein. (f) Dormond, A.; Elbouadili, A.A.; Moise, C. J. Chem. Soc. Chem. Comm. 1984, 749-751. (g) Zanella, P.; Paolucci, G.; Rossetto, G.; Benetollo, F.; Polo, A.; Fischer, R.D.; Bombieri, G. J. Chem. Soc. Chem. Comm. 1985, 96-98.
2. (a) Slater, J.L.; Sheline, R.K.; Lin, K.C.; Welter, W. J. Chem. Phys. 1971, 55, 5129-5130. (b) Sheline, R.K.; Slater, J.L. Angew. Chem. Int. Ed. 1975, 14, 309-316. (c) Kunze, K.R.; Hauge, R.H.; Hamill, D.; Margrave, J.L. J. Phys. Chem. 1977, 81, 1664-1667. (d) Roberts, L.E.J. J. Chem. Soc. 1955, 3939-3946. Lanthanide metals ${ }^{\mathrm{e}}$ and lanthanide triflourides ${ }^{f}$ give complexes with $C O$ in cyrogenic matricies. (e) Slater, J.L.; DeVore, T.C.; Calder, V. Inorg. Chem. 1973, 12, 19181921. (f) Hauge, R.H.; Gransden, S.E.; Margrave, J.L. J. Chem. Soc. Dalton Trans. 1979, 745-747.
3. Tatsumi, K.; Hoffman, R. Inorg. Chem. 1984, 23, 1633-1634.
4. (a) Brennan, J.G. unpublished results. (b) Cotton, F.A.; Wilkinson, G. "Advanced Inorganic Chemistry" Wiley, New York, 4th ed., 1980, ch. 3.
5. (a) Bursten, B.E.; Fenske, R.F. Inorg. Chem. 1977, 16, 963-964. (b) Beach, D.B.; Jolly, W.L. Ibid. 1985, 24, 567-570.
6. (a) Red crystals of $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}(\mathrm{CNEt})$ can be isolated from the reaction of $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}^{5 \mathrm{~b}}$ and the isocyanide in hexane, m.p. $112-5^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{NSi}_{3} \mathrm{U}: \mathrm{C}, 46.0 ; \mathrm{H}, 6.29 ; \mathrm{N}, 1.99$. Found: C , 45.9; H, 6.31; N, 1.93. (b) Brennan, J.G.; Andersen, R.A.; Zalkin, A. submitted for publication. (c) Kanellakopulos, B.; Fischer, E.O.; Dornberger, E.; Baumgartner, F. J. Organomet. Chem. 1970, 24, 507-514.
7. Braterman, P.S. "Metal Carbonyl Spectra", Academic Press, New York, 1975, p. 36.
8. The details are given in the Supplimentary Material.

Supplimentary Material for
 Preparation of the First Molecular Carbon Monoxide Complex of Uranium.

John G. Brennan ${ }^{a}$, Richard A. Andersen ${ }^{a, *}$, and John L. Robbins ${ }^{\text {b }}$.

Abstract

${ }^{\text {a }}$ Chemistry Department and Material and Molecular Research Division of Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 and ${ }^{\text {b }}$ Exxon Research and Engineering Company, Clinton Township, Route 22 East, Annandale, New Jersey 08801.

1. Positional Parameters for $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3}$ UCNEt.
2. General Temperature factors and RMS amplitudes of thermal vibration.
3. ORTEP Diagrams of the four molecules in the unit cell.
4. Tables of Bond Lengths and Angles.
5. Crystal Data and method of solution.
6. Structure factor tables.

TABLE I

Crystal and Data Collection Parameters

Compound: $\left(\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3} \mathrm{U}-\mathrm{CN}-\mathrm{C}_{2} \mathrm{H}_{5}$
A) Crystal Parameters at $25^{\circ} \mathrm{C}$ [a,b]

$$
\begin{array}{ll}
a=24.136(10) \dot{A} & \text { Space Group: } P \overline{1} \\
D=24.456(8) \dot{A} & \text { Formula Weignt }=705.0 \mathrm{amu} \\
c=11.304(6) \dot{A} & Z=B \\
\alpha=91.30(4) 0 & d_{c}=1.449 \mathrm{~cm}^{-3} \\
\beta=76.98(4) 0 & d_{0}= \\
\delta=92.35(3) 0 & \mu(\text { calc. })=48.6 \mathrm{~cm}^{-1} \\
V=6495(7) \AA^{3} & \\
\text { Size of crystal }: 0.09 \times 0.35 \times 0.40 \mathrm{~mm}
\end{array}
$$

B) Data Measurement Parameters [B]

Radjation : Mo $\mathrm{K} \alpha(\lambda=0.71073 \dot{A})$
Monochromator: Highly-oriented graphite ($2 \theta=12.2^{\circ}$)
Detector: Crystal scintillation counter, with PHA.
Reflections measured: + h, $\pm k, \pm 1$
2θ Range: $2.2^{\circ}->45^{\circ}$ Scan Type : $\theta-2 \theta$
Scan width: $\Delta \theta=0.75+.347 \tan (\theta)$
Scan speed: 1.0 -> 4.0 ($\theta .0 / \mathrm{min}$)
Background : Measured over $0.10^{\circ}(\theta)$ added to each end of the scan.
Measured for a total of 0.25 of the scan time.
No. of reflections collected: 19494
No. of unique reflections: 16896
Intensity standards: (700), (030). (003): measured after every 250
intensity measurements. Over the data collection period a 16%decrease in intensity was observed.
Orientation: Reorientation was not needed during data collection.[a] Unit cell parameters and their esd's were derived by a least-squaresfit to the setting angles of the unresolved Ma $K \alpha$ components of 21 re-flections with $2 \theta 20.0^{\circ}$ to 29.0°.
[b] ln this and all subsequent tables the esd's of all parameters are given in parentheses, right-justified to the least significant digit(s) given.

The structure was solved by Patterson methods and refined via standard least-squares and fourier techniques. Refinement was started using LBL programs, then transferred to the CHEXRAY computer system and completed there [2,3].

Due to the paucity of good data (only 5086 of 16896 data were observed) and the essentially low-resolution nature of these data, constraints were applied to some of the distances and angles in the known portions of the structure. It was necessary to do this to obtain reasonable distances and angles, and in some cases to even locate the atoms. Disorder of the methyl groups attached to Sil and Si2 was clearly indicated on difference fourier maps, and this disorder was included with sultable constralnts. The thermal parameters of C94 and c95 are clear indication of some problem With the methyl groups attached to $S i l 2$, but no clear model emerged from inspection of peaks In the last difference fourler map, so they were left "as is". Constraints were weighted by inverse esd** 2 , with esd's for angles assigned as $\boldsymbol{\rho}$. 5 deg and for distances as $\varnothing .065$ A. The following constraints were imposed on the CpSiMe3 ligands: 1)Internal ring angles of 108 deg. 2) External angles to the $S t$ of 125.5 deg. 3IC-Si-C angles of 109.5 deg . 4) Si-C(methyl) distances of 1.90 A . 5) C-C bonds in the rings were set to equal each other in groups of 15 (i.e. one distance per molecule), but the rings were allowed to "breathe". The following constraints were ap-
 $N-C-C$ angles of $11 \varnothing$ deg. In all there were 282 constralnts applied.

Given the nature of the refinement it is not surprising that no evidence of the hydrogen atoms was found in the final difference fourier.

The final residuals [5] for 617 variables refined against the 282 constraints and the 5086 data for which $F * * 2>3$ sigma(F**2) were $R=5.83 x, w R=6.73 x$ and $G 0 F$

U (CpSi)3 CNEt Experimental Writeup

$=1.628$. The R value for all 16896 data was 26.2%. The maximum shifts were 2 times their esds and applied to the atoms of the isocyanide ligand of molecule 1 and the methyl carbons of Sil2. All other shifts were less than $\boldsymbol{f} .6$ times their esd.

The quantity minimized by the least squares program was w(|fol-Ifc|)**2. where w is the welght of a given observation. The p-factor [5], used to reduce the weight of intense reflections, was set to 0.05 throughout the refinement. The analytical forms of the scattering factor tables for the neutral atoms were used [6] and all non-hydrogen scattering factors were corrected for both the real and imaginary components of anomalous dispersion [7].

Inspection of the residuals ordered in ranges of $\sin (t h e t a) / l a m b d a, ~ I f o l, ~ a n d ~$ parity and value of the individual indexes showed no unusual features or trends. There was no evidence of secondary extinction in the low-angle, high-intensity data. The largest peak in the final difference Fourler map had an electron density of $1 . g$ e-/A3 and was located near U2.

The positional and thermal parameters of the non-hydrogen atoms are given in Table Il. A listing of the values of fo and fc are avallable as supplementary mater1al.

Notes on the Figures

Abstract

All Figures are ORTEP [9] stereopair drawings. In each figure the stereopair is set up for cross-eyed viewing, with the left-and right-eye views interchanged -I(R) (L)I. Before submitting the figures for photographic reduction, the two images should be restored to their correct positions for viewing with a stereopticon -- (í) (R)I. The correct distance between the centers of the drawings after reduction is 2 $1 / 4$ Inches or 55 mm .

In Figures $1-4$ the ellipsolds are scaled to represent the 5\%\% probability surface.

Figure 1 - Labeling diagram for Molecule 1.

Figure 2 - Labeling diagram for Molecule 2.

Figure 3 - Labeling diagram for Molecule 3.

Figure 4 - Labeling diagram for Molecule 4.

All figures are viewed from the same direction as defined by the U-C(isocyanide) and $U-C p$ (trans) vectors, In order to show the similarities and differences between them.

```
U (CpSi)3 CNEt Experimental Writeup
NOTES
```

There are four independent molecules in the asymmetric unit of the structure and they are shown in Fig l-4. Distances, angles planes and torsion angles are given in the tables.

The molecules are unique and not related by symmetry in any way. Differences can be seen In the orientation of the SiMe3 "lumps" on the Cp ligands and in the orientation of the ethyl groups of the isocyanide ligands. Similarities are also present, as shown by the figures. Each U is coordinated by two Cp ilgands with their SiMe3 groups pointed more or less in the same direction as the isocyanide and one which is oriented approximately trans to the isocyanide. The ligands are coordinated In a true pentahapto fashion in all cases. The Sime3 group is pushed out of the plane of the $C p$ ing by from 0.22 to 0.62 A , with the unique $S i M e 3$ in each molecule being the least distorted from planarity. The isocyanide ilgands are coordinated in an end-on fashion with $U-C-N$ angles ranging from 178.5 to 177.2 deg, and $C-N-C$ angles from 167.3 to 174.6 deg. Since these were not constralned there is every reason to trust them in a qualitative fashion. The U-Clisocyanidel distances range from 2.53(4) to 2.60(4) A.
la Templeton, L.K.; Templeton, D.H. "Abstract, American Crystallographic Association Proceedings," Storrs, Conn., 1973, Series 2, Vol. 1, p. 143.

1) R. B. Roof, Jr., "A Theoretical Extension of the Reduced-Cell Concept in Crystallography", Publication LA-4038, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1969.
2) All calculations were performed on a PDP 11/60 equipped with 128 kilowords of memory, twin RKO7 28 MByte disk drives, Versatec printer/ plotter and TU1O tape drive using locally-modified Nonius-SDP ${ }^{3}$ software operating under RSX-11M.
3) Structure Determination Package User's Guide, 1982, B:A. Frenz and Associates, College Station, TX 77840.
4) The data reduction formulae are:

$$
\begin{array}{ll}
F_{0}^{2}=\frac{\omega}{L p}(C-2 B) & \sigma_{0}\left(F_{0}^{2}\right)=\frac{\omega}{L p}(C+4 B)^{1 / 2} \\
F_{0}=\sqrt{F_{0}^{2}} & \sigma_{0}(F)=\frac{\sigma_{0}\left(F_{0}^{2}\right)}{2 F_{0}}
\end{array}
$$

where C is the total count in the scan, B the sum of the two background counts, ω the scan speed used in deg/min, and
$\frac{1}{\mathrm{Lp}}=\frac{\sin 2 \theta\left(1+\cos ^{2} 2 \theta_{m}\right)}{1+\cos ^{2} 2 \theta_{m}-\sin ^{2} 2 \theta}$
is the correction for Lorentz and polarization effects for a reflection with scattering angle 2θ and radiation monochromatized with a 50% perfect single-crystal monochrometer with scattering angle $2 \theta_{\mathrm{m}}$.
5) $R=\frac{\Sigma| | F_{0}\left|-\left|F_{c}\right|\right|}{\Sigma\left|F_{0}\right|}$

$\operatorname{GOF}=\left\{\frac{\sum \omega\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}}{\left(n_{0}-n_{v}\right)}\right\}^{1 / 2}$
where n_{0} is the number of observations.

Atom	x	y	2	$B\left(\dot{A}^{2}\right)$
	-			
U1	-0.16308(5)	-0.03889(6)	$0.219711)$	4.73(4)
U2	-0.08949(6)	$0.36805(6)$	$0.1647(1)$	5.53(4)
U3	$0.36705(5)$	$0.32511(6)$	$0.1937(1)$	5.54(4)
U4	$0.35065(5)$	-0.18900(6)	$0.2529(1)$	5.15(4)
SI1	-0.1919(2)	-0.0730(2)	-0.1376(5)	7.2(3)
S 12	-0.1092(2)	- $0.1838(2)$	$0.3241(4)$	8.7(4)
SI3	-0.0849(3)	$0.0915(2)$	$0.394815)$	8.5(4)
SI4	$0.0537(2)$	$0.3076(3)$	$0.2561(5)$	9.8(4)
SI 5	-0.1424(2)	$0.5042(3)$	$0.4095(5)$	9.6(4)
S 16	-0.1118(2)	0.3406 (2)	-0.2017(6)	$6.9(3)$
SI7	$0.4154(2)$	0.1967 (3)	$0.3993(5)$	8.2(4)
S 18	$0.3285(2)$	0.3407 (2)	-0.1579(6)	9.3(4)
SI9	$0.4612(2)$	0.4627 (3)	$0.2590(5)$	9.9(4)
SI10	$0.3239(2)$	-0.1630(2)	-0.1089(6)	6.5(3)
SI11	$0.3611(2)$	-0.3379(3)	$0.4358(5)$	7.5(3)
SI12	$0.439612)$	-0.0452(3)	$0.2890(5)$	12.2(5)
N1	- 0.1201 (8)	$0.0829(4)$	$0.005(1)$	17(1)*
N2	- $0.1344(6)$	$0.4780(4)$	$0.001(1)$	9.5(9)*
N3	$0.373(1)$	$0.1993(4)$	-0.0002(9)	10(1)*
N4	$0.3656(6)$	-0.3208(4)	$0.076(1)$	6.8(7)*
C 1	-0.2175(4)	-0.0724(2)	$0.0282(6)$	6.3(9)*
C2	-0.2201(5)	-0.1190(3)	$0.1043(7)$	8(1)*
C 3	- $0.2559(5)$	-0.1065(3)	$0.2205(7)$	9(1)*
C 4	-0.2776(5)	-0.0533(3)	$0.2141(7)$	9(1)*
C5	-0.2507(6)	-0.0306(3)	$0.0983(7)$	11(1)*
C6	-0.0889(4)	-0.1200(3)	$0.2313(5)$	6.1(9)*
C7	-0.0597(5)	-0.0725(3)	$0.2681(6)$	6.6(9)*
C8	-0.0442(6)	-0.0366(3)	$0.1665(6)$	8(1)*
C9	-0.0583(6)	-0.0646(3)	$0.0635(6)$	7(1)*
C10	-0.0858(6)	-0.1163(3)	$0.1033(6)$	6.5(9)*
C11	-0.1472(3)	$0.0438(3)$	0.3909 (7)	6.9(9)*
C12	-0.1970(3)	$0.0580(3)$	$0.351(1)$	12(1)*
C13	-0.2415(3)	$0.0185(3)$	$0.398(1)$	10(1)*
C14	-0.2183(3)	-0.0225(3)	$0.459(1)$	8(1)*
C15	-0.1595(3)	-0.0073(3)	$0.453(1)$	7.0(9)*
C16	$0.0242(5)$	$0.3678(3)$	$0.1885(5)$	5.3(8)*
C17	$0.0289(6)$	$0.3765(3)$	$0.0623(6)$	7(1)*
C18	$0.0089(6)$	$0.4293(3)$	$0.0491(6)$	7(1)*
C19	-0.0082 (6)	$0.4533(3)$	$0.1671(6)$	5.9(8)*
C20	$0.0037(6)$	$0.4163(3)$	$0.2525(6)$	5.5(8)*
C21	- 0.1502 (3)	$0.4307(3)$	$0.3645(7)$	7.1(9)*
C22	-0.1256(3)	$0.3866(3)$	$0.4120(8)$	6. $2(9) *$
C23	- $0.1542(3)$	$0.3371(3)$	$0.3876(8)$	6.3(9)*
C24	- 0.1944 (3)	$0.3502(3)$	$0.3189(8)$	7.2(9)*
C25	- 0.1938 (3)	$0.4082(3)$	$0.3093(9)$	8(1)*

Table of Positional Parameters and Their Estimated Standard Deviations (cont.)

Atom	x	y	2	$B\left(\dot{A}^{2}\right)$
C26	-0.1072(2)	$0.3137(4)$	-0.0475(7)	7(1)*
C27	-0.0585(3)	$0.2891(4)$	-0.0228(7)	10(1)*
C28	-0.0761(3)	$0.2595(5)$	$0.0870(7)$	11(1)*
C29	-0.1357(3)	$0.2651(4)$	$0.1297(7)$	9(1)*
C30	-0.1549(3)	$0.2989(4)$	$0.0471(7)$	7.1(9)*
C31	$0.3653(3)$	$0.2482(3)$	$0.3783(8)$	6.2(9)*
C32	$0.3619(3)$	$0.3026(3)$	$0.432(1)$	9(1)*
C33	$0.3059(3)$	$0.3221(3)$	$0.435(1)$	9(1)*
C34	$0.2752(3)$	$0.2805(3)$	$0.380(1)$	7(1)*
C35	$0.3128(3)$	$0.2360(3)$	$0.340(1)$	8(1)*
C36	$0.3167(3)$	$0.3605(3)$	$0.0060(6)$	6.0(8)*
C37	$0.2722(4)$	$0.3378(3)$	$0.1014(7)$	7.0(9)*
C38	$0.2633(4)$	$0.3759(3)$	$0.2021(7)$	7.2(9)*
C39	$0.3068(4)$	$0.4188(4)$	$0.1752(7)$	6.4(9)*
C40	$0.3388(4)$	$0.4102(3)$	$0.0524(7)$	9(1)*
C41	$0.4642(5)$	$0.3938(3)$	$0.1865(5)$	5.3(8)*
C42	$0.4763(7)$	$0.3439(3)$	$0.2402(6)$	8(1)*
C43	$0.4841(7)$	$0.3018(3)$	D. 1476 (6)	6.3(9)*
C44	$0.4759(7)$	$0.3252(3)$	$0.0372(6)$	6.0(8)*
C45	$0.4654(7)$	0.3825 (3)	$0.0602(6)$	6.5(9)*
C46	$0.3005(4)$	-0.1609(3)	$0.0616(7)$	6.2(9)*
C47	$0.30300(5)$	-0.1124(3)	$0.1361(7)$	6.2(9)*
C48	$0.2609(5)$	-0.1193(3)	$0.2484(8)$	5.1(8)*
C49	0.2367 (5)	-0.1740(3)	0.2486 (7)	5.9(8)*
C50	$0.2597(5)$	-0.1992(3)	$0.1321(7)$	6.1(9)*
C51	0.3386 (2)	-0.2691(3)	$0.446(1)$	5.2(8)*
C52	$0.2813(3)$	-0.2531(3)	$0.450(1)$	6.8(9)*
C53	$0.2777(3)$	-0.1958(3)	$0.482(1)$	9(1)*
C54	$0.3321(3)$	-0.1769(3)	$0.503(1)$	9(1)*
C55	$0.3691(3)$	-0.2227(3)	$0.484(1)$	8(1)*
C56	$0.4439(4)$	-0.1136(3)	$0.2218(5)$	6.8(9)*
C57	$0.4385(6)$	-0.1272(3)	Ø.0997(6)	6.5(9)*
C58	$0.4527(5)$	-0.1838(3)	$0.0760(6)$	6.7(9)*
C59	0.4685 (6)	-0.2045(3)	$0.1819(6)$	9(1)*
C60	$0.4608(6)$	-0.1619(3)	$0.2739(6)$	5. $2(8) *$
C61	-0.1504(6)	-0.1372(4)	- $0.186(2)$	10(2)*
C62	-0.1430(5)	-0.0107(4)	-8.187(2)	8(2)*\$
C63	- $0.2545(4)$	-0.0724(9)	- 0.21411$)$	8(2)*\$
C61'	-0.2184(6)	-0.1385(4)	-0.203(1)	10(2)*\$
C62'	-0.1112(3)	- 0.0688 (9)	-0.180(2)	9(2)*\$
C63'	-0.2206(6)	-0.0116(4)	-0.201(1)	13(3)*\$
C64	-0.1409(6)	-0.2375(5)	$0.232(1)$	9(2)*\$
C65	-0.1626(6)	-0.1677(8)	$0.4705(9)$	11(2)*\$
C66	-0.0427(4)	-0.2115(6)	$0.361(1)$	11(3)*\$
C64'	-0.0673(6)	-0.2434(4)	0.244(1)	17(4)*
C65 ${ }^{\text { }}$	-0.0931(6)	-0.1720(8)	$0.4799(7)$	8(2)*\$
C66 ${ }^{\circ}$	-0.1883(3)	-0.2001(8)	$0.343(2)$	22(5)*\$
C67	- $0.0533(8)$	$0.1199(6)$	$0.2379(8)$	14(2)*
C68	-0.0281(4)	$0.0531(5)$	0.447 (1)	18(2)*
C69	-0.1082(8)	$0.1499(4)$	$0.506(1)$	13(2)*

Atom	\times	y	2	$B\left(\dot{A}^{2}\right)$
	-			
C70	$0.0871(7)$	$0.2586(5)$	$0.130(1)$	14(2)*
C71	- 0.0058 (5)	$0.2704(6)$	D.368(1)	11(1)*
C72	$0.1100(4)$	$0.3342(7)$	D.338(1)	13(1)*
C73	-0.0755(4)	$0.5142(8)$	$0.471(1)$	10(1)*
C74	-0.1375(8)	$0.5506(5)$	$0.2748(9)$	13(1)*
C75	-0.2067(5)	$0.5230(7)$	$0.533(1)$	14(2)*
C76	-0.1827(4)	$0.3735(6)$	-0.191(2)	11(1)*
C77	-0.0511(4)	$0.3922(5)$	-0.258(2)	9(1)*
C78	-0.1065(7)	$0.2805(4)$	-0.313(1)	6.5(9)*
C79	$0.4815(4)$	$0.2312(6)$	$0.437(1)$	8(1)*
C80	0.4366 (8)	$0.1540(5)$	0.2547 (9)	12(1)*
C81	$0.3796(7)$	$0.1505(5)$	$0.529(1)$	11(1)*
C82	$0.2821(5)$	$0.2777(4)$	-0.174(2)	16(2)*
C83	$0.3082(6)$	$0.3992(4)$	-0.246(1)	16(2)*
C84	$0.4060(4)$	$0.3253(7)$	- $0.222(2)$	12(1)*
C85	$0.4130(6)$	$0.4594(8)$	$0.4167(8)$	11(1)*
C86	$0.4321(5)$	$0.5127(4)$	$0.164(1)$	10(1)*
C87	$0.5358(4)$	0.4868 (7)	$0.270(1)$	12(1)*
C88	0.3549(6)	-0.2319(4)	-0.161(2)	14(2)*
C89	$0.3795(5)$	-0.1063(4)	-0.162(2)	12(1)*
C90	$0.2598(4)$	-0.1525(7)	-0.176(1)	10(1)*
C91	$0.4363(4)$	-0.3422(8)	$0.338(1)$	9(1)*
C92	$0.3104(4)$	-0.3832(5)	0.367 (1)	7(1)*
C 93	$0.3603(7)$	-0.3622(6)	$0.5948(7)$	9(1)*
C94	$0.3959(7)$	-0.0482(9)	$0.4512(8)$	59(9)*
C95	$0.4038(5)$	$0.0007(5)$	$0.198(1)$	56(8)*
C96	0.5134(4)	-0.0158(7)	$0.289(2)$	19(2)*
C97	-0.133(2)	$0.043(2)$	$0.072(4)$	10(1)*
C98	-0.0924(4)	$0.1300(4)$	-0.0730(7)	19(2)*
C 99	- $0.1144(6)$	$0.131(1)$	-0.1865(8)	30(4)*
C100	- $0.124(2)$	$0.441(2)$	0.047 (4)	10(1)*
C101	-0.1446(4)	$0.5228(4)$	-0.0791(9)	17(2)*
C102	- $0.2002(4)$	0.5478 (7)	-0.025 (2)	24(3)*
C103	0.369 (1)	$0.239(1)$	$0.055(3)$	8(1)*
C104	$0.3811(8)$	$0.1549(3)$	-0.0959(7)	11(1)*
C105	$0.3923(9)$	$0.1022(4)$	-0.042(1)	12(1)*
C106	0.359(1)	-0.282(1)	$0.138(3)$	6.7〈9)*
C107	$0.3802(3)$	-0.3702(4)	- $0.004(1)$	8(1)*
C108	$0.3271(4)$	- $0.3962(7)$	-0.031(2)	14(2)*

* -- Atoms refined with isotropic thermal parameters.
\$ - Atoms refined at occupancy of $1 / 2$.
Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as:
$(4 / 3) *\left[a^{2} * B(1,1)+b^{2} * B(2,2)+c^{2}\right.$
(3,3) $+a b(\cos$ gamma)*B(1,2)
$+a c(c o s b e t a) * B(1,3)+b c(c o s a l p h a) * B(2,3)]$

Positions of the Centroids of the Cyclopentadienide rings.

Atom	x	y	2
	-	-	-
CP1	-8. 2444	-0.0764	Ø. 1331
CP 2	- 0.0674	-0.0820	0.1665
CP3	-0.1927	0.0181	0.4103
CP4	Ø. 0115	0.4086	0.1439
CP 5	-0.1637	0.3826	0.3585
CP6	-0.1065	0.2853	0.0387
CP7	0.3242	0.2779	0.3930
CP 8	0.2996	0.3806	0.1074
CP9	0.4732	0.3494	0.1343
CP10	0.2722	-0.1532	0.1654
CP11	D. 3198	-0.2235	0.4730
CP12	0.4529	-8.1582	0.1707

Name	$B(1,1)$	$B(2,2)$	$B(3,3)$	$B(1,2)$	B (1,3)	$B(2,3)$	Bequ
U(1)	4.18(6)	6.45 (8)	3.20(6)	-0.31(6)	-0.18(5)	-0.14(6)	4.73(4)
U(2)	6.89(7)	5.43 (8)	4.21 (6)	-1.17(6)	-1.29(5)	$0.70(7)$	5.53(4)
U(3)	$4.68(6)$	$7.2019)$	4.39(6)	$0.98(6)$	-0.17(5)	-0.73(7)	5.54(4)
U(4)	$5.33(7)$	5.69 (8)	3.90(6)	$0.12(6)$	$0.02(5)$	-0.38(7)	5.15(4)
SII	7.6(6)	8.9(8)	5.4(5)	1.1(6)	-2.3(4)	-1.1(6)	$7.2(3)$
SI2	9.4(7)	8.3(8)	$8.2(7)$	-1.1(6)	-1.9(6)	1.7(7)	8.7(4)
SI3	10.7(7)	$8.0(8)$	6.3(6)	-1.9(6)	-1.2(6)	-1.3(6)	8.5(4)
S14	8.5(7)	$7.9(8)$	12.4(9)	1.8(6)	-0.8(7)	0.9(8)	9.8(4)
SI5	10.5(8)	8.3(8)	8.6(7)	1.0(7)	$0.2(7)$	-2.1(7)	9.6(4)
S 16	7.2(6)	8.2(8)	5.5(5)	-0.6(5)	-1.9(4)	1.0(6)	6.9 (3)
S17	9.4(7)	9.3(8)	$6.016)$	$0.6(6)$	-1.8(5)	1.6(6)	8.2(4)
518	$8.7(7)$	13(1)	$6.8(6)$	1.8(7)	-3.0(5)	-6.8(7)	9.3(4)
SI9	10.3(8)	9.5(9)	9.5(7)	-0.6(7)	-1.8(6)	-3.1(7)	9.9(4)
SII 10	5.6(5)	9.4(8)	4.3(5)	$1.2(5)$	-0.6(4)	- $0.2(6)$	6.5(3)
SI11	7.3(6)	8.9(8)	$6.0(6)$	1.8(6)	-0.7(5)	1.6(6)	7.5(3)
SI 12	10.6(8)	8.5(8)	1711)	-1.4(7)	-3.4(8)	-5.4(8)	12.2(5)

The form of the anisotroplc thermal parameter 1s:
$\exp \left[-\varnothing .25\left(h^{2} a^{2} B(1,1)+k^{2} b^{2} B(2,2)+1^{2} C^{2} B(3,3)+2 h k a * b * B(1,2)+2 h l a * C * B(1,3)\right.\right.$
$+2 k 1 b^{\star} c^{*} B(2,3) 31$, where a^{*}, b^{*}, and c^{*} are reciprocal lattice constants.

Table of Root-Mean-Square Amplitudes of Thermal Vibration in Angstroms.

Atom	Min.	Int 'med.	Max.	Atom	Min.	Int 'med.	Max.
U(1)	0.195	0.239	0.291	S 15	0.271	0.353	0.407
U(2)	0.223	0.249	0.314	SI 6	0.254	0.292	0.335
U(3)	0.212	0.267	0.307	SI7	0.260	0.341	0.358
U(4)	0.210	8.265	0.285	S18	0.271	$\varnothing .329$	0.416
SII	0.245	0.303	0.348	SI9	0.278	0.356	0.414
SI2	0.287	0.336	0.366	SI10	0.229	0.269	0.349
SI 3	0.258	0.308	8.404	SI11	0.260	0.299	0.356
SI 4	0.386	0.328	0.414	SI12	0.249	8.388	0.589

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

