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Preparing a mechanical oscillator in non-Gaussian quantum states
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We propose a protocol for coherently transferring non-Gaussian quantum states from optical field
to a mechanical oscillator. The open quantum dynamics and continuous-measurement process,
which can not be treated by the stochastic-master-equation formalism, are studied by a new path-
integral-based approach. We obtain an elegant relation between the quantum state of the mechanical
oscillator and that of the optical field, which is valid for general linear quantum dynamics. We
demonstrate the experimental feasibility of such protocol by considering the cases of both large-
scale gravitational-wave detectors and small-scale cavity-assisted optomechanical devices.

PACS numbers:

Introduction.—It is becoming experimentally possible
to prepare a macroscopic mechanical oscillator near its
quantum ground state by either active feedback or pas-
sive cooling in optomechanical devices [1]. This activity
has been motivated by (i) the necessity to increase the
sensitivity of high-precision measurements with mechan-
ical test bodies up to and beyond the Standard Quan-

tum Limit (SQL) [2], and (ii) the test and interpretation
of quantum theory, when macroscopic degrees of free-
dom are involved. However, for unequivocal evidences
of quantum behavior, merely achieving quantum ground
state, or preparing coherent/squeezed states, or overcom-
ing the SQL is insufficient: In these situations, the os-
cillator initially occupies a Gaussian state and remains
Gaussian, and therefore its Wigner function is positive
and can always be interpreted in terms of a classical
probability. A true demonstration of the quantum be-

havior requires non-Gaussian quantum states or nonlin-

ear measurements [3, 4]. A natural approach is to create
nonlinear coupling between a mechanical oscillator and
external degrees of freedom, e.g., probing mechanical en-
ergy [5–8], coupling the oscillator to a qubit [9–11] or
(low) cavity photon number [12–14]. For optomechanical
devices, this generally requires zero-point uncertainty of
the oscillator displacement xq to be comparable to the
cavity linear dynamical range which is characterized by
the optical wavelength λ divided by the finesse F , i.e.,

λ/(Fxq) . 1. (1)

Since λ ∼ 10−6m and F . 106, we have xq & 10−12m,
which is several orders of magnitude above the current
technology ability.
In this article, we propose a protocol for preparations

of non-Gaussian quantum states which does not require

nonlinear optomechanical coupling. The idea is to inject
a non-Gaussian optical state, e.g., a single-photon pulse
created by cavity QED [15–17], into the optomechanical
devices. Possible configurations are shown schematically

FIG. 1: (Color online) Possible schemes for preparing non-
Gaussian quantum states of mechanical oscillators. The
left is a Michelson interferometer, similar to an advanced
gravitational-wave detector with kg-scale suspended test
masses [18, 19]. The right panel shows a small coupled-cavity
scheme with a ng-scale membrane inside a high-finesse cavity
[7]. In both cases, a non-Gaussian optical state (a photon
pulse) is injected into the dark port of the interferometer (lo-
cal oscillator light for homodyne detection is not shown).

in Fig. 1. The radiation pressure induced by the photon
pulse is coherently amplified by the classical pumping
at the bright port, and the qualitative requirement for
preparing a non-Gaussian state is

λ/(F xq) .
√

Nγ . (2)

Here Nγ = I0 τ/(~ω0) (I0 the pumping laser power
and ω0 the frequency) is the number of pumping pho-
tons within the duration τ of the single-photon pulse,
and we gain a significant factor of

√

Nγ compared with
Eq. (1), which makes it experimentally achievable. This
radiation-pressure-mediated optomechanical coupling is
similar to what was considered in Refs. [2, 20–22]. How-
ever, there are significant differences: (i) This protocol
includes both finite interaction time and photon shape, in
which case neither the rotating-wave approximation [20]
nor the three-mode approach [21] applies; (ii) To better
model an actual experiment, we consider a continuous
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measurement process rather than a single measurement
at some given instant as assumed in Ref. [22]. This takes
into account all the information of the oscillator motion
that is distributed in the output field, and thus allows us
to prepare a nearly pure non-Gaussian quantum state of
the oscillator; (iii) There are non-trivial quantum corre-
lations at different times (non-Markovianity) due to the
finite-duration photon pulse, which cannot be treated by
the conventional stochastic-master-equation (SME) ap-
proach [23–27]. Here we develop a path-integral-based
approach, and it applies to general linear quantum dy-
namics and continuous measurement process.
A simple case.—To illustrate the non-Gaussian state-

preparation procedure, we first make an order-of-
magnitude estimate of experimental requirements by con-
sidering a simple case where the cavity decay is much
faster than all other time scales and the oscillator can be
approximated as a free mass. The corresponding input-
output relations, in the Heisenberg picture, simply read:

˙̂x(t) = p̂(t)/m , ˙̂p(t) = α â1(t) + F̂th(t) , (3)

b̂1(t) = â1(t) , b̂2(t) = â2(t) + (α/~)x̂(t) . (4)

Here x̂ and p̂ are position and momentum; the coupling
constant α ≡ 8

√
2(F/λ)

√

~I0/ω0; â1,2 and b̂1,2 are in-
put and output optical amplitude and phase quadratures,
with [â1(t), â2(t

′)] = [b̂1(t), b̂2(t
′)] = i δ(t− t′); α â1 is the

back-action noise; F̂th is the force thermal noise.
Suppose at t = −τ the oscillator was prepared in some

initial Gaussian state |ψm〉 =
∫∞

−∞
ψm(x)|x〉 dx (the pro-

cedure is detailed in Ref. [28]). Subsequently, a photon
pulse is injected into the dark port of the interferometer
and starts to interact with the oscillator. During this
interaction, phase quadrature b̂2(t) is continuously mea-
sured by a homodyne detection, until the photon pulse
ends at t = 0. If photon pulse (i.e., τ) is short such that
oscillator position almost does not change, we obtain:

X̂(0) = X̂(−τ), P̂ (0) = P̂ (−τ) + κ Â1 + P̂th , (5)

B̂1 = Â1, B̂2 = Â2 + κ X̂(0) . (6)

We have normalized the oscillator position and mo-
mentum by their zero-point uncertainties: X̂ ≡ x̂/xq
[xq ≡

√

~/(2mωm)] and P̂ ≡ p̂/pq [pq ≡
√

~mωm/2];

Âj =
√

1/τ
∫ 0

−τ
dt âj(t) (j = 1, 2) which has an uncer-

tainty of unity (i.e., ∆Âj=1); B̂j =
√

1/τ
∫ 0

−τ dt b̂j(t);

P̂th =
∫ 0

−τ
dt F̂th(t)/pq; κ ≡ α

√
τ/~ = 8

√
2
√

NγF xq/λ.
Eqs. (5) and (6) describe the joint evolution of the os-

cillator, the optical field and heat bath in the Heisen-
berg picture (with B̂j viewed as the evolved versions

of Âj). They transform back into an evolution oper-

ator of Û = exp[i(κÂ1X̂ + P̂thX̂)] in the Schrödinger
picture. The corresponding density matrix of the sys-
tem at t = 0 is given by ρ̂ = Û |ψo〉|ψm〉ρ̂th〈ψm|〈ψo|Û †,
where |ψo〉 =

∫∞

−∞
ψo(A2)|A2〉 dA2 is the initial non-

Gaussian optical state, and ρ̂th describes the heat

FIG. 2: (Color online) A schematic of the non-Gaussian state-
preparation process. The interaction entangles the oscillator
state and the optical state (depicted by their Wigner func-
tions). Subsequent measurements of the optical fields dis-
entangle the system and projects the oscillator into a non-
Gaussian conditional quantum state.

bath associated with F̂th. Given homodyne detection
of B̂2 with a precise result y, the oscillator is pro-
jected into the following conditional state: ρ̂m(y) =

Trth

[

〈y|Û |ψo〉|ψm〉ρ̂th〈ψm|〈ψo|Û †|y〉
]

. In the ideal case

of negligible thermal noise, the conditional wave function
ψc
m(x) of the mechanical oscillator is simply

ψc
m(x) = ψo(y − κx)ψm(x) (7)

—the optical state is mapped onto the mechanical oscil-

lator as illustrated in Fig. 2. A complete mapping oc-
curs when ψm(x) ≈ const, and this requires the momen-
tum fluctuation due to optomechanical coupling be larger
than the initial one, namely, κ > 1 or equivalently

λ/(F xq) < 8
√
2
√

Nγ , (8)

which justifies Eq. (2).
When thermal noise is considered, non-Gaussianity can

still remain, as long as thermal noise induces a smaller
momentum fluctuation than the optomechanical interac-
tion. This condition, in the high-temperature limit —
〈F̂th(t)F̂th(t

′)〉 = 4mγmkBTδ(t− t′), reads

λ/(F xq)
√

nth/Qm
√
ωmτ < 8

√
2
√

Nγ (9)

with Qm ≡ ωm/γm the mechanical quality factor and
nth ≡ kBT/(~ωm) the thermal occupation number.
These two conditions set the benchmarks for a successful

non-Gaussian state-preparation experiment. They can
be satisfied with experimentally feasible specifications as
shown in Table I, in which the first row is similar to the
case of large-scale gravitational-wave detectors [19] and

TABLE I: Possible experimental specifications

λ F m ωm/2π Qm T τ

large scale 1µm 6000 4kg 1Hz 108 300K 1ms

small scale 1µm 104 1ng 105Hz 107 4K 0.01ms
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the second row is for small-scale optomechanical devices
(e.g., the one in Ref. [7]). These qualitative results will
be justified by a rigorous treatment below.
General formalism.—In general, the optomechanical

interaction strength is finite and the oscillator has non-
negligible displacement during the interaction, the cav-
ity bandwidth can be comparable to the mechanical fre-
quency, and thermal noises can be non-Markovian. All
these factors obstruct finding a finite set of variables sim-
ilar to (X̂, P̂ , Â1, Â2) that satisfy a closed set of equations
[cf. Eqs. (5) and (6)]. It is therefore hard to determine,
a priori, the finite number of observables that one has
to measure to project the oscillator into a desired condi-
tional state.
To address these issues, we adopt the Heisenberg pic-

ture starting from t = −∞, and write down the initial
density matrix as ρ̂in = ρ̂m(−∞) ⊗ ρ̂o ⊗ ρ̂th. Details of
ρ̂m(−∞) for the oscillator and whether the initial state is
truly a direct product, do not matter, because the system
is stable, and the initial position and momentum will de-
cay away after several mechanical relaxation times. For
the optical state, we consider an arbitrary spatial mode
given by f(x/c), whose annihilation operator is

Γ̂ ≡
∫ 0

−∞
dtf(t)[â1(t) + iâ2(t)]/

√
2. (10)

A general state of this mode can be written in the P-
representation as ρ̂o =

∫

dζ P (ζ)|ζ〉〈ζ|, where vector ζ ≡
(ℜ[ζ],ℑ[ζ]) and |ζ〉 ≡ exp[ζ Γ̂† − ζ∗Γ̂]|0〉.
A continuous measurement of the output optical

quadrature ŷ(t) ≡ cos θ b̂1(t) + sin θ b̂2(t) for t ∈ (−∞, 0],
projects the entire system into a conditional state:

ρ̂c[y(t)] = P̂y ρ̂inP̂y/Tr[P̂y ρ̂inP̂y]. (11)

The operator P̂y projects the output field into the sub-
space where ŷ(t) agrees exactly with the measured re-
sults y(t). To simplify output correlations at different
times, we can causally whiten ŷ(t) into ẑ(t) such that
〈ẑ(t)ẑ(t′)〉 = δ(t− t′), as detailed in Ref. [28]. Since the
output quadratures at different times also commute, i.e.,
[ẑ(t), ẑ(t′)] = 0, the projection P̂y can then be expressed
as the product of Dirac-δ functions that project each ẑ(t)
into its measured value z(t):

P̂y = P̂z =
∏

−∞<t<0

δ[ẑ(t)− z(t)]

=

∫

D[ξ] exp
{

i
∫ 0

−∞dt ξ(t)[ẑ(t)− z(t)]
}

. (12)

with
∫

D[ξ] denoting the path integral. This allows us to
take the entire measurement history for z (or equivalently
y) and project into the corresponding subspace in a single
step, instead of having to successively project output-
field degrees of freedom continuously at each time step
as in the case of SME approach, thereby allowing a non-
Markvonian input field.

The generating function for the oscillator state is then

J [α; z(t)] ≡ Tr
[

eiα x̂′
0 ρ̂c[z(t)]

]

, (13)

where α ≡ (αx, αp), x̂0 ≡ (x̂(0), p̂(0)), and superscript ′

denotes transpose. From Eqs. (11) and (12), we have

J =

∫

dζ P (ζ)

∫

D[ξ] ei[ζ
∗Γ̂−ζ Γ̂†, B̂]〈0|eiB̂|0〉 (14)

with B̂ ≡ α x̂′
0 +

∫ 0

−∞
dt ξ(t)[ẑ(t) − z(t)]. This can be

evaluated by decomposing x̂0 ≡ R̂ +
∫ 0

−∞ dtK(−t)ẑ(t)
where K ≡ (Kx,Kp) are causal Wiener filters, K(−t) =
〈0|ẑ(t)x̂0|0〉 and R̂ ≡ (R̂x, R̂p) are parts of displace-
ment and momentum uncorrelated with the output:
〈0|R̂x,pẑ|0〉 = 0. Completing path integral, we obtain

J =

∫

dζe−[αVcα
′+‖z−2 ζL′‖2]/2+iα (ζ∗γ′+ζγ†+x′

c)P (ζ).(15)

Here ‖a‖2 ≡
∫ 0

−∞
a(t)a∗(t)dt and we have defined vectors

γ ≡ [Γ̂, R̂] and L ≡ (ℜ[L],ℑ[L]) with L(t) ≡ [Γ̂, ẑ(t)],
which characterize the extent of photon mode influence
on the fluctuations of x̂(0) and p̂(0), and output field
ẑ; quantities Vc ≡ 〈0|R̂T R̂|0〉 and xc ≡ (xc, pc) =
∫ 0

−∞ dtK(−t)z(t) are the conditional covariance matrix
and means of x̂(0) and p̂(0) when the optical state is vac-
uum. The resulting conditional Wigner function reads

W [x; z(t)] =

∫

dζe−[χV
−1

c χ′+‖z−2 ζL′‖2]/2P (ζ) (16)

with χ ≡ x− xc − ζ∗γ − ζγ∗. This formula directly re-

lates the injected optical state to the state of the mechan-

ical oscillator. In deriving it, we only use the linearity of
quantum dynamics rather than specific equations of mo-
tion. For cavity-assisted optomechanical system, one can
obtain γ, Vc, K and L from input-output relations in
Refs. [29–31] by using formalism developed in Ref. [28].
Single-photon case.—As an example, we consider the

simplest case of a single-photon injection, with ρ̂o =
|1〉〈1| and P (ζ) = e|ζ|

2

∂2δ(2)(ζ)/∂ζ∂ζ∗. From Eqs. (16),
it gives

W [x; z(t)] =
1− γV−1

c γ† − ‖L‖2 + |γV −1
c δx′ + Z|2

1− ‖L‖2 + |Z|2
1

2π
√
detVc

exp

[

−1

2
δxV−1

c δx′

]

(17)

where δx ≡ x − xc and Z ≡
∫ 0

−∞
dt z(t)L(t). This

Wigner function depends on the measurement result z(t),
t ∈ (−∞, 0] through four quantities, the two components
of xc (through δx) and the real and imaginary parts of
Z: Z determines the shape of W , and xc describes the
translation of W . The random vector Z = (ℜ[Z],ℑ[Z])
has a two-dimensional probability density of

w[Z] =
1− ‖L‖2 +ZZ ′

2π
√
detVL

exp[−ZV
−1
L Z ′/2], (18)
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FIG. 3: (Color online) Distributions of measurement results
(left panels) and the corresponding Wigner function of the os-
cillator given the most probable measurement results (middle
panels) and less probable results but with a significant non-
Gaussianity (right panels). The upper panels show the case
of non-Gaussian state-preparation with future gravitational-
wave detectors, and the lower panels for small-scale devices.
We used normalized coordinates (with respect to xq and pq)

and introduced Ωq ≡
√

~m/α2.

where matrix VL ≡
∫ 0

−∞ dtL′L.
The pre-factor in the Wigner function [cf. Eq. (17)] is

a second-order polynomial in x, which resembles that of
a single-photon. For strong non-Gaussianity, significant
γ and ‖L‖2 (making γ terms in the pre-factor to prevail)
are essential — these physically correspond to requiring
that the photon mode must influence the fluctuation of
x̂ and p̂, as well as ẑ strongly. It in turn requires the
photon coherence time to be comparable to the measure-

ment time scale characterized by K. It is possible for
small-scale optomechanical devices with high-frequency
mechanical oscillators. The corresponding photon can
be generated by a cavity QED scheme [15–17]. While for
large-scale gravitational-wave detectors, the time scale is
∼ 10 ms and it is challenging to create photons with
comparable coherent length. However, developments of
low-frequency squeezing source [32] will eventually solve
this issue.
With Eq. (17), we can justify the simple-case qualita-

tive results. We use the same specifications listed in Ta-
ble I. As an example, we assume a photon shape of f(t) =
√

2γfe
(γf+iωf )t and specify that ωf/2π = γf/2π = 70 Hz

in the case of future gravitational-wave detectors, and
ωf/ωm = 0.1, γf/ωm = 0.3 for small-scale experiments.
The Wigner functions for some given measurement re-
sults are shown in Fig. 3. In both cases, there are neg-
ative regions in the Wigner function, which is a unique
feature of the quantumness. The prepared non-Gaussian
quantum state can be independently verified using the
quantum tomography protocol developed in Ref. [33]
that allows sub-Heisenberg accuracy of Wigner function

reconstruction, which is crucial for revealing those nega-
tivity regions.
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