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Abstract

The mechanism by which an apparently uniform population of cells can generate a heterogeneous population of
differentiated derivatives is a fundamental aspect of pluripotent and multipotent stem cell behaviour. One possibility is that
the environment and the differentiation cues to which the cells are exposed are not uniform. An alternative, but not
mutually exclusive possibility is that the observed heterogeneity arises from the stem cells themselves through the
existence of different interconvertible substates that pre-exist before the cells commit to differentiate. We have tested this
hypothesis in the case of apparently homogeneous pluripotent human embryonal carcinoma (EC) stem cells, which do not
follow a uniform pattern of differentiation when exposed to retinoic acid. Instead, they produce differentiated progeny that
include both neuronal and non-neural phenotypes. Our results suggest that pluripotent NTERA2 stem cells oscillate
between functionally distinct substates that are primed to select distinct lineages when differentiation is induced.
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Introduction

A fundamental goal of stem cell biology is to understand the

mechanism(s) by which stem cells select particular pathways of

differentiation. Embryonic stem (ES) cells provide a surrogate for

in vivo development, enabling the analysis of multilineage

differentiation within an in vitro environment. Multilineage

differentiation of ES cells can be demonstrated through the simple

formation of embryoid bodies (EBs), which yield cells represen-

tative of all three germ layers [1,2]. The cell-rich, three

dimensional structure of EBs increases intercellular contact,

stimulating the creation of diverse cell signalling niches that

support cell differentiation to a multitude of lineages. The

trajectory of differentiation within EBs can also be influenced by

simple parameters such as EB size, so that manipulation of EB size

can be used as an effective means to bias differentiation to desired

cell types [3,4,5]. In the absence of EB formation, ES

differentiation can be directed along particular lineages by the

use of defined media and/or selective passaging techniques,

exemplified by numerous neural specific differentiation protocols

[6,7,8].

However, it is not always clear whether the prescribed culture

conditions actively direct differentiation to the desired cell fate or

affect the outcome by promoting selective survival or proliferation

of particular cell types. Cell fate choices of stem cells can be

actively promoted by the manipulation of appropriate signalling

pathways; for example exploitation of the Notch and SMAD

signalling pathways can be used to direct ES cells to differentiate

along the neural lineage [9,10,11]. However, identifying the

relevant signalling pathway and modulating it to direct differen-

tiation can be difficult, due to subtle differences in cell phenotypes

affecting the cellular interpretation and response to particular cues.

Thus, the phenotypic output of cell differentiation is not only

influenced by culture conditions and signalling pathway activity

but also by the phenotype of cells in the starting population. If the

starting population of cells are heterogeneous, their differentiated

derivatives may also be heterogeneous. This point is especially

relevant when considering the demanding problem of maintaining

consistent in vitro culture conditions.

Apparently homogeneous stem cell populations may be found to

contain discrete subsets of cells that could not be initially

recognised because of the absence of suitable markers. For

example, human hematopoietic stem cells (HSCs) capable of

multilineage hematopoietic repopulation can be purified on the

basis of CD34+ expression and the absence of lineage markers, but

this seemingly homogeneous population of stem cells was

subsequently found to comprise cells that possess differing

capabilities of multilineage repopulation, revealing the existence

of short-term and long-term repopulating cells [12]. The

heterogeneity seen within the HSC population has also been

observed in leukemic stem cells, which were also once considered

to be homogeneous [13]. In another example, in the intestinal

crypts, stem cells were traditionally divided into a self renewing

stem cell compartment and a transit amplifying compartment.

However, more recent evidence suggests that the intestinal crypt

stem cell compartment can be repopulated in some circumstances

by cells that had apparently converted to transit amplifying cells.

The repertoire of markers available for classifying stem cells is
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often limited, and discrimination between classes of stem cells

ultimately requires functional testing [12,13,14].

Within the stem cell compartment there is another more subtle

form of heterogeneity that is possible, whereby the cells reversibly

interconvert between substates that are functionally non-equivalent

while retaining the capacity for multilineage differentiation [15]. For

example, mouse ES cells are capable of switching reversibly between

Nanog positive and negative states, losing and gaining expression of a

gene previously proposed as a key regulator of pluripotency [16].

Interconvertible Stella (+) and Stella (2) mouse ES cells have been

observed and proposed to represent the switch between functionally

distinct mouse ES cells and epiblast cells [17]. Human ES cells in

culture may also be divided into hierarchical subsets that nevertheless

can interconvert. In one study of human ES cells, we found evidence

for subsets that differentially express the surface antigen SSEA3, and

hypothesised that SSEA3(+) and SSEA3(2) cells can interconvert,

and that the SSEA3(2) cells are closer to initiating differentiation

[18]. In another study, the subsetting of human ES cells on the basis

of the GCTM-2 and CD9 antigens also appeared to dissect the early

stages of human ES differentiation, revealing the co-expression of

pluripotency associated and lineage specific transcription factors

[19]. Cells that express both sets of transcription factors may

represent undifferentiated cells, lineage primed cells or transitional

cell states in which the pluripotency markers have yet to be fully

repressed. In the absence of functional analysis from single cell assays

the nature of such cells remains elusive.

These reports are consistent with the existence of discrete

interconvertible subsets of cells existing within the stem cell

compartment, and that some of these subsets are closer to exiting

the stem cell compartment than others. If this is the case, it might

also be that different subsets are poised/primed to enter different

pathways of differentiation when exposed to appropriate cues that

promote differentiation [15]. Such ‘‘prepatterned’’ substates

within the stem cell compartment could be indicated by the

observations of Laslette et al (2007) in human ES cells, while

previously Hu et al (1997) observed expression of lineage specific

transcripts in single hematopoietic stem cells, which they suggested

represents ‘lineage priming’ [20]. Thus an apparently homoge-

neous population of stem cells may actually comprise cells biased

with respect to their differentiation potential, which are capable of

generating a non-uniform differentiated population even when

exposed to a uniform environment.

We have tested this hypothesis using the pluripotent human EC

stem cell line, NTERA2, the differentiation of which can be easily

controlled by exposure to retinoic acid (RA) [21]. Under standard

culture conditions these stem cells can be maintained with minimal

spontaneous differentiation, but exposure to all-trans-retinoic acid

(RA) for 1–2 days is sufficient to cause almost all the cells to commit

to differentiate irreversibly, after which they generate a mixed

culture of neurons and other cell types. However, although

prominent, the neurons only appear after 12–14 days and constitute

about 125% of the differentiated population [21]. The nature of

the other differentiated cells remains unclear although they are

heterogeneous [22]; for the purpose of the present study we

classified them as ‘non-neuronal’. Using this system we have now

found that the individual undifferentiated EC stem cells appear to

exist in interconvertible pro-neuronal or pro-non-neuronal states at,

or before the point when they commit to differentiate.

Results

Clonogenic differentiation of NTERA2 EC cells
Functional analysis of an individual cell’s capacity to differen-

tiate along the neural lineage is not amenable to clonal plating of

NTERA2 cells due to an absence of neural differentiation in low

density conditions, ,6500 cells/cm2 (Tonge, P.D and Andrews,

P.W. [in press] Retinoic acid directs neuronal differentiation of

human pluripotent stem cell lines in a non-cell-autonomous

manner. Differentiation). Thus, we generated a genetically marked

clonal subline, NTERA2.Tom, which constitutively expresses the

fluorescent protein, ‘tdTomato’. The NTERA2.Tom subline was

clonal and used within 10 passages of cloning, to reduce the

chance of genetic diversity through chromosomal drift. Cytoge-

netic studies revealed no heterogeneity in the fluorescent cell line

with respect to the karyotype of the cells. The cells were also

homogeneous with respect to the expression of stem cell associated

transcription factors (OCT4, SOX2 and NANOG) and the surface

antigen SSEA4 (Figure 1A).

Single NTERA2.Tom cells were seeded with a background of

wild type NTERA2 cells at a density that permits neuronal

differentiation (15000 cells/cm2), and induced to differentiate by

the addition of RA. After three weeks the progeny derived from

individual NTERA2.Tom cells were assessed for a neuronal or

non-neuronal phenotype on the basis of b-III tubulin expression

and cell morphology. As the NTERA2.Tom subline appears

phenotypically homogeneous it might be expected that each RA

treated cell would yield differentiated colonies containing similar

proportions of neurons. However, the differentiated colonies

derived from single NTERA2.Tom cells did not conform to a

single stereotype, and the percentage of neurons in each colony

ranged between 0 to 100% (Figure 1B). The presence of colonies

composed entirely of neurons, or containing no neurons

(Figure 1B, C) suggests that the eventual phenotype of the

differentiated cells is a consequence of a lineage decision made at

the point of induction to differentiate.

Although the NTERA2.Tom cell line was clonal, we confirmed

the absence of parallel co-existing variant cells that stably possess

differing propensities to yield neurons upon RA exposure, by

recloning the NTERA2.Tom cells and testing several subclones for

neuronal differentiation. Each subclone gave similar proportions

of neurons following differentiation (Figure S1), indicating that the

appearance of distinct neuronal and non-neuronal differentiated

clones was not due to distinct sublines of cells within the

NTERA2.Tom cell line.

On the premise that undifferentiated NTERA2 stem cells are

biased with respect to neuronal differentiation, and since lineage

biased cells were not evident upon subcloning, we hypothesized

that the lineage biased cell substates are interconvertible. To test

whether the undifferentiated stem cell population consists of such

interconvertible substates we carried out an experiment in which

the addition of RA to cultures of plated cells was delayed for

variable lengths of time, allowing undifferentiated stem cells to

divide at least once before initiation of differentiation. In this case,

if the lineage biased substates are readily interconvertible, it was

anticipated that allowing the NTERA2.Tom cells to divide prior

to RA exposure would increase the number of mixed colonies at

the expense of homogeneous neural or non-neural colonies, since

the initial single EC cell would give rise to 2, 3 or 4 such cells,

which could adopt either the pro-neural or pro-non-neural state,

before being exposed to RA.

When RA induction of differentiation was postponed by 24 h or

48 h after plating of cells, the number of mixed phenotype colonies

did increase at the expense of homogeneous neuronal and non-

neural colonies (Figure 2A). Postponing RA treatment by 72 h

further increased the number of mixed colonies with less than five

percent of differentiated colonies lacking neurons when RA addition

had been postponed 72 hours, although in this case the NTERA2.

Tom colonies were too large and compact to accurately quantify
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percentage of neurons (Figure S2). As the delay between cell plating

and RA addition increased, the percentage of neurons in each

colony converged to the figure that represents average neuronal

yield of a population of RA treated NTERA2 stem cells (426%).

Although delaying RA exposure altered the neuronal content of

single cell derived differentiated colonies the percentage yield of

neurons in the overall cell culture remained unchanged (Figure 2B).

Commitment to differentiate is not instantaneous but occurs over

a period of 24–48 hours (Figure S3A). In non-synchronous cultures

about 50% of the cells divide in the first 24 h (Figure S3B) so that a

proportion of colonies would arise from the differentiation of more

than one stem cell, which might be in alternate pre-patterned states

at the time of commitment. That the inferred pro-neuronal and pro-

non-neuronal substates can interconvert explains why there are also

some mixed colonies even when RA induction is initiated at the time

of seeding the NTERA2.Tom cells.

Experimental Data Modelling Results
To consider our interpretation of these results further, we

carried out a mathematical simulation of stem cell differentiation,

considering two opposing models by which undifferentiated

NTERA2 stem cells can give rise to a population composed of

two types of differentiated cells, neuronal or non-neuronal

(Figure 3). The first model (M1) assumes that commitment to

differentiation and lineage selection occurs simultaneously in

response to RA, whereas the second model (M2) assumes that

commitment to differentiation occurs first, and that lineage

selection occurs subsequently after several cell divisions.

In M1, a fraction, p100, of undifferentiated cells, En, is biased to

the neuronal lineage and eventually only yields neuronal progeny,

whereas the remaining fraction, Eu, of undifferentiated cells, p0

(p100+p0 = 1), is non-neuronal biased and only gives rise to non-

neuronal cells. In standard culture conditions, in the absence of

differentiation cues, the undifferentiated cells are assumed to

interconvert freely between the neuronal and non-neuronal biased

states, so that following cell division the fraction of neuronal biased

cells remains constant. We further assume that after exposure to

RA, the cells that have selected a neuronal fate may continue

dividing as committed neuronal precursors, Tn, and at each cell

division these may generate similar proliferating precursors with a

probability pTn, or differentiate into terminal non-dividing

neurons, N, with a probability pN. For simplicity we assume that

the cells selecting a non-neuronal fate, D, continue dividing. By

contrast, in M2 the undifferentiated cells exist in a single, unbiased

state, E, and after RA treatment only yield uncommitted

precursors, Tu, that continue dividing. At each cell division, these

uncommitted precursors may yield similar uncommitted precur-

sors with a probability pu,, or proliferating precursors committed to

a non-neuronal fate with a probability pdu, or terminally

differentiated neurons with a probability pnu.

To decide which model better describes the clonal differentiation

of NTERA2.Tom EC cells, we compared the probability density

functions of the percentage number of neurons n in a colony {f0(n),

f24(n), f48(n)}, (obtained from the biological data shown in Figure 2),

for the three cases in which RA was added at 0 hours, 24 hours and

48 hours after initial seeding), with the probability density functions

of n {m1,0(n|h1), m1,24(n|h1), m1,48(n|h1)} and {m2,0(n|h2),

m2,24(n|h2), m2,48(n|h2)} generated through Monte Carlo simula-

tions of models M1 and M2 respectively (Figure 4A). The parameter

vectors associated with each model h1 = {p0, p100 = 1- p0, pTn,

pN = 1- pTn} and h2 = {pnu, pu, pdu = 1- pnu - pu} were estimated from

data using a grid search approach. As a measure of closeness or

goodness-of-fit of {f0(n), f24(n), f48(n)} with respect to {m1,0(n|h1),

m1,24(n|h1), m1,48(n|h1)} and with {m2,0(n|h2), m2,24(n|h2),

m2,48(n|h2)} we used the Kullback–Leibler (KL) divergence

criterion [23,24]. To demonstrate the applicability of this approach

to distinguish between the two hypothesized models, we first carried

out a numerical simulation study using data generated through

Monte Carlo simulations of M1 and M2 with a known set of

parameters (Figure S4).

For the models estimated from the experimental observations,

model M1 outperformed M2 when RA was delayed 24 or 48 hours

(Figure 4A and Table 1). However, in the case when RA exposure

commenced upon cell plating, neither model performed well.

Essentially, model M1 predicts that only two types of colonies may

form: colonies that contain 100% neurons or 0% neurons. This is

a direct consequence of the simplifying assumption that single

NTERA2.Tom cells commit to differentiate immediately upon RA

exposure at 0 hours, prior to any cell division, i.e. that the cells are

fully synchronised. In reality this is not the case: only about 50% of

cells divide within the first 24 hours (Figure S3) with the first

division for most cells occurring at any time during the first

48 hours after seeding. Also, whereas exposure to RA for $3 days

induced over 99% of NTERA2 stem cells to differentiate, only

50% of cells commit to differentiate when exposed to RA for

24 hours (Figure S3A). If Model M1 is correct and lineage biased

(interconvertible) substates exist, an undifferentiated stem cell

could divide and the two progeny acquire discrete substates during

the period immediately following exposure to RA. If we consider

that some RA exposed NTERA2.Tom cells divide before they

commit to differentiate, then the biological 0 hours RA experi-

ment is actually represented by a mix of the 0 hour and 24 hour

RA model data. To investigate this further, for each model we

computed density functions using a mixture of simulated data (0 h

and 24 h, 24 h and 48 h etc). These were compared to the

biological data (Figure 4B). As it can be seen in Table 2, the

relative entropies between the model-generated mixed density

functions and density functions estimated from experimental data

were reduced significantly, particularly for Model M1. These

results demonstrate that out of the two proposed models of lineage

choice during differentiation, the committed stem cell model M1

best predicts the distribution of the percentage number of neurons

in colonies derived from individual stem cells.

Discussion

Much of the heterogeneity seen in populations of stem cells

might be compatible with transcriptional ‘noise’ that does not have

functional significance. However, our present results indicate that

individual pluripotent NTERA2 human EC cells do exist in

functionally distinct substates that are primed to adopt specific

eventual fates before they commit to differentiate. Further, these

‘pre-patterned’ substates are interconvertible while the cells still

Figure 1. Differentiation Characteristics of Individual Stem Cells. (A) Flow cytometric analysis of undifferentiated stem cell markers in the
clonal NTERA2.Tom cell line. Black line depicts P3X negative control and green depicts antigen specific expression (OCT4, SOX2, NANOG and SSEA4).
(B) Graph depicting the percentage of TUJ1 positive neurons within differentiated colonies derived from individual RA treated NTERA2.Tom stem
cells. (C) Images of differentiated NTERA2.Tom colonies derived from individual NTERA2.Tom cells on a background of wildtype NTERA2 cells. Cell
were exposed to RA for 21 days (Green - bIII tubulin, Blue - Hoechst) White arrows depict bIII tubulin positive NTERA2.Tom neurons. Scale bar
represents 50 mM.
doi:10.1371/journal.pone.0010901.g001
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retain a stem cell phenotype. Our interpretation of the

experimental data was supported by a Monte Carlo simulation

of the two opposing models, namely that selection of eventual

neuronal or non-neuronal fates depends upon events occurring

before or co-incident with induction of differentiation, rather than

following cell commitment to differentiate.

The possibility that heterogeneity within stem cell populations

may have functional consequences for stem cell self-renewal,

commitment to differentiation, and lineage choice upon differen-

tiation is an idea that has been developing for a number of years

[15]. In this context, heterogeneity does not refer to mixtures of cells

that become evident as better tools evolve for distinguishing distinct

cell types within a population, but rather represents the existence of

multiple, interconvertible cell states that together constitute a stem

cell compartment. Such heterogeneity became apparent when

single cell PCR analyses of hematopoietic stem cells revealed

‘lineage priming’, the expression of lineage related genes in

individual cells that still expressed a stem cell phenotype, [20,25].

Lineage priming suggests that the stem cells activate specific genes

associated with their differentiated progeny before they commit to

differentiate. Similar heterogeneity within the stem cell compart-

ment occupied by mouse ES cells and corresponding cells in the

mouse conceptus may also be pertinent to fate decisions in early

embryogenesis. Expression of the key regulatory gene, Nanog,

fluctuates not only in mouse ES cells but also in the inner cell mass

[16]. High levels of Nanog expression appear to stabilise the

undifferentiated state of these pluripotent cells, whereas loss of Nanog

expression appears to represent a step towards eventual differen-

tiation; although a lack of Nanog expression is compatible with the

cells retaining an undifferentiated pluripotent phenotype, such cells

are more unstable and prone to differentiate. Co-expression in early

embryonic cells of genes associated with the stem state, such as Oct4,

with genes associated with specific fates, such as Cdx2 (trophecto-

derm) or Gata6, or Pdgfra (extraembryonic endoderm) have been

observed [26]. It has been argued that the pluripotent ES cell state

represents a metastable ground state in which a fluid transcriptome

allows for its multilineage potential [27].

A theoretical basis for this phenomenon has been provided by a

model of a myeloid stem cell, based upon a simple gene regulatory

network of the two transcription factors associated with monocyte

and erythroid differentiation, Pu.1 and GATA1 [28,29]. This

model predicts not only the existence of two stable states,

mathematically described as attractors [30], corresponding to the

differentiated monocytes and erythrocytes, but also another

metastable attractor corresponding to the uncommitted stem cells,

in which both transcription factors are expressed at low level.

Recently, it was reported that fluctuations in the levels of Pu.1 and

GATA1 within such a metastable stem cell attractor biases the fate

decisions of the stem cells when they commit to differentiate, but

this was not confirmed at the single cell level [31]. Gene regulatory

networks involving Oct4, Sox2 and Nanog may similarly define

the pluripotent state of ES cells, by interacting with and

suppressing other networks that specify differentiation along

particular lineages [27].

An alternative to a strict gene regulatory network mechanism of

lineage priming or pre-patterning, would be a mechanism

involving epigenetic regulation. It has been recognised for many

years that pluripotent stem cells have a more open chromatin

structure than their differentiated derivatives [32], perhaps

permitting ‘leaky’ gene expression. Much more recently it was

reported that in ES cells the histones associated with the chromatin

of various developmentally regulated genes, notably transcription

factors, show bivalent repressive and activation marks [33,34].

Such chromatin modifications may play a key role in lineage

specification [35] and a model involving ‘‘histone modification

pulsing’’ has been suggested as a mechanism whereby individual

pluripotent cells may acquire differential fates [36]. Whether

interconvertible lineage primed, or pre-patterned substates of

pluripotent stem cells are maintained by dynamic gene regulatory

networks, or by epigenetic factors, or a combination of both, the

Figure 2. Delayed Initiation of Differentiation Alters Phenotype of Single Cell Derived Differentiated Colonies. (A) Analysis of neuronal
yield within differentiated colonies derived from individual RA treated NTERA2.Tom stem cells. NTERA2.Tom cells were plated on a background of
wildtype NTERA2 cells and exposed to RA at varying time points after cell plating (O, 24, 48 and 72 hours). .100 colonies were analysed for each time
point. Data is derived from a single experiment and representative of three independent experiments. (B) Neuronal yield of RA treated NTERA2 cells
on a population basis. Cells were exposed to RA at either 0, 24 or 48 hours after cell plating. Percentage of neurons calculated after 21 days RA
exposure.
doi:10.1371/journal.pone.0010901.g002

Figure 3. Models of Lineage Selection During Cell Differenti-
ation. (A) Model M1 schematic describing the committed scenario
where NTERA2 cells make the neural/non-neural lineage choice upon
induction to differentiate. Grey arrow denotes a choice between two
theoretical substates. En = undifferentiated stem cell with a selected
neural fate, Ed = undifferentiated stem cell with a selected non-neuronal
fate, Tn = neuronal progenitors, D = non-neuronal progenitors and non-
neuronal differentiated cells, N = neuron, p100 = probability to choose
neuronal fate, p0 = probability to choose non-neuronal fate, pTn = prob-
ability of neuronal progenitors to proliferate, pN = probability to
differentiate into neurons. (B) Model M2 schematic describing the
uncommitted scenario when RA was added at time of cell plating.
E = undifferentiated stem cell with unselected fate, N = neuron, D = non-
neuron, Tu = uncommitted progenitor with unselected fate, pnu = prob-
ability to differentiate into neurons, pu = probability of progenitor Tu to
proliferate., pdu = probability to differentiate into non-neurons.
doi:10.1371/journal.pone.0010901.g003
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observation that stem cells can oscillate between such states should

be incorporated into our understanding of cell differentiation

during embryogenesis. It may also be pertinent to understanding

pathological states of disordered cell differentiation as in cancer.

Methods

Cell culture
Undifferentiated NTERA2 cl.D1 EC cells were grown in DMEM

growth medium (Dulbecco’s Modified Eagle’s Medium, GIBCO)

supplemented with 10% fetal bovine serum (Hyclone), and

maintained at 37uC in a humidified atmosphere of 10% CO2 [21].

Generation of NTERA2.Tom fluorescent cell line
Stable cell lines that constitutively expressed the fluorescent

protein tdTomato were generated by transfection of undifferen-

tiated NTERA2 clD1 EC cells. Cells were electroporated with

15mg of plasmid DNA that contained a tdTomato-ires-Pac cassette

under the control of the CAG promoter. Puromycin resistant,

tdTomato fluorescent colonies were clonally picked and expanded.

An NTERA2.Tom clonal subline was expanded and assessed to

ensure that tdTomato expression was not diminished upon RA

induced cell differentiation.

Neuronal differentiation
RA mediated differentiation [21] was performed by plating

NTERA2 stem cells at 15000 cells/cm2 in standard growth media

(10% FBS in DMEM) supplemented with 10-5M all-trans-retinoic

acid (Sigma). The all-trans-retinoic acid (RA) was stored as a

DMSO stock solution of 1022M, with RA supplemented growth

media replenished every seven days.

Confluent NTERA2.Tom and wildtype NTERA2 stem cells

were trypsinised and ensured that $99% of NTERA2.Tom cells

were single cells. The NTERA2 stem cells were mixed at a ratio of

one NTERA2.Tom cell per 2000 wildtype cells and the cell

suspension plated at a density amenable to neuronal differentiation

(15000 cells/cm2), in the presence of 1025M RA. Four hours after

plating the cells in 96 well plates, each well was checked by

fluorescence microscopy to ensure that all fluorescent (NTERA2.

Tom) cells were single cells and that no two fluorescent cells were

closely situated to one another.

Immunofluorescence and Flow Cytometry
All cell staining for bIII tubulin was performed after 21 days of

RA induced differentiation. In situ immunofluorescence was

performed after fixation in 4% paraformaldehyde (PFA) fixation

of cells, with the use of the monoclonal antibody TUJ1 (Covance)

in conjunction with Alexa Fluor 488 secondary antibody

(Molecular probes).

Flow cytometry analysis was performed on cell suspensions as

previously described (Fox, Gokhale et al. 2008). For intracellular

staining, cells were PFA fixed and permeabilised with 0.1% triton

X100. Cell suspensions were stained with monoclonal antibodies

to SOX2 (R&D Systems, MAB1018), OCT4 (Santa Cruz Sc-

9081), NANOG (R&D systems, AF1997), TUJ1 (Covance) and

SSEA4, diluted in PBS containing 5% goat serum. Antibody to

SSEA4 was produced from hybridoma MC813-70 [37]. Cell

suspensions were analysed using a CyAN (DakoCytomation) with

Summit software. Non-specific fluorescence staining and auto-

fluorescence was determined by P3X, an antibody obtained from

the myeloma cell line P3X63Ag8 [38] which does not recognize

any known epitope in the cells.

Parameter estimation
The parameter vectors h1 = {p0, p100 = 1- p0, pTn, pN = 1- pTn}

and h2 = {pnu, pu, pdu = 1- pnu - pu} of the two competing models

M1 and M2 were estimated from data using a grid search

approach. As a measure of closeness or goodness-of-fit between the

density functions F(n) = {f0(n), f24(n), f48(n)} estimated from

experimental data for the three cases in which RA was added at

0 hours, 24 hours and 48 hours (Figure 4) and the model-

generated density functions M1(n|h1) = {m1,0(n|h1), m1,24(n|h1),

m1,48(n|h1)} and M2(n|h1) = {m2,0(n|h2), m2,24(n|h2), m2,48(n|h2)},

we used the Kullback–Leibler (KL) divergence KLi,j = KL(fj (n);mi,j

(n|h1)), (j = 0,24,48; i = 1,2) which is a non-commutative measure

of the difference between two probability distributions [23].

Specifically, the optimization goal was to minimize the following

cost function

Figure 4. Correlation of Biological and Model Data. (A) The first column illustrates the frequency distribution of colonies with regards to
percentage of neurons obtained from biological data. The second and third columns show the frequency distribution of colonies predicted by
models M1 and M2 respectively. Data is representative of when RA is added at either 0, 24 or 48 hours post cell plating. (B) The first column illustrates
the frequency distribution of colonies with regards to percentage of neurons obtained from biological data. The second and third columns show the
frequency distribution of colonies predicted by model M1 and model M2 respectively. The model data is obtained from merged results for the cases
where RA was added at 0 and 24 hours, 24 and 48 hours, or 48 and 72 hours.
doi:10.1371/journal.pone.0010901.g004

Table 1. Kullback-Leibler Divergences Between Biological
and Model Generated Data Sets.

RA added
after plating Model M1 Model M2

KL1,j

I1 = KL1,0+
KL1,24+KL1,48 KL2,j

I2 = KL2,0+
KL2,24+KL2,48

0 hours 1.174 1.827 0.943 3.027

24 hours 0.372 0.937

48 hours 0.281 1.162

KL divergences and overall cost function I between density functions estimated
from biological and model generated data.
doi:10.1371/journal.pone.0010901.t001

Table 2. Kullback-Leibler Divergences Between Biological
and Merged Model Generated Data Sets.

RA added
after plating Model M1 Model M2

KL1,j

I1 = KL1,0+
KL1,24+KL1,48 KL2,j

I2 = KL2,0+
KL2,24+KL2,48

0 hours 0.283 0.446 0.492 1.487

24 hours 0.141 0.516

48 hours 0.042 0.479

KL divergences and overall cost function I between density functions estimated
from biological data and a mixture of model simulated data.
doi:10.1371/journal.pone.0010901.t002
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I F nð Þ,Mi nDhið Þð Þ~
ð100

0

f0 nð Þ ln f0(n)

mi,0(nDhi)

� �
dn

z

ð100

0

f24 nð Þ ln f24 nð Þ
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� �
dn

z

ð100

0

f48 nð Þ ln f48 nð Þ
mi,48 nDhið Þ

� �
dn

~
X

j~0,24,48

KL fj nð Þ; mi,j nDhið Þ
� �

, i~1,2

ð1Þ

For each model only two parameters have to be estimated. For M1

the parameters p0 and pTn were estimated using a standard grid

search approach. For M2, the parameters pnu and pu were

estimated using a restricted grid search, which only considered

feasible values of the parameters so that the constraint pnu+
pu+pdu = 1 was satisfied.

Each parameter was allowed to take 101 possible values [0,

1/100, 2/100,…,1], with no restrictions for M1 and with the

restriction pnu+pu #1 for model M2. For each parameter set, 100

Monte Carlo iterations were carried out. The resulting data

were used to derive the distribution functions associated with

each model, which in turn were used to evaluate the cost

function in equation (1). The density functions in equation (1)

were computed using kernel methods. The reasons for adopting

grid search strategies for parameter optimization are that these

techniques are not susceptible to the local optimum problem

and for this particular application are not computationally

expensive [39].

Tables 1 and 2 summarize the performance of each model

relative to the experimental data. According to the minimum

discrimination information principle, the model with a smaller

relative entropy is the better one [40]. In our case, clearly model

M1 outperforms M2.

Because the models have the same number of parameters, there

was no need to use more sophisticated information or theoretical

criteria such as the Akaike’s information criterion (AIC) [41,42]

or the improved versions of AIC which have been proposed

and applied to Monte Carlo models by Bozdogan [43,44], since

the term which penalizes complex models would be redundant

[45].

The proposed model estimation and selection approach was

also evaluated using two sets of density functions D1(n|h1) =

{m1,0(n|h1), m1,24(n|h1), m1,48(n|h1)} and D2(n|h2) = {m2,0(n|h2),

m2,24(n|h2), m2,48(n|h2)} generated using Monte Carlo simulations

of the two models M1 and M2. The model parameters were

h1 = {p0 = 0.65, p100 = 1- p0 = 0.35, pTn = 0.45, pN = 1- pTn = 0.55}

for model M1 and h2 = {pnu = 0.3, pu = 0.4, pdu = 1- pnu - pu = 0.3}

for model M2. 100 single cells were assumed to divide and

differentiate according to the two alternative models M1 and M2

assuming that a retinoic acid dose was added from the start and 24

and 48 hours later. The number of cell divisions (Nd) was set to 6

for both models.

Two sets of parameters were estimated for each model, one set

fitted using data generated by the model itself (h1
D1 for M1 and

h2
D2 M2), the other fitted on data generated by the competing

model (h1
D2 for M1 and h2

D1 M2).

Table S1 shows in each case the best set of estimated

parameters, the root mean square error (RMSE) between the true

and estimated parameters

RMSE hj ,ĥhj

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

hj kð Þ{ĥhj kð Þ
� �2

s
, j~1,2

and the values of the cost function in equation (1) computed using

the original density functions D1, D2 and the model predicted

density functions M1 and M2.

We found that there is a good agreement between estimated

and true parameters of models M1 and M2, which were estimated

based on the ‘correct’ sets of synthetic density functions D1 and D2

respectively. In each case the estimated models are able to predict

well the original data sets. However, when parameters of M1 are

fitted using the D2 data set and parameters of M2 are fitted using

the D1 data set, the estimated models perform significantly worse.

These results demonstrate that the proposed approach can recover

from data the original parameters for each model and that the two

models lead to distinct outcomes. Following parameter optimiza-

tion, none of the models can predict satisfactory the data

generated by the other.

Supporting Information

Figure S1 Sub-clones of the NTERA2.Tom cell line assayed for

the percentage of bIII tubulin positive neurons yielded upon RA

mediated differentiation.

Found at: doi:10.1371/journal.pone.0010901.s001 (1.13 MB

EPS)

Figure S2 (A) Differentiated colony derived from a single

NTERA2.Tom cell plated on a background of wildtype NTERA2

cells. Cells were exposed to RA 72 hours after plating and stained

for TUJ1 after 21 days of RA exposure. (B) Population based

analysis of neuronal yield. Cells were plated and exposed to RA 0,

24 or 48 hours after plating.

Found at: doi:10.1371/journal.pone.0010901.s002 (4.80 MB EPS)

Figure S3 (A) NTERA2 cells were exposed to RA (10uM) for

different periods of time (24 hrs, 3 days, 6 days and continuous

exposure) and then clonal plated in the absence of RA. The graph

depicts the number of undifferentiated colonies produced ten days

after clonal plating. Data is representative of a three independent

experiments expressed as a mean value. (B) Time between cell

plating and first cell division of individual cells, in RA containing

media. Data is derived from time-lapse microscopy of cells.

Found at: doi:10.1371/journal.pone.0010901.s003 (2.18 MB EPS)

Figure S4 (A) Distribution of colonies with regards to percentage

of neurons from synthetic data for M1 (Column 1), the

distributions of colonies with regards to percentage of neurons

estimated by M1 (Column 2) and the distributions of colonies with

regards to percentage of neurons estimated by M2 (Column 3) for

all 3 cases: Retinoic Acid (RA) added at 0 hours, 24 hours and

48 hours. (B) Distributions of colonies with regards to percentage

of neurons from Synthetic data for M2 (Column 1), the

distributions of colonies with regards to percentage of neurons

estimated by M2 (Column 2) and the distributions of colonies with

regards to percentage of neurons estimated by M1 (Column 3) for

all 3 cases: Retinoic Acid (RA) added at 0 hours, 24 hours and

48 hours.

Found at: doi:10.1371/journal.pone.0010901.s004 (2.75 MB EPS)

Table S1 Original and estimated M1 and M2 parameters based

on the D1 and D2 data sets, the corresponding parameter

estimation errors and the values of the cost function computed for

density functions generated by original and estimated models.

Found at: doi:10.1371/journal.pone.0010901.s005 (0.61 MB EPS)

Stem Cell Prepatterning

PLoS ONE | www.plosone.org 9 May 2010 | Volume 5 | Issue 5 | e10901



Acknowledgments

We would like to thank P.Gokhale for invaluable advice and M.Jones for

flow cytometry assistance. In addition, we are grateful to Professor Tsien

for kindly supplying the tdTomato coding sequence.

Author Contributions

Conceived and designed the experiments: PDT VO DC VK PWA.

Performed the experiments: PDT VO DC VK KEB. Analyzed the data:

PDT VO DC VK SAB PWA. Contributed reagents/materials/analysis

tools: PDT VO DC KEB SAB PWA. Wrote the paper: PDT VO DC SAB

PWA.

References

1. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, et al. (2000)

Differentiation of human embryonic stem cells into embryoid bodies
compromising the three embryonic germ layers. Mol Med 6: 88–95.

2. Martin GR, Evans MJ (1975) Differentiation of clonal lines of teratocarcinoma
cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci U S A 72:

1441–1445.

3. Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, et al.
(2008) Control of human embryonic stem cell colony and aggregate size

heterogeneity influences differentiation trajectories. Stem Cells 26: 2300–2310.
4. Burridge PW, Anderson D, Priddle H, Barbadillo Munoz MD, Chamberlain S,

et al. (2007) Improved human embryonic stem cell embryoid body homogeneity
and cardiomyocyte differentiation from a novel V-96 plate aggregation system

highlights interline variability. Stem Cells 25: 929–938.

5. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG (2005) Forced aggregation
of defined numbers of human embryonic stem cells into embryoid bodies fosters

robust, reproducible hematopoietic differentiation. Blood 106: 1601–1603.
6. Erceg S, Lainez S, Ronaghi M, Stojkovic P, Perez-Arago MA, et al. (2008)

Differentiation of human embryonic stem cells to regional specific neural

precursors in chemically defined medium conditions. PLoS ONE 3: e2122.
7. Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of

embryonic stem cells into neuroectodermal precursors in adherent monoculture.
Nat Biotechnol 21: 183–186.

8. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro
differentiation of transplantable neural precursors from human embryonic stem

cells. Nat Biotechnol 19: 1129–1133.

9. Lowell S, Benchoua A, Heavey B, Smith AG (2006) Notch promotes neural
lineage entry by pluripotent embryonic stem cells. PLoS Biol 4: e121.

10. Crawford TQ, Roelink H (2007) The notch response inhibitor DAPT enhances
neuronal differentiation in embryonic stem cell-derived embryoid bodies

independently of sonic hedgehog signaling. Dev Dyn 236: 886–892.

11. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, et al.
(2009) Highly efficient neural conversion of human ES and iPS cells by dual

inhibition of SMAD signaling. Nat Biotechnol 27: 275–280.
12. Guenechea G, Gan OI, Dorrell C, Dick JE (2001) Distinct classes of human stem

cells that differ in proliferative and self-renewal potential. Nat Immunol 2:
75–82.

13. Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a

hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat
Immunol 5: 738–743.

14. Potten CS (1998) Stem cells in gastrointestinal epithelium: numbers, character-
istics and death. Philos Trans R Soc Lond B Biol Sci 353: 821–830.

15. Enver T, Pera M, Peterson C, Andrews PW (2009) Stem cell states, fates, and the

rules of attraction. Cell Stem Cell 4: 387–397.
16. Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, et al. (2007) Nanog

safeguards pluripotency and mediates germline development. Nature 450:
1230–1234.

17. Hayashi K, Lopes SM, Tang F, Surani MA (2008) Dynamic equilibrium and
heterogeneity of mouse pluripotent stem cells with distinct functional and

epigenetic states. Cell Stem Cell 3: 391–401.

18. Enver T, Soneji S, Joshi C, Brown J, Iborra F, et al. (2005) Cellular
differentiation hierarchies in normal and culture-adapted human embryonic

stem cells. Hum Mol Genet 14: 3129–3140.
19. Laslett AL, Grimmond S, Gardiner B, Stamp L, Lin A, et al. (2007)

Transcriptional analysis of early lineage commitment in human embryonic

stem cells. BMC Dev Biol 7: 12.
20. Hu M, Krause D, Greaves M, Sharkis S, Dexter M, et al. (1997) Multilineage

gene expression precedes commitment in the hemopoietic system. Genes Dev
11: 774–785.

21. Andrews PW (1984) Retinoic acid induces neuronal differentiation of a cloned

human embryonal carcinoma cell line in vitro. Dev Biol 103: 285–293.

22. Fenderson BA, Andrews PW, Nudelman E, Clausen H, Hakomori S (1987)

Glycolipid core structure switching from globo- to lacto- and ganglio-series
during retinoic acid-induced differentiation of TERA-2-derived human

embryonal carcinoma cells. Dev Biol 122: 21–34.

23. Kullback DVGaS (1978) The Information in Contingency Tables. New York:

Marcel Dekker.

24. Burnham KP, Anderson DR (1999) Model Selection and multimodel inference:

a practical information-theoretic approach. New York: Springer.

25. Delassus S, Titley I, Enver T (1999) Functional and molecular analysis of
hematopoietic progenitors derived from the aorta-gonad-mesonephros region of

the mouse embryo. Blood 94: 1495–1503.

26. Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic

asymmetries and axis patterning in the mouse. Development 136: 701–713.

27. Silva J, Smith A (2008) Capturing pluripotency. Cell 132: 532–536.

28. Chickarmane V, Enver T, Peterson C (2009) Computational modeling of the

hematopoietic erythroid-myeloid switch reveals insights into cooperativity,
priming, and irreversibility. PLoS Comput Biol 5: e1000268.

29. Huang S, Guo YP, May G, Enver T (2007) Bifurcation dynamics in lineage-
commitment in bipotent progenitor cells. Dev Biol 305: 695–713.

30. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed

genetic nets. J Theor Biol 22: 437–467.

31. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008)

Transcriptome-wide noise controls lineage choice in mammalian progenitor
cells. Nature 453: 544–547.

32. Huebner K, Linnenbach A, Weidner S, Glenn G, Croce CM (1981)
Deoxyribonuclease I sensitivity of plasmid genomes in teratocarcinoma-derived

stem and differentiated cells. Proc Natl Acad Sci U S A 78: 5071–5075.

33. Pan G, Tian S, Nie J, Yang C, Ruotti V, et al. (2007) Whole-genome analysis of
histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells.

Cell Stem Cell 1: 299–312.

34. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, et al. (2006) Chromatin

signatures of pluripotent cell lines. Nat Cell Biol 8: 532–538.

35. Pietersen AM, van Lohuizen M (2008) Stem cell regulation by polycomb

repressors: postponing commitment. Curr Opin Cell Biol 20: 201–207.

36. Gan Q, Yoshida T, McDonald OG, Owens GK (2007) Concise review:
epigenetic mechanisms contribute to pluripotency and cell lineage determination

of embryonic stem cells. Stem Cells 25: 2–9.

37. Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, et al. (1983)

Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique
globo-series ganglioside isolated from human teratocarcinoma cells. Embo J 2:

2355–2361.

38. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting
antibody of predefined specificity. Nature 256: 495–497.

39. Wan JKS, Tang C, Yan J, Ren Y, Liu J, et al. (2008) Meta-prediction of
phosphorylation sites with weighted voting and restricted grid search parameter

selection. Nucleic Acids Research 6.

40. Gokhale DV, Kullback S (1978) The minimum discrimination information
approach in analyzing categorical data. Communications in Statistics — Theory

and Methods 10: 987–1005.

41. Akaike H (1974) A new look at the statistical model identification. IEEE

Transactions on Automatic Control 19: 716–723.

42. Akaike H (1973) Information theory and an extension of the maximum

likelihood principle; Budapest. pp 267–281.

43. Bozdogan H (2000) Akaike’s information criterion and recent developments in
informational complexity. Journal of Mathematical Psychology 44: 62–91.

44. Bozdogan H (1987) Model selection and Akaike’s information criterion (AIC):
The general theory and its analytical extensions. Psychometrika 52: 345–370.

45. Forster MR (2000) Key Concepts in Model Selection: Performance and
Generalizability. Journal of Mathematical Psychology 44: 205–231.

Stem Cell Prepatterning

PLoS ONE | www.plosone.org 10 May 2010 | Volume 5 | Issue 5 | e10901


