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This paper discusses the homogenization method to determine the effective average elastic constants 
of linear elasticity of general composite materials by considering their microstructure. After giving a 
brief theory of the homogenization method, a finite element approximation is introduced with 
convergence stuay and corresponding error estimate. Applying these, computer programs PREMAT 
and POSTMAT are developed for preprocessing and postprocessing of material characterization of 
composite materials. Using these programs, the homogenized elastic constants for macroscopic stress 
analysis are obtained for typical composite materials to show their capability. Finally, the adaptive 
finite element method is introduced to improve the accuracy of the finite element approximation. 

1. Introduction 

The role of composite materials is becoming increasingly important in industry. Their 
microstructure character provides a good weight/strength ratio that makes them suitable for a 
large variety of applications ranging from sports goods to space aircraft and their application 
in high performance structures makes thermal/stress analysis a major concern. It is extremely 
difficult to analyze such structures, including each individual microstructure, due to the high 
degree of material heterogeneity. A natural way to overcome this difficulty is to find some 
kind of equivalent material model without needing to represent each individual micro- 
structure. This model should characterize the average mechanical behavior as well as 
represent the effect of the composite material heterogeneities. 

Much research has focused on defining equivalent mechanical properties of composite 
materials and on determining their dependence on the different components. This research 
activity provided several different methods of computing equivalent material properties. 
Although some of these methods are engineering based, they quite often show a good 
agreement with other empirical methods and/or available experimental data. A survey of such 
activity is given in [1] and references therein provide good insight into this approach. 

A mathematical counterpart to such engineering methods appears in the 70's with the name 
of homogenization theory. Since then this theory has been the subject of a large amount of 
research in area of applied mathematics. The fundamentals of this theory can be found, 
among others, in [2-9]. A review of the recent progresses in the mathematical modelling of 
composite materials as well as an extensive reference list can be found in [10]. 
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In homogenization theory it is usually assumed that the composite material is locally formed 
by the spatial repetition of very small microstructures, 'm/croscopic' cells, when compared 
with the overall 'macroscopic' dimensions of the structure of interest. In other words, it is 
assumed that the material properties are periodic functions of the microscopic variable, where 
the period is very small compared with the macroscopic variable. This assumption enables the 
computation of equivalent material properties by a limiting process when the microscopic cell 
size is ~educed to zero. 

The homogenization method is advantageous because it is a rigorous mathematical theory. 
It can also provide reasonable solutions for some problems where the experimental data is not 
available, or for which only bounds for the equivalent material constants can be found by 
other theories (see for example [11, 12]). 

Several cases of homogenization can be found in [7]. This work considers the cases of 
composite materials formed by elastic media with periodic holes and rigid inclusions, and fiber 
reinforced elastic materials where slipping without decohesion may occur between the fiber 
and the matrix with linear, nonlinear and viscous tangential forces at the slipping boundary. 
This last class of problems is particularly interesting due to the existence of nonlinearity 
effects. All these cases are mathematically formulated and discussed. Numerical procedures 
are also introduced and examples for two-dimensional cases are worked out. 

Another set of numerical applications can be found in [13]. This work at INRIA considers 
the numerical implementation of the computation of equivalent material elastic constants, or 
homogenized coefficients, for two- and three-dimensional examples and presents several 
examples. 

The purpose of the present work is to study the numerical accuracy of the finite element 
solutions for the equivalent material properties, their influence in the overall numerical 
solution and ways to improve this accuracy, as well as to study the applicability of the 
homogenization method for the stress analysis of composite materials. This work is formed by 
5 sections. 

In Section 2 a brief description of homogenization theory is given for the case of linear 
elastic materials. In this section the problem of finding the equivalent material properties of a 
composite material involving microscale holes subjected to tractions is presented. The use of 
homogenization technique introduces three uncoupled problems: two on the 'microscopic' 
level and one on the 'macroscopic' level. The 'microscopic' level problems enable the 
computation of the homogenized coefficients as well as a kind of 'residual stresses' that will be 
used to solve the 'macroscopic' problem. 

In Section 3 the numerical solution of the before-mentioned problems is considered. The 
finite element method is introduced to compute the homogenized coefficients, the 'residual 
stresses' and the global displacements and stress fields. Also, a priori error estimations are 
derived for the finite element approximations of the above quantities. 

In Section 4 the homogenization method is used to introduce the idea of material 
preprocessing (PREMAT), to compute homogenized material properties for composites, and 
material postprocessing (POSTMAT), to compute local distribution of stresses and strains 
within the microscopic level. These are then used to solve stress analyses problems of 
composite materials. It is noted that there are few similar examples to the ones studied in this 
work. 

In Section 5 an adaptive finite element method is introduced in order to improve the 
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accuracy of the numerical solution. This adaptive method is based on the a priori error 
estimations. Its implementation is described and examples are performed. 

In the last section some general remarks are made. 

2. Review of the homogenization theory 

Consider a composite material formed by the spatial repetition of a base cell made of 
different materials as shown in Fig. 2.1. For the sake of simplicity oniy two-dimensional 
figures are presented, although the following is developed for the three-dimensional case. 
Assume that a body is made of, for example, two different materials whose mixture is 
represented by a base cell that is very small, of order e (where e is a very small positive 
number) compared with the dimensions of the structural body. If the body is subjected to 
some load and boundary conditions, the resulting deformation and stresses, in general, rapidly 
vary from point to point because of repetition of microscopic base cells producing heterogenei- 
ty. In other words, with the high level of heterogeneity within the material, these quantities 
also vary rapidly within a very small neighborhood e of a given point x. Thus it is reasonable 
to claim that all quantities have two explicit dependences. One is on the 'macroscopic' level x, 
and the other is on the 'microscopic' level x /e ,  i.e., letting g be a general function, 
g = g(x,  x /e ) .  Due to the periodic nature of the microstructure, the dependence of a function 
on the 'microscopic' variable y = x/e, is also periodic. 

To solve such a problem using finite element methods would be almost impossible, since 
discretization of the body becomes enormous in order to represent detailed structure of the 
microscopic material constitution. Thus it would be desirable to develop a method that can 
reflect the microscopic structure without looking at details of all of the material points of the 
body, whenever the mechanical behavior of the macroscopic body is in question. The 
homogenization method has been developed to realize this kind of approach. Furthermore, 
with this method, the mechanical behavior of microstructure can be approximately predicted 
by a postprocessing of the macroscopic stress analysis. The homogenization method is 
introduced in the remainder of this section. 

Let • be an open subset of R 3 with a smooth, say Lipschitz, boundary F (see Fig. 2.2). Let 

I 

I 

Fig. 2.1. Composite structure. Fig. 2.2, General elasticity problem. 
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Fig. 2.3. Base cell of the composite. 

Y be an open rectangular parallelepiped in R 3 (see Fig. 2.3) defined by 

Y= 10, yO[ x ]0, yO[ x 10, yO[, (2.1) 

let O be an open subset of Y with boundary 

80  ffi S (2.2) 

and let 
¥ffi Y\O, (2.3) 

where If is the solid part of the cell, 0 denotes the closure of 0 and Y represents the base cell 
of the composite microstructure. The material properties vary inside Y, and the set O 
represents a hole inside Y. Define now 

1 if y ¢ ¥ ,  (2.4) 
O(y) ffi 0 if y ~'.~', 

and extend 0 to R 3 by e periodicity, i.e., repeat the base cell in all three directions. Then 
define 

a" = {x a l O(x/8) = 1 ) ,  (2.5) 

i.e., n * is the solid part of the domain. Also define 

all cel ls  

S'ffi [.J S~ (2.6) 
or----1 

and consider the following hypotheses: 

1. n ~ is a connected domain, (2.7) 

2. The hole(s) 0 has sufficiently smooth boundary(ies) S,  (2.8) 

3. None of the holes S intersects the boundary F of ,0. (2.9) 
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Now let 

v* - {v ~ (H~(W))~ I vl~o --- 0), (2.10) 

where V[r d represents the value of v on the boundary F d (in the trace sense). 

Then the problem of the deformation of a body n ~ subjected to body forcesf  and tractions t 
on the boundary F t together with tractions p inside the holes S, and prescribed displacement 
on  F d (with F - F t U F d, F t f3 F d - ~,  F d N S ~ = ~, F t f3 S ~ = ~) ,  can be stated as 

Find u ~ E V * , such that 

fo.o':o°, fo. f," . E~m i~xt Ox j dl ' l  = . f~v~ d12 + t~v~ d F  + . p~v~ d S  V v  E V " .  (2.11) 

Here, it is assumed that the stress-strain and the strain-displacement relations are 

o'~ = E~k,e~, , (2.12) 

e~kt=~ ~ OX t + OXk/ ' 
(2.13) 

and that the elastic  constants  have  the fol lowing properties: 

E~]kl E~ E~t k E~ (2.14) 

3a > O: E~ktelf ~l = aelj % Ve e = eji . (2.15) 

A unique solution u B exists for the problem (2.11) under the assumption that the functions 
f,  t, and p are sufficiently smooth, and the boundaries F d, F, and SB are regular, see [14]. 

Since the body ~orce~ f, the tractions p and the elastic constants vary within a small cell of 
the composite, i.e.~ they are functions of both x and y = x /e:  

• "(x) = , ( x ,  y ) ,  y = x / e ,  (2.16) 

the solution u, should also depend both on x and x / e ,  that is, 

u , (x )  = u(x,  y ) ,  y = x / e  . (2.17) 

Dependence on y ffi x / e  means that a quantity varies within a very small region with 
dimensions much smaller than those of the macroscopic level. In a neighborhood of a 
macroscopic point x it is assumed that there is a very large number of microscale small cells 
which are obtained by translation of a base cell. In other words, dependence on y can be 
considered periodic, specifically Y-periodic, for a fixed x in the macroscopic level. Moreover, 
it is assumed that the form and composition of the base cell varies in a smooth way with the 
macroscopic variable x. This means that for different points x the structure of the composite 
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may vary, but if one 'looks through a microscope' on a point x, a periodic pattern can be 
found. 

The dependence of the solution u ~ in the macroscopic and microscopic levels makes it 
reasonable to assume that u ~ can be expresed as an asymptotic expansion with respect to the 
parameter e (a measure of the microscopic/macroscopic dimension ratio), i.e., 

u (x) = u°(x, y) + 8u (x, y) + e u (x, y) + - . . ,  y = x/8, (2.18) 

where 

uJ(x, y) is defined in (x, y) • f l x  ¥ 

y---> uJ(x, y) is Y-periodic. 
(2.19) 

To establish equations which u ° u l , . . . ,  u j satisfy, it is useful to note that 

0 o~b 10~b 
OX i (6I~(x, y = X / e ) ) =  c)Xi + -e - -  i (2.20) 

and that, for a Y-periodic function gr(y), 

1Lf  T ~  ~(y)  dY da ,  (2.21) 

lim 
~ . 0  + 

1 
(2.22) 

where [Y[ stands for the volume (or area, for two dimensional domain) of the cell. Implicitly it 
is assumed that the function W(y) is extended to all volume under each cell, such that it takes 
the value zero on the holes. This will be assumed to be possible in a smooth way. In the 
following description it will be assumed that all functions depend explicitly both on x and y 
with a single exception for the applied traction t on boundary Ft, which only depends on x. 
When a particular dependence on x or y is assumed, it will explicitly be stated in the 
equations. 

Define 

Va× r = {v (x ,  y) defined for (x, y) E • x ¥[ v( . ,  y) Y-periodic; V]r a 

v smooth enough}, 

V n = {v(x) defined in ~'J [ V]r = O; v smooth enough}, 
d 

V¢ = {v(y) defined in ¥[ v(y)Y-periodic; v smooth enough}. 

=0; 

(2.23) 

(2.24) 

(2.25) 

Introducing the asymptotic expansion (2.18) and (2.20) into (2.11), the functional becomes 
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fa,~Eqkl{,F, 2 
o~ 7 oo, l [ ( o u  7 

ay~ ay s + ~ L\ ax~ + Oy t / - ~ j +  igy t Ox#d 

+ ~+ 0 y , , ~ ,  + , 0 x ,  +-~,) °''I aysJ + e(. .-)} dO 

fo  fr, £" = :f ividl]+ tiv i d r +  ,PividS VvEVa× r. (2.26) 

Assuming that the functions are smooth enough so that the limit when e ~ 0 ÷ of all integrals 
exists, (2.26) holds if the terms of the same power of e are equal to zero. Therefore 

1 Ou ° av~ 7f .  .E~kl 7y~ ~da=0 Vv E Vn× r , (2.27) 

i f~ E" [( ~u° aul ~,o, ~,,,o ~',1 j" , 
Vv E Vn× r , (2.28) 

E,,"LL~ + oy,, ~, +,ox, +oy,. ~]da=f,.,7o, da+f,,oidr 
Vv E Vn×r , (2.29) 

e t c .  

Multiplying (2.27) by e 2 and taking the limit e---,O ÷, property (2.21) yields 

l Y[ E°kt d Y d a  = 0 ay~ ~yj 
Vv E V~,~× r . (2.30) 

Since v is arbitrary, choose v = v(y), i.e., v E Vv. Then, integrating by parts, applying the 
divergence theorem to the integral in ¥, and noting that the terms in the opposite faces of the 
cube Y cancel due to the periodicity condition, one has 

1 0 (Eijk ! fo{f [ fs } Oyt]jvidY+ Eijkt-~-t njvidS d O = O  Vv~Va×v.  
(2.31) 

Since v(y) is arbitrary, this yields the boundary value problem of the first term u ° of the 
expansion of the original solution u e in the basic cell domain ¥: 

( OUOk) (2.32) 
c9 Eqkl = O, y E ¥ , 

ayj Oyt 

Ou ° 
Eijkl ay I n/= 0 on S .  (2.33) 
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Apply the following proposition, which is identical to Lemma 2.1 in [2, p. 10]. 

PROPOSITION 1. The problem 

0 ( O~-~'(Y)~ = F(y) y e ¥  
oyj E,j~,(y) oy, / 

has a solution in 

Vr = {v smooth enough, v is Y-periodic} 

defined up to an additive constant, for a regular F, if and only if 

fv F(y )dY= - fs Eijk' 8*('~yY t ) n, dS . 

(2.34) 

(2.35) 

Then it follows from (2.32) and (2.33) that 

u ° = u°(x) ,  (2.36) 

that is, the first term of the expansion of u ~ in • depends only on the macroscopic scale x. 
Introducing (2.36) into (2.28), multiplying by e, taking the limit 8--,0 + and using 

properties (2.21) and (2.22), one can obtain 

Vv ~ Vnxv . (2.37) 

Since (2.37) is satisfied for at~y v, choosing v = v(y) yields 

E',"( ou°( )ox, ÷ dY- Vo V,. (2.38) 

Integrating by parts, using the divergence theorem, and applying the periodicity conditions on 
the opposite faces of Y, it follows from (2.38) that 

0 
ax----7- + ~y,, ~,(y)dY+ fs ,,,,~ ~ + ~,)~,(y)n, dS 

= fs p,v,(y) dS Vv E V v . (2.39) 

Since o is arbitrary, 
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ayj Oyt 

E,,~, ou ', au° (~) ~Yl n]---.--Ei]kl 

~u°(~)) 
Ox t on ¥ ,  (2.40) 

ax t nj + p~ on S.  (2.41) 

On the other hand, if in (2.37) v is chosen to be only a function of x, i.e., v = v(x), then 

[ (  ~ 1 dS)v~(x) dn ffi 0 Vv E , 
da& l Z l d o  

which implies that 

fsP,(X, y) dS =0. (2.43) 

Equation (2.43) restricts the possible applied tractions inside the holes. Moreover, if in (2.42) 
the set V a is relaxed in order to contain all rigid body rotations, it can be seen that the 
moment in each cell due to the tractions p has to be zero. That is, the applied tractions have to 
be self-equilibrating. Thus, it follows from Proposition 1 that there is a solution u l E  V v 
defined up to a constant. 

Introducing (2.36) into (2.29) and taking the limit e---~0 + in (2.29) implies 

E,,k,L~,~~, + ay,,, N + \ ax, 

--" f,~ ( T~ fv ~v, d Y) da + fr t, v, dr 

+ 8y t / ~ J 

Vv ~ Vnxv . 

dY} d/2 

(2.44) 

Choosing v ffi v(x) yields 

fo [~YI fr - /Su°k #U~)dY] #v,(x) E # k ' ~  + Oy,/ Oxj d a  

- fo f~dY)v , (x)da + f t, v,(x)dr vv~vo. (2.45) 

Note that this is a statement of overall equilibrium in the macroscopic sense. 
Now if v -  v(y) is assumed in (2.44), then 

fn [T~Y[ fr - /#u~ #u2) #vi(y) dY] d n  
÷ 0y,, %-7- 

1 dY) d/'2 

Vv E V r . (2.46) 

This is equivalent to 
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¢jv EqktL / ~OU~ + ~yt~C3u~ / Ovi(oyiY) d r =  fJr fivi(Y) dY Vv E l~,, (2.47) 

which represents microscopic equilibrium in the basic cell. 
The same procedure could be applied for the higher order terms of the expansion, and then 

a set of 'equilibrium' equations relating the several terms would be obtained. However, if only 
the first order terms are of interest, solving (2.38) and (2.45) yields the 'full' solution for u ~. 
The term u ° represents, essentially, the macroscopic mechanical behavior while the u 1 
represents the microscopic behavior. 

The goal now is to find homogenized elastic constants such that the macroscopic equilibrium 
can be described by the same sort of equation as (2.11). These homogenized constants should 
be such that the corresponding equilibrium equation reflects the mechanical behavior of the 
microstructure of the composite material without explicitly using the microscale parameter e. 
To accomplish this consider once again (2.38). It can easily be recognized that this equation is 
linear with respect to u ° and p. This suggests considering the two following problems: 

Let Xkt E V v be the solution of 

Og~ Ov,(y) dY=  fg Eqk I f¥ Eqpm tgy m Oy/ Ov,(y) dY Vv E V v (2.48) ayj 

and let 0 E V v be the solution of 

fv Eqkt Oy t Oy/ dY ffi fs Ptv~(Y)dY Vv ~ V,  , (2.49) 

where x plays the role of a parameter. 
The existence of solutions to these problems, calculated to within additive constants, is 

assured by Proposition 1. The additive constants may be functions of x. Therefore, due to the 
linearity of the problem (2.38), the solution u t can be written as 

ou°(x) 
u; = -x~,'(x, y) ox, ¢,,(x, y) + ~7;(x), (2.50) 

where tT~ are arbitrary additive constants in y. Introducing (2.50) into (2.45) yields 

8X~ y] Ou°(x) Ovi(x) 

1 O~k dY) Ov,(x) 1 y)vi(x)d a 
- fo f E"" Oy, ox, dO+f. (,W~ f,f,d 

fr, tire(x) dF Vv ~ V a . + (2.51) 

Denoting 
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and 

1 aXkv t') 
Dijkl(X)-- T~ f¥ (Eijk' -- Ei]pm O Ym ] dg,  (2.52) 

1 fyEi]klO~k T~j(X) = ~-~ Oy t d Y  (2.53) 

b,(x) = ~ f~ dY,  (2.54) 

(2.51) can be written as 

o.°(x) ov,(x) dO 
Oxt Oxj 

Oxj d n  + b,(x)v,(x) d n  + t,(x)v,(x) d r  Vv Vn. (2.55) 

This equation represents the macroscopic equilibrium, while D ijkt defined by (2.52) represents 
the homogenized elastic constants, ~-~j an average 'residual' stress within the cell due to the 
tractions p inside the holes and b~ and average body force. 

As shown above, the microscopic and macroscopic problems are not coupled, i.e., the 
homogenized elastic constants can be computed within the basic cell by solving problems 
(2.48) and (2.49), which do not depend on the macroscopic deformation u ° If a composite 
material has a uniform cell structure in the whole domain/~, as well as a uniform applied 
traction p on the hole boundaries of the cells, then the microscopic problems (2.48) and (2.49) 
need to be solved only once. If they are not uniform in the domain [J, these mic~'oscopic 
problems must be solved for every point x of n at which cell structure and traction p are 
different from others. 

The following remarks could be useful to understand the homogenization method. 

R E M A R K  2.1. The above derivations are formal, and all functions are assumed to be smooth 
enough in both x and y. 

R E M A R K  2.2. The assumption that the holes of the composite cells do not intersect the 
boundary F of the domain n ,  made it easier to deal with the boundary conditions. A more 
careful treatment of the boundary requires the use of boundary layer terms, in particular, to 
take care of term 5~, see [2, 4]. 

R E M A R K  2.3. From problem (2.48) and property (2.14) of the elastic constants, it is easily 
seen that X kt is symmetric with respect to the indices k and I. This implies that only six 
different equations are solved for the three-dimensional problem (and only three for the 
two-dimensional problem). 

R E M A R K  2.4. From (2.52), it can be shown that the symmetry property and coercivity also 
hold for the homogenized elastic constants, i.e., 
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Dqk ! ---- DOt k - Djiki -- Dkiq , (2.56) 

:la > O" Dqkteqekt ~ aeqeq Veq = ep . (2.57) 

Details of the proofs can be found in [6]. 

R E M A R K  2.5. It can be shown that under smoothness assumption on ~', b and t, the 
homogenized problem has a unique solution u ° see [14]. 

R E M A R K  2.6. It is assumed that the solution u e converges (weakly) to u ° whenever e--~O +. 
Proofs and detailed analysis of such convergence can be found in [15, 16]. 

R E M A R K  2.7. The displacement field u ~ involving details of the microstructure is given by 

u'(x) ffi u°(x)- 8(x~'(x, y) - - - - -  ou°(x) ) x (2.58) OX i "~" $ (X ,  y ) -  ~1(X) 4" 82( . .  " ) ,  y = 

once the homogenized macroscopic problem is solved. 

R E M A R K  2.8. The stresses in each point of the domain are given by 

= 

~x t 

subs¢ituting (2.58) 

where 

e o 1 
crq = cr o + eor o + e2( . . . ) ,  (2.59) 

+ oy,:' (2.6o) 

, _ 

(2.61) 

0 the first approximation of the stress, is given by Then introducing (2.50) into (2.60), o-q, 

~,~(x, y)-- (E,,,,(x, y) -  E,,~.(x, y) ay. ax, 

X 
y _ ~ .  m , 

£ 

a$~(x, y) 
E,,~,(x, y) 0x, 

(2.62) 

h 0 0 R E M A R K  2.9. The relation between the homogenized stress trq = Dq~ OuklOx t and trq can 
readily be seen by applying the 'average' operator 
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1 
IY--/fr"" dY 

to the previous defmition to obtain 

1 f h Jv o dY + (2.63) %--]~ % %. 

REMARK 2.10. If there are no applied tractions t and body forces f ,  it follows from (2.55) 
that 

(or h - %j),j = 0 in a ,  (~r~ - ~q)n~ = 0 on C ,  
and then h=%. 

REMARK 2.11. For the particular case that either there are no applied tractions p on the 
holes S or the holes do not exist, we set O = 0 and Y = Y. 

Up to this point derivations of equations were introduced characterizing the homogeniza- 
tion method. All these derivations were performed assuming enough smoothness for all 
functions and functionals involved. The homogenization method was then characterized by the 
solution of three distinct problems: two in the microscopic level, cell problems, and the other 
in the macroscopic level. The notation involved in characterizing these problems was based on 
the principle of virtual work, that is, the weak form of the equilibrium equations, in order to 
present the homogenization results in a more familiar way. However, this notation is not very 
convenient for the following developments. Also a more precise mathematical setting is 
necessary to formulate the problems. Consequently a new notation is now introduced, as well 
as the required mathematical framework. 

Let (Hm(n)) "~ and (Hm(F)) 3 be Sobolev spaces defined over the R 3 domains/2 and ¥, 

respectively, with the semi-norm and norm 

and 

In )112 Ivl.,. = ( E la'v,I + la'v l + Io%1 d a  , 0 ~< r <~ m (2.64) 
I ~ 1 ~ - ,  • 

HV[[m'/]----({e~m f/] I(~aUl[2 ~" [(]aU212 "~" [()aD312 d~'~)l/2 ' (2.65) 

respectively, where a is a multi-index (a 1, a 2, a3) and 

01"lg 

O~xl 0a2x2/)a3x 3 , a I--- a 1-[- O~ 2~- Of 3 • 

Similar norms and semi-norms are defined for the spaces (Hm(y)) 3. Now redefine the set V r as 

V¥-- {v • (Hi(y))3 [ v is Y-periodic}, (2.66) 
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introduce the bilinear form defined on V v × V r,  

1 f au  k av~ 
ay(ll, V) = ~ J¥ Ei]kl ay  t ayj  d Y  , u,  v E V r , (2.67) 

and the linear functional in Vy, 

1 fs (2.68) f,,(v) = - ~  I,, , , ,  dS, 

and define 

p #  = YjSikek ' (2.69) 

where e k are the Cartesian base vectors for R 3 and 8~k is the Kronecker symbol. Then one can 

restate problem (2.48) as 

Find X ~t ~ Vy, such that 

a r ( x k t _  p~t, v) f f i  0 V v  E V v . (2.70) 

A direct substitution yields that the homogenized coefficients (2.52) can be written as 

D , m ( x  ) = a v ( p  k' - X kl, p ~ )  (2.71) 

or, choosing v = X # in (2.70) and adding to (2.71) yields 

Dokl(X ) = a r ( p  kt - X kl, p #  - X # )  . 

Similarly, problem (2.49) is represented by 

Find 0 E V v , such that 

a,(#,, v) = f~(v), Vv E V~. 

The 'residual' stresses ¢ can then be expressed by 

¢,j = at(#,, e'J). 

Finally, for the macroscopic problem, define the set 

v~ = {v E (HX(n))S l vlr, =O} , 

and introduce the bilinear form in V n x V a 

(2.72) 

(2.73) 

(2.74) 

(2.75) 
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fa Ou k Ov~ 
a(u, v ) =  Dijkl Ox t Oxj d Y ,  u, v E Vo (2.76) 

and the linear functional in Vo, 

c90 i 

1(o)-- fo b,v i dl~ + fr, tivi d r .  (2.77) 

Then (2.55) is written as 

Find u° • Vo ' 

a(u °, v) = f(v) 

such that 

Vv E V n . (2.78) 

R E M A R K  2.12. The bilinear forms a t ( . , .  ) and a ( . , -  ) are symmetric. 

R E M A R K  2.13. It can be shown that a t ( .  ,. ) defines a semi-norm in the space V v. In 
particular due to the properties of the elastic coefficients Eqkt it defines a semi-norm equivalent 
to the l" [1.v, i.e., 

~a  > 0,/3 > o" alvl,.~ ~ at(v, V) 1/2 ~ Plvl,,~ vv ~ v¥.  (2.79) 

R E M A R K  2.14. If one defines the quotient space V ' =  Vv/(R3), i.e., the space of all 
equivalent classes [u] such that ( u -  v)E R 3, u, v E V r with the usual norm definition 

II[ulll---inf II u -  ell,, v , 
c(~R 3 

(2.80) 

the cell problems (2.70) and (2.73) have unique solutions in V" (this is a simple extension of 
Lemma 2.1 in [2]). 

R E M A R K  2.15. The norm in V" is equivalent to the semi norm I" II.v (see [17]), and 
consequently equivalent to the bilinear form a t ( . , .  ). 

R E M A R K  2.16. It can be shown that av ( ' ,  • ) satisfies a Schwarz inequality, i.e., 

lar(u, v)l ~< at (u ,  u)l '2ar(v,  v) 1/2 , u, v E Vv . (2.81) 

R E M A R K  2.1Z Under the properties (2.56), (2.57) of the homogenized coefficients and the 
assumption that the bilinear form (. ,. ) satisfies a Korn inequality (see [14]), a(. ,. ) defines an 
equivalent norm to II" II 1.a in Vn, i.e., 

3,~, ~ > o .  ~llvll~,~ <~ a(v, v) lie <~ /311vlll,a Vv ~. V a . (2.82) 

R E M A R K  2.18. It can be shown that a ( . , .  ) satisfies a Schwarz inequality, i.e., 

la(u, v)l ~< a(u, u)l 'Za(v,  v)  ''z , u, v ~ v~  . (2.83) 
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R E M A R K  2.19. The  bilinear form a ( . , .  ) and the linear functional f(- ) are expressed using 
the homogenized coefficients and the 'residual' stresses which are obtained in the cell 
associated with a point x as a parameter. 

R E M A R K  2.20. Pq in (2.69) is not an element of Vr. 

3. Finite element analysis for the homogenization method 

In this section a description is presented of the finite element solution procedure to obtain 
the homogenized elastic coefficients Dqk ~, the 'residual' stress cq, and the macroscopic 
displacement field u ° of the homogenized problem. For each of these quantities a priori error 
estimations are obtained. To this end let us assume that 

I. Domains ~ and ¥ are polygonal; (3.1) 

2. Discretization using regular families of conforming finite elements; (3.2) 

3. The integration is performed exactly; (3.3) 

4. A generic space V is approximated by a space V h s.t. (3.4) 

dim V h < oo , (3 .5 )  

V 23 V ' ,  (3.6) 

Vv E V 3vh E V h : lim [Iv - v'll  = o 
h-*O 

(3.7) 

where the parameter h represents a geometrical sizing characteristic o f  the finite elements 
discretizing the domain (see [18]). More specifically, following Babu~,ka and Aziz [19, Chapter 
4], it is assumed that the space V h forms a (t, k)-system, S~k(®), where 0 < h  <1 ,  t >  k ~ O ,  
and ® stands for either ~ or Y, i.e., 

(H~((8)y 3 sg~(®), 

Vv E (H~(®) 3, l ~>0, 0~< s ~< min(/, k) 

IIv - v, ll,., ~ C,h ~ Ilvll,.®, 

p - min(t - s, 1 - s) ,  

av, E s~,~(®): 

(3.8) 

(3.9) 

where C 1 is independent of v and h, v 1 depends on v and s. It is also assumed that S~k(®) is 
regular, i.e., v ! is independent of s, and S~k(®) satisfies an inverse relation: 

3k >~ e > 0" Yk - e ~< s ~ k and Vv E S~,k(@) IIVllk., ~ c,h-<~-*)llvlls.,, (3.10) 
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where C 2 is independent on v and h, but not on k and e. Using these assmnptions it is shown 
in [19, Theorem 4.1.5] that 

w E (H'(@))' ~]V I ~. Sthk(@) " V - - t ~  S ~ k ,  $ ~ 1 
I I v -  ",11,.® ~ Ch"llvll,.®(3.11) 

where C is independent of v and h, and v~ of s. It is noted that the norm of the intermediate 
spaces (HS(®)) 3, where s is a real number different from 1 or 2, is defined by 

I1,,11~.® I1,,11' [s],® + ' ~  = 2 = Ila ~11~.®. 
I=lffi[s] 

(3.12) 

[[vll 2o-,® = (v(X)(x_- v(~).(x_ ~ ))" (v(x~ ''2+v(s e ~: )) dx db e , (3.13) 

where [s] is the largest integer less or equal than s and or = s -  [s]. 
Within the previous framework one can proceed with the finite element analysis. In the 

following discussion, the parameter h will be assigned to the discretization of the domain 
and H to the discretization of the cell ¥. 

In the previous section it is shown that the homogenized coefficients (2.72) are given by 

Do, , ( x )  = a , , (p  ~' - x ~', p'J _ xO)  , (3.14) 

where X kt is the solution of the following problem: 

Find X kt E V v , such that a r ( x  kl -. pkt, v) ffi 0 V v  E V r , (3.15) 

where the bilinear form a t ( .  ,. ), the set V r, and the tensor  pkl, are as defined in (2.67), (2.66) 
and (2.69), respectively. Introducing an abstract finite element discretization satisfying 
properties (3.1-3.7) for the domain g, a discretized version of problem (3.15) is defined by 

Find X Hkl E V H , such that a r ( x  ukt -- pkt  V H) = 0 VV H E V H . (3.16) 

The homogenized coefficients (3.14) is then computed by 

H H kl 
Dqkl(X) ---- a , (  P k t -  X , P q -  XUq) . (3.17) 

Note that p H q =  pq. Since V r D V~, v can be chosen as v = v u in (3.15). Subtracting from 
(3.16) the orthogonality condition in V H is obtained: 

Hkl 
a , ( x  ~' - x , v " )  = o V v "  E V ~  . (3.18) 

Using (3.14), (3.17), (3.15) and 3.16) with v X k~ and v H uk' = = X , respectively, the difference 
between the finite element approximation and the exact value of the homogenized coefficients 

becomes 
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. .  

Dijk t D x = _ pk t )  . (3.19) - ijkt a y ( X  He] X 'J ,  

Taking v = X q in (3.15) and v H = X Xq in (3.16), and applying the symmetry condition of the 
bilinear form, one can obtain 

"" X Hkt p k l )  "" x kl p k l )  
a r ( X  Hq' - -  - a r ( X ' ,  - -" O .  

Similarly, choosing v H =  X H'j and v H = X Hkt in (3.18) implies 

.. .. .. Hkl)  
a},(X H', X k t -  X Hkt)  - a y ( x "  - X H', X = O. 

(3.20) 

(3.21) 

Adding (3.20) and (3.21) to (3.19) yields 

' " '  xnk' xkt) 
D q~ t - D qk t = a rL  X - X q, - . (3.22) 

This is the error of the finite element approximation of the homogenized elastic coefficients. It 
is noted that Dijnkt- Dqki>~O whenever (i, j ) = ( k ,  l)  due to property (2.79) of the bilinear 
form at( .  ,. ). Using Schwarz' inequality (2.81) in (3.16), one can obtain 

D.,.,I <~ (a r ( x  H ' -  x q, x Hq- xiJ))z/2(ay(XZtk'- X kl, X H k ' -  x k l ) }  1,2 • 

(3.23) 

Thus the error of the homogenized coefficients is explicitly connected with that of the finite 
element solution X H' of problem (3.16). Note that, due to the orthogonality condition (3.18), 

_ x H q  H ~/ pH _ . 
a t ( x " '  x ' ,  - x = a r ( x  - x ' ,  x ' )  Vv "  e VHv . (3.24) 

Applying Schwarz' inequality (2.81), it follows from (3.24) that 

{dy(X Hq_ xiJ X Hq_ xij)}l/2 ~{ay(lpH xij uH xiJ)}ll2 Vv H E VHr.  (3.25) 

Note that due to (2.79) and (2.80) (see Remarks 2.12-2.20) the bilinear form at( .  ,. ) is 
equivalent to the semi-norm [. It.v in V r and to the norm [[[. ]H in the quotient space V °. 
Thus, for the constant cl ER 3 such that I[X q + c[[t.v is minimumand for lXq = X q + c t ,  the 
following relations hold: 

ar(vH - X q, v n -  xiJ)  112 = av(v H -  ix q, v H -  txiJ)'/2 ~ j S [ v ' -  IxiJlt,v 

(3.26) 

where /3 is the same constant in (2.79). Therefore, letting X~ be the finite element 
interpolation of ~X q satisfying (3.11), the following error estimate can be derived for the finite 
element approximation by taking v H = X~ in the previous equation, 

a r ( x ~ -  'X q, X ~ -  'xiJ) 1'2 <- CH"II'x'II,,,  (3.27) 
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with # = m i n ( t - 1 , 1 - 1 ) .  Consequently an error estimate for the homogenized elastic 
constants is obtained as 

ID.~k, - Dokll ~ CH2" ll~xOIl,.¥111xkllll.r (3.28) 

with tt = min( t -  1, l -  1). If X # • (H2(]0)3.~ then it follows from (3.27) that the energy norm 

of the approximation error for X n° has linear convergence rate. It is, however, noted that ~, 'j 
do not belong to  (H2(]0) 3 in most of the problems, since material constants in the basic cell 
need not be smooth, for example, E0k t E L®(t0 in most of the problems. Thus the conver- 
gence rate is, in general,~ smaller than one. 

Similarly the 'residual' stresses are defined in the previous section by (2.74) and (2.75): 

¢o - a r (O ,  pO) , (3.29) 

where 0 is the solution of the problem 

Find • E Vv, such that a t (  O, v) = f r (v )  Vv  E V r . (3.30) 

Thus, introducing the finite element approximation in the cell domain ¥, and assuming all the 
properties for the approximate spaces appearing for the homogenized coefficients still hold, 
finite element approximations of the residual stresses ~'0 are given by 

*o " = v °) (3.31) 

where 0 n is the solution of the finite element approximation of (3.30): 

Find O n E V~, such that ar(O n, v H) = f r ( v  H) Vv  n E V ~  . (3.32) 

Once more, the fact that VrD V H holds yields the orthogonality of the finite element 
approximation error in V~ such that 

a,( , t ,  - 0 " ,  v")  = 0 v v "  e (3.33) 

Following similar steps for the homogenized elastic constants, the approximation error of the 
finite element method for the residual stresses is obtained as 

~'0 n - r 0  = ar(O H - O, p0) , (3.34) 

and then the Schwarz inequality (2.81) implies 

i~. ~ _ r01 = a t ( O n _  O, O n _  l~)l/2ay(pi~ pq)l/2, (3.35) 

where no summation is taken in indices i and j. Now the remaining step is to derive an 
estimate of the quantity ar(O H O, O H O) 1/2. - - Adding and subtracting v x in the second 
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term of ar(O H -  O, 0 " - 0 ) ,  applying the orthogonality condition (3.33) and Schwarz 
inequality (2.81), one can obtain 

ay(ql" -- ql, ql x - ~) <~ at(0" -- 0, v" - 0) 

<~ ay(O"- qs, 09- ql)l/2ay(v H- ~, V"-- I~/) I/2 Vv" E V~. (3.36) 

Thus, it follows from (3.36) that 

at(0" - 0, 0" - I~/) 112 ~ at(v" -- O, V H -- 0) I/2 Vv H E V H . (3.37) 

Choosing c, E R 3 that minimizes I1~ ÷ ¢11~,, and defining ~0 = 0 + C1 yields 

at(q/H - ql, ql H - ql) 1,2 = ar(qi" - xqi, ql H - Iqi)I'~ <~ ay(v" - lql, v" - lql)t/2 

<- #Iv"- 'q,l~., ~ #llv"- 'q, ll~., Vv" ~ v",, (3.38) 

where inequalities in (2.79) are applied to obtain the last two inequalities. It follows from the 
properties in (3.11) of the interpolation space V~ that there is at least one v x = v~ E V~ for 
which the following estimate holds: 

H 
l~,j - ~,/I <~ c ~  ~ II '¢,ll,.,#a~(e 'j, e'J) = Coil ~ II 'q'll,.,, (3.39) 

where ~ = min(t - 1, 1 - 1) and Co = Cflar(P ~/, P~/). Note that the rate of convergence of the 
discretized problems when H---,0 depends on the regularity of the respective continuum 
solutions. 

Up to this point error estimations have been introduced for the homogenized coefficients 
and the 'residval stresses'. Based on these results we can then proceed to obtain the error 
estimation for the macroscopic problem: 

Find u ° E V n , such that a(u ° v) ffi f(v) Vv ¢ Vn, (3.40) 

where a ( . , .  ) and f(.  ) are as defined in (2.76) and (2.77). It is noted that the homogenized 
coefficients Di/kt appear in the definition of the bilinear form a(. ,. ) and that the 'residual' 
stresses ~" are related to the definition of the linear functional f(.  ). Since the microscopic cell 
problems have to be solved prior to the macroscopic homogenized one, finite element 
approximations of (3.40) are defined using the finite element approximations of the homogen- 
ized coefficients and 'residual' stresses: 

where 

and 

Find U°hE V h , such that aH(u °h, V h) •f"(v n) 

fn Ou k c3v~ a"(u, v)= o~Hkl Oxt Oxj d~2 

fo fo.oo, fH(v) = f~v i d n  + t,v, d r  + rij ~ d n  . 

vv ' E v~, 0.41) 

(3.42) 

(3.43) 
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Since the properties in (2.56) hold for the homogenized coefficients D ~ t ,  the bilinear form 
a n (  • , .  ) also has the properties described in (2.82) and (2.83) (see Remarks (2.12-2.20). Thus 

• o n  

one may use R as a measure for the error of the solution u with respect to u °, or, more 
specifically, the quarttity aH(U ° ' -  U ° U ° ' -  U °) is regarded as the norm for error estimates of 
the macroscopic problem. 

Before proceeding further, it is worthwhile to note that the following quasi-orthogonality 
property holds in V~: 

where 

a(u ° V h) - -  aH(u Oh, V h) = ( f  -- f H ) ( v h )  

f H avh 
( f -  fn ) (  v* ) = .,,,L (% - % ) ~ dO. 

V v  h ~. V ~  , (3.44) 

(3.45) 

Now, turning to the error evaluation, we have 

O h IlO -- O h U 0 V h - - I i  Oh) a n ( u  ° -  u , - u °h) f aH(u ° u , - ) + aH(u ° v h 

- -  aH(ll °*, V* - -  I~ °*) VV h e V ~  . (3.46) 

Applying (3.44) implies 

O h uO o h uO V h - -  a n ( u  ° - u , - u ° h ) =  a H ( u  ° -  u , - ) + ( a l l  a ) ( u  °, v h - u °h) 

+ ( f _ f . ) ( v h  _ u o~) VV h e V h , 

where 

(a"- a)(u. v)=  j .  (D.j"~,- n.,~.) 
au, #v~ 
Oxt #xj dO.  

(3.47) 

(3.48) 

For the microscopic cell problems, it was obtained that 

. .x.J ,x,. 
IDqkm - Dqkml <~ CH2~II I1,.,11 I1,.,, (3.49) 

I,g - ,,,I ~ Coil" II'W~ll,.,, (3.50) 

where these inequalities hold at a specific point x of the domain O. Assuming that the 
homogenized coefficients and the 'residual' stresses are in (L®(O)) 3, a bound for the above 
quantities in the whole domain O may be found as 

ID, jk .  " -- Dqk. I  ~ CH2"I l lxqII, ,vII~x*mlI, ,v in n ,  (3.51) 

" -  ,.,jl ~< CoX,'ll' ]% q"H,.v in a .  (3.52) 

Applying inequality (3.51) in (3.48), one obtains 
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#u  o 
8(v~ 

O h 

(a H-  a)(. ° v h - u°h)- f~) (DqHk,- Dqk,) -- ui ) dl~ 
8 X  ! 8Xj 

fo  C H  2~93/2 = l l  tl IIA[ it [ o u , ) [ d .  O 
__. . ( , , ,X , , , , . ,  , , , . .~m,,,..) a . ,  a(,:, - o~ 

axj axj 

<~ 27 C H  z~" ~?mX(II 'x"II,.,~II 'x"mlI,,,~)Iu°I,,nlvh -- u°"l,.. 

~<27CH 2~' ~2mX(II'x"II,,vlI'x~mlI,.~)Ilu°II,,,~Ilvh-- u°"ll,,,~ 

= C(H)l l , ,° l l , . , ,  I1,, ~ -  ,,°~111... 

= "~ ,,,1 io' i i  l x k m  
ctH) z / c ~  ,-~,,tn x ,.~11 I1,.~). qkm 

Similarly, applying (3.50) in (3.45), one obtains 

0(v h O h 

(f - fn)(vh _ uOh) = fo - .::) -., ) d. Oxj 

Io I u"Id" -< CoH"ll '~ l l , . , ,  2 °(v'~ - o. 
q 8xi 

- u °' = Co(H)llv" - u°' l l , , .  -< CoH= II'V'll,,.llv" I1,,. 
where 

Co(H) = n ~ l l ' ~ l l , , ~ .  

(3.53) 

(3.54) 

(3.ss) 

(3.56) 

The substitution of (3.53) and (3.55) in (3.47) and the use of the Schwarz inequality (2.83) 
yields 

O h U0 0 t' U 0 u0h)l/2aH(tt 0 -- it 0 -- vh)  it2 aU(u ° -  u , - u °h) <<-aU(u ° -  u , - v h, 

+ c(H)l lu° l l , . . l lv  ~ - u°~ll,,. + Co(U)llv ~ - ,,°~11,.,~ v v  ~ ~ v ~ .  (3.57) 

Noting that tile bilinear form is equivalent to norm li" [I ~,n in V a, one can obtain 

(3.58)  

~II~ ° -  ~°~II~;. ~< #~li~ ° -  ~°"i l , , . l l~°-  ¢ I I , . .  

VV h a + (C(H)II,,°II,,,, + Co(H))l id '  - ,,°~11,.. ~_ v , , ,  

where a and/3 are the same constants as in (2.82). Now, the following inequality is obtained 
adding and subtracting u ° in the second term of the right-hand side of (3.58), applying the 
triangle inequality, and then using Young's inequality to all products of terms: 
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( 1 )  (f12 1 )  
a2llu ° -  0 #2e2 -[- I1.0 ° + 2 + i1,,0 2 

+ (  b2 + d2)(C(H)llu°ll~,n + Co(H)) 2 Vv h ~ V  h Ve, b , d > O .  

Choosing e and d so that 

A = a 2 -  ~2e2 1 
4d 2 > 0 

165 

(3.59) 

(3.60) 

and defining 

and 

(/3~e~ ~b2) 1 A , =  + ~- 

1 
A 2 - - (b  2 + d 2) ~ ' ,  

one obtains 

(3.61) 

(3 .62 )  

lifO - ohlt2 
- u II l , n  A l l l u  ° - v ll ,o + A2(C(H)IIu°I[x,o + Co(H)) 2 Vv h E V h . 

(3.63) 

0 h Finally, and due to the properties of the interpolation space V h, there exists a ut in V a for 
which the following estimate holds: 

[ •0 _ O h it 2 2 
- ~ It,.n <~ A , D h 2 " l l u ° l l . , o  + A , ( C ( H ) l l u ° l l , . n  + C o ( H ) )  2 , (3.64) 

where or - -min( t -  1, n -  1), n > 1, and h is a geometric parameter associated to the size of 
the finite elements in the discretization of the macroscopic domain •. 

It is noted that the above estimates are obtained under the assumptions that both domains 
/2 and ¥ are polygonal and that the integration is performed exactly. If the domain is not 
polygonal and the finite element discretization cannot cover exactly the original domains, then 
the space of functions generated by the finite element discretization V h is no longer a subspace 
of the initial space V. Similarly, if the integration scheme is not exact, integration errors must 
be additionally considered. Details of nonpolygonal domains and numerical integration errors 
can be found in, for example, [17, 19]. 

The previous a priori error estimations (3.28), (3.39) and (3.64) provide the convergence 
rate of the finite element approximations to the continuous solutions when the mesh size of 
the discretizations converges towards zero, i.e., when h--,0. As can easily be seen, this 
convergence rate, the power of the parameter h, depends on the regularity of these solutions. 
Thus, if somehow one can predict their regularity, the convergence rate indicates how much 
refinement would be necessary to significantly improve the finite element approximations. This 
is illustrated in the following example. 
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EXAMPLE 3.1 (Convergence test for regular meshes). Let us examine the above error 
estimates for a particular example problem in which both the macroscopic domain t'2 and the 
microscopic cell Y are rectangles in R 2 for simplicity. Both domains are discretized using 
QUAD4 elements, i.e., the isoparametric four node element, and the macroscopic displace- 
ment u ° and the characteristics of deformation X q, for each ij, are interpolated by bilinear 
polynomials in the parametric space. The rates of convergence are then examined for the 
macroscopic displacement u° and the homogenized coefficients Dqk ~. 

The microscopic square cell structure is defined by two isotropic materials as shown in Fig. 
3.1. Since the convergence of the finite element approximation is the only concern, the 
materials of the composite are artificially chosen and the microstructure is set uniform 
throughout the macroscopic domain n .  Then, the homogenized elastic constants are computed 
by using 4 x 4, 6 × 6, 8 × 8, 10 × 10 and 12 x 12 meshes. Similarly, the macroscopic rectangu- 
lar structure ~2 is discretized by 4 x 4, 6 × 6, 8 × 8, 10 x 10 and 12 x 12, as shown in Fig. 3.2. 

For the microscopic base cell introduced, the solutions X q of problem (3.15) are at most in 
H~'5-~(Y) since Eqk i are in H°'s-8(Y), where ~5 is an arbitrary positive number. This claim may 
be justified by the following considerations: 

(a) The step function H(x) (H(x) = 1 for x > 0 and H(x) = 0 for x < 0) is in H°'5-a(R) (see 
[17]). Applying the concept of the tensor product, the function H(x, y) = H(x)H(y) in R 2 may 
be regarded as a function in H°'5-~(R2). Since Eqk t can be constructed by linear combinations 
of appropriate constants and the function H(x, y), Eqk ~ are in H°'s-8(F). 

(b) The strong form of the microscopic base cell problem (3.15) involves the set of 
differential equations 

0 ( OXk/) 0 Eqk t in Y - ay'-~ EqPm Oy,,, = - Oy-~j 

This yields at most that 

OX kl 

kl Since Eqp,. E H°'5-8(F), X p can be at most in HI'5-8(Y). 

I I  l l m ~  
I I  I I I ~  
I I  I I  I ~ ~  
I I I I ~ ~  
| ~ I ~ I  I I  I 
M ~ I I I I  
~ I . I I I  i- i  

Material I 

Material II 

Elastic Constants MAT I MAT II 

El I I I 300 30 
El 122 100 10 
E1212 100 10 

Fig. 3.1. The base cell structure for the convergence test. 
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\ 5t =1 

O 
Fig. 3.2. Global structure and its finite element discretization. 

Thus, if the error estimate (3.28) is applied to the present problem using the four node 
bilinear isoparametric finite element QUAD4 for plane problems,/z is expected to be 0.5 - 8, 
since/z = min(2 - 1, 1.5 - 8 - 1) because of t = 2 for this choice of finite elements. Therefore, 
the rate of convergence of the homogenized constants D~j~t by the finite element approxima- 
tion is 1 - 28, where 8 is an arbitrary positive constant. In practice, 8 can be regarded to be 

zero .  
In order to present the numerical results it is convenient to note that 

1 1 = D~jkt - D ij~! ~-- C H  1- 26 (3.65) 

D ij~l D ijkt D ijklD ijHkl 

where C is an appropriate positive constant. If the relations (H 1-28, 1/D~j~t) for different 
values of H are plotted, they should be linear. Indeed, as shown in Fig. 3.3, all the 
independent combination of indices--(/, j, k, l) = (1, 1, 1, 1), (i, j, k,  I) - (1, 1, 2, 2) and (i, j, 
k, l ) =  (1, 2, 1, 2)--form linear lines. Furthermore, these lines predict the 'exact' homogen- 

ized elastic constants Dnl  ~, Dl122 and D1212" 

Dl111 = 7.71724, Dl122 = 3.15080 and D1212 = 3.27182. 

H these values are used as the 'exact' homogenized elastic constants, D1111 is calculated with 
15.6% error using the 4 x 4 mesh (H = 0.125), while it is calculated with 4.6% error using the 
12 x 12 mesh (H =0.0417). Applying 9 times more finite elements, only 3.4 times better 
estimation can be obtained if uniform refinement is considered. As shown in Fig. 3.3, the rate 
of convergence is slow, and furthermore, there is a relatively large amount of finite element 
approximation error even in very refined cases. 

On the other hand, if the macroscopic problem (3.40) is considered, its solution u ° is 
expected to be at least in//e(~2), since only a constant traction t is applied along the free end 
of the beam-like rectangular structure fJ, and each component of the homogenized elasticity 
tensor is a constant function of x in •. Thus, the error estimate (3.64) yields the unit rate of 
convergence, i.e., the error in the HLnorm, which is equivalent to the energy norm, is 
proportional to hi, where h is the representative element size in the macroscopic structure. 
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Rate of convergence of D.~k ! 

0 .30  

0.20' 

0 . I 0  • ~ . . . .  '- . . . . . .  • , ~ . . . . .  
0 .00  0 .05  0 . I 0  0 .15  

• 1/DIHl122 

a 1/D~212 

I/D~III 

mesh size H 

I/DIHIII1 = 022958 - 024055 H 

I/DIHI22 = O.51738 - 0.23905 H 

I / D~21z = Oj0564 - 035850 H 

Fig. 3.3, Convergence of the homogenized elastic constants. 

In order to present the results, note that because the bilinear form aX( • 
the following identity holds: 

,. ) is symmetric, 

O h ~0 - -  0 t* a " ( u  °, u °)  - aH(u °', u °h) = aX(u  ° - u , - u °h) + 2aU(u ° u , u°"). 

It then follows from the orthogonality of the finite element approximation error that 

. -  ~ O h u O  a"(u °, u °) a~(u °~, u °~) a"(u ° -  u , - u°~). (3.66) 

Taking the reciprocal relation implies 

I 1 aU(u °, u °) - aU(u °h , u °~ ) 

a.(uo ~, u o~) a'(uo uo) a,,(.,o*, uO~)a.(uo ~o) 

Note that the energy norm defined by the bilinear form all( • , • ) is equivalent to the HI(I'~) 
norm. Then applying the error estimate (3.64) yields 

1 1 
a ' ( .  °~, uo ~) a"(u °, u °) C l h  2 + C2H 1-28 (3.67) 
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where ~1 and C 2 are appropriate positive constants. This means that if the relations (h 2, 
1/an(u °h, u°h)) are plotted for different h, they should be linear. Indeed, Fig. 3.4 shows this 
fact. Furthermore, the value of aH(u °, u °) can be estimated using the linear relation within a 
constant C2 H1- 28. 

Since the L®(~O) norm of the displacement u ° behaves similarly to the strain energy, the 
finite element approximation of the beam free end displacement converges to the exact one 
with the same rate of convergence, h 2, to the strain energy. Thus, the relations (h 2, l/d), 
where d -  u°hlat free ena, for different h is linear for each choice of H, see Fig. 3.4. In Fig. 3.4, 
the quantities with superimposed ' . '  are the macroscopic response obtained by using the 
homogenized elastic constants computed by a coarse finite element mesh, say a 4 x 4 mesh, for 
the microscopic problem. It is clear that poor finite element approximation of the homogen- 
ized elastic constants implies stiff macroscopic response. 

This example illustrates that as a consequence of the convergence properties of the finite 
element approximations of the microscopic and macroscopic problems, uniform mesh refine- 
ments yield a fairly accurate estimation of the 'exact' solutions by extrapolating from their 
approximations. 

Rate of Convergence (Macroscapic) 

' I  

0.05' 

.04 

0.03 

0.02 

0.Ol +-- 

0.00 0.01 0.02 0.03 0 .04 0.05 0.06 

h2 

0.07 

a I/energy 

a I/energy 

• Hal* 

o l/d 

1~energy - 2.~951e -2  ÷ 0.39116 h 2 

l/energy - 2.6815e - 2  ÷ 03517 h 2 

I/d* - 1.4982e ":2 ÷ 0.1955 h 2 

l / d  - l.J413e -2 + 0.1757 h 2 

Fig. 3.4. Convergence of the strain energy and the deflection of the global stnlcture. 
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4. Implementation of the homogenization method: PREMAT and POSTMAT 

In this section the finite element implementation of the homogenization method is 
presented. This implementation is formed by two separated blocks. The first, P I ~ M A T ,  
generates the material properties for a general structure. The second, POSTMAT, computes 
localized information (dizplacements, stresses and strains) after a finite element procedure has 
been used to solve the general structure. 

For simplicity, let us apply QUAD4 and HEXA8 elements to discretize the cell domain ¥ 
for two-dimensional and three-dimensional finite element analyses of the microscopic cell 
problem. To this end, after constructing the finite element approximation V h of the space V 
using these bilinear and trilinear elements, discrete problems (3.15) and (3.30) will be solved 
to obtain the finite element approximations of the homogenized elastic constants and the 
'residual' stresses for the homogenized macroscopic problem (3.40). ApplYing the usual 
implementation procedure of the finite element method, an arbitrary function o n in the space 
V n is interpolated by using the shape functions N~ (g) :  

vn(y)  = ~ vnN~(~) ,  N . = 4  or 8, (4.1) 

while the geometry of an element ¥~ in V is also interpolated using the same shape functions 
N.. 

y f f i ~  y~N~(g),  N , = 4  or 8,  (4.2) 
a m l  

where the shape functions N~ (g)  are defined by 

Na(~) = [ (4.3) 

and {( ~to, ~2a)} and {( ~to, ~2~, ~3o )}, a = I , . . . ,  Ne, are the coordinates of the correspond- 
ing nodes a = I , . . . ,  N e in the master element/~t  of the QUAD4 and HEXA8 elements, 
respectively. Introducing these into (3.16) the discretized problem is obtained as 

£ 

Find X nk, ~ V nv , such that ~ a r e ( x H  k t -  p~t, v n) = 0 Vv n , (4.4) 
effil 

where 

1 f¢ Ou k Ov~ d Y  u, v ~ V n . (4.5) ave(u, v )=  " ~  , Eok' Oy, Oyj ' 

Hkl 
Since the shape functions are the same for all the cases of X , k, ! = 1, 2 and 3, the stiffness 
matrix to different indices of k and I is also the same for all of k and I. Thus, once the stiffness 
matrix K is formed and decomposed in LU form, where L and U are the lower and upper 



J.M. Guedes, N. Kikuchi, Preprocessing and postprocessing for materials 171 

triangular matrices of K for k = 1 = 1 from the bilinear form a t ( .  ,- ), they are applicable for 
other k and 1. This means that solving discrete problems to determine the characteristic 
deformations X H~t for six independent ones, is not so expensive in the sense that the 
right-hand sides for the six independent cases can be formed and reduced with less intensive 
computation. Similarly, finite element approximations of the 'residual' stresses ~.H are 
obtained by solving (3.32): 

where 

E E 

Find I~/H~ V H such that ~ a x , ye(t~ , V H) -" ~ fre(V H) VV H e V ~ ,  (4.6) 
e l l  e = l  

P i v i d S  (4.7) 

and aYe is the surface of an element ¥e that intersects to the boundary S of the holes of the 
basic cell ¥. Here, O H are interpolated by the shape functions N a" 

= 0 . N ~ ( ~ )  in ¥~. (4.8) 
affil 

Once ~,xkt and 0H are obtained, using (3.17) and (3.31) one can compute the finite element 
approximations of the homogenized elastic constants and the 'residual' stresses for the 
macroscopic homogenized problem. 

The program PREMAT has been developed to compute material constants of generalized 
materials for finite element analysis based on the homogenization method described in above. 
The basic structure of PREMAT is described as follows: 

read structuretype 
if structuretype.eq.solid 
then 

read materialtype 
if materialtype.eq.anisotropic 
then 

read E l ,  v12, v13, v123, v131, v112, and other engineering constants 

call dmatrix 
else 

if materialtype.eq.orthotropic 
then 

read El ,v l2 ,v l3 ,  and other engineering constants 
read Euler's angles of the material axes 
call dmatrix 
call rotation 

else 
if materialtype.eq.isotyopic 
then 

read E and v 
call dmatrix 
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else 
if materialtype.eq.homogenization 
then 

read constituants of the basic cell 
read material constants of each constituent 
call homogenizing 
call rotation 

end if 
end if 

end if 
end if 

else 
if structuretype.eq.laminate 
then 

read numberofplies 
loop ply-~ 1 to numberofplies 

read materialtype 
if materialtype.eq.orthotropic 
then 

read El ,v l2 ,v l3 ,  and other engineering constants 
read Euler's angles of the material axes 
call dmatrix 
call rotation 

else 
if materialtype.eq.isotropic 
then 

read E and v 
call dmat~'ix 

else 
if materialtype.eq.homogenization 
then 

read constituants of the basic cell 
read material constants of each constituent 
call homogenizing 
call rotation 

end if 
end if 

end if 
next ply 

else 
if structuretype.eq.beam 
then 

read materialtype 
if materialtype.eq.anisotropic 
then 
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read El,vl2,z,112, and other engineering constants 
call dmatrix 

else 
if materialtype.eq.orthotropic 
then 

read El,~,12, and other engineering constants 
read Euler's angle of the material axes 
call dmatrix 
call rotation 

else 
if materialtype.transverseisotropic 
then 

read E1,E2,vl2, and theta 
call dmatrix 
call rotation 

else 
if materialtype.eq.isotropic 
then 

read E and v 
call dmatrix 

else 
if materialtype.eq.homogenization 
then 

read constituants of the basic cell 
read material constants of each constituent 
call homogenizing 
call rotation 

end if 
end if 

end if 
end if 

end if 
end if 

end if. 

Here subroutine dmatriz forms the so-called D matrix, the matrix of the material constants, in 
the finite element analysis, while subroutine rotation rotates D to the coordinate system in 
which the element stiffness matrices are computed. If the material type is standard, so that 
engineering constants such as Young's moduli, Poisson's ratios and shear moduli are already 
known by, for example, tests in a laboratory, it is not necessary to apply the homogenization 
method to determine the elastic constants forming the D matrix. 

In the homogenization method, the reduced integration method with hourglass control is 
applied to form the element stiffness matrices from the bilinear form aye(.,. ) in order to 
reduce computing time in three-dimensional problems. Details of such a method can be found 
in, for example, [20]. Here only a brief description of the method is given. Thus, for the 
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HEXA8 element, there exists the following isoparametric geometry relation between an 
arbitrary finite element (x-coordinates) andthe master element (se-coordinates): 

[xl I [,1.1/.113.1]i 1 
X 2 = 11 X 2 1 2 " X  2 13 X2 
x3 ll x3 12"x3 13 x3 L ~3J 

Xl "[" hi" X1~:2~:3 "[" h2" Xl~:3~:l --I- h3" x1~:1~:2 + h4" x1~1~2~3] 

x3 + hi x3~2~:3 "+" ~2 X3~:3~:1 + h3 x3~:1~:2 + h4 X3~:l~:2~:3J 
(4.9) 

where 

ltl = i { -1 ,  1, 1 , - 1 , - 1 ,  1, 1 , - 1 } ,  1~= i { - 1 , - 1 ,  1, 1 , -1 ,  -1,  1, 1}, 

1~= ~{-1, -1 ,  -1 ,  -1 ,  1, 1, 1, 1}, c t=  ~{1, 1, 1, 1, 1, 1, 1, 1}, 

h~l = s~{1, 1, -1 ,  - 1 , - 1 , - 1 ,  1,1}, h~ -  ~s{1,-1, 1 , - 1 , - 1 ,  1, 1 , - 1 } ,  

h~-  ~8 {I, -1 ,  I, -1 ,  1, -1 ,  1, - 1 } ,  h4 = x8{-1, 1,-1, 1, 1, -1, 1 , -1 } ,  (4.10) 

t __. {X11 X18} X1 , X12, X13, X14, Xl 5, X16, X17, , 

t __. {X21 X28} X2 , X22, X23, X24 ~ X25, X26, X27, , 

t __. {X31, X3 X32~ X33~ X34, X35~ X36, X37, X38} 

The inverse relation can be obtained a~ 

= l t . x  2 12.x 2 1~ xa x2 

~ ~ fi . xs 12"x3 Is x~ x3 

It xt 12 xl 13" xl 
- 11 x2 12 X2 13"X 2 

It x3 12 X 3 13 X 3 

x x2 + h~'x26_~3 + h2"x,~3~x + hs 'x ,_~2  + h4 x2~t~2~3]. 
xs + h~ " xs6_~ + h~ . xs~"~ + hs " xs~,6  + h, x ~ , _ ~ . l  

Since a similar expression to (4.9) can 

vii I i vl vl 
V 2 ----. 11 • V 2 12 " V 2 

V3 11 V 3 12 ' V 3 

+ 
I C" V 1 "~" h I • 

c ' v 2 +  h 1 • 
C ' V  3 + h I • 

be obtained for a 'displacement' vector v: 

13 " V 2 

13 v3 

v~e~ + he' v ~  + hs. v ~ 6  + h,. v ~ ~ ]  
v~6_~:s + h~. v~s~l + hs v ~  + ~, v 2 ~ 2 ~ | .  
V3~:2~:3 + #~2" V3~3~X + h3 V3~:1~:2 + h4 V3~l~2~:3J 

(4.11) 
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Applying the inverse relation (4.11) to this yields 

[vii [/lOl  2Ol/ol][11 1 
v 2 = I 1 V 2 l 2 V 2 l 3 V 2 11 X 2 

03 11 v3 /2 v3 /3 v3 11 x3 

12"x 1 13 " Xl] '-1 
12 . x~ 1~ x~ 
12 " X 3 13 x3 

[Xl -- (C" Xt "~ hl " Xl~2~3 "~" h2 " Xl~3~l ~" h3" Xl~l~2 "~" h4" Xl~x~2~3)] 
X X 2 - - (C  X 2 ~- h i  X2~2~3 "["/12 X2~3~1 4" ~3 X2~1~2 ~" ~4 X261~2~3) 

X 3 - - ( C  X 3 -'1- h 1 X3~2~ 3 -~- h 2 X3~3~ 1 -~- h3 x3~1~2 -~- h4 x3~1~2~3 ) 

[i'v1"~'~l'Vl~2~3~'h2"Vx~3~l'~'h3"vx~l~2~h4"Vl~l~2~3] 
"1" V 2 "1" h 1 V2~2~ 3 "!" h 2 v2~3~ 1 -t- h 3 V2~l~ 2 -t- h 4 v261~ 2~  3 . 

v3 + h~ v39293 + k2 v393~ + h3"V3glg2 + h4 v3~g293 
Denoting  2.01 

bl V 2 b2 V2 b3 V 2 " - -11  V 2 l 2 V 2 l 3 V 2 11 X 2 12 X 2 13 x2 , 

bl v3 b2"v3 b3 V3 ll V3 12 V3 13 V3 11 X3 12 X3 13 X3 

one can obtain 

(4.12) 

where 

vii [blol  2o1.3 ol][ 1] 
v2 ffi bl v2 b2" v2 b3 v2 x2 
v3 bl • V 3 b 2" v 3 b 3 v 3 x3 

[a" vl + gX ! Vl~2~a W g2" vl~3~l + g3 " vl~t~2 + g4 " Vl~x~2~31 
+ a v 2+gx'v2~2~3 +g2 v2~3~1 +g3 v2~1~2 +g4 v2~1~2~3|, 

a'v3 ~" g l  V3~J2~J3 "[" g2" V3~3~1 "1" g3 V3~1~2 + g4 " V3~l~2faj 

a f c - ( c .  x ~ ) b ,  - ( c  

g~ = h t  - ( h r  " xl)bl  - 

• x2)b 2 - (¢. x3)b 3 , 

( h , .  x2)b2 - ( h , .  xs)ba, i f f i  1,2,3 and 4. 

(4.13) 

(4.14) 

Approxima,ing the differential relation between x and g by 

• 0 "  

a62 

" (~Xl 

c3x~ 

c3x~ 

11" xl 
11 X2 
It x3 

Ox 2 Ox 3" 

Ox 2 Ox3 

a~ 2 a~ 2 
ax2 Ox3 

2" Xl 
12 • X 2 
12 • X 3 

i9 ! 

c3 

• 0 

oXl 
la. xl]t 0 
l~'x2] " ax2 ' 
13 x3 O 

• OX3. 

(4.15) 
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differentiation with respect to the coordinate system x is approximated by 

" O" " O" 

_ ,  0 [/I'xl 12"Xt 13"Xl] 0 
OX? = l l 'X2  12"X2 13 x2 0~2 

i 0 / l ' X 3  12"X3 13 x3 c3 

Ox3 . .0~3 . 

(4.16) 

Thus, the differentiation of the bilinear and trilinear terms in ~: w.r.t, x is approximated as 

s • 

o 

Ox~ 
o 

Ox 2 
0 

.OX3 . 

11 x I 12 • x 1 ! 3 • x 1 
11 x 2 12 " X 2 13 " X 2 
I1 X3 12"X3 /3"X3 

t' I 0 i 

0 

a 

~0~3. 

[ll l [i:] 
= 11 X2 12"X 2 13 X2 

ll X 3 12"X3 13 X3 

(6e63) 

(4.17) 

etc. 

Applying these relations, the first derivatives of v w.r.t, x can be approximately obtained in 
terms of ~. Furthermore, noting that polynomials in ~ in the master element •M can be 
explicitly integrated, the ele,aent stiffness matrix due to the bilinear form are( '  , '  ) can be 
approximately obtained without applying a quadrature rule. Because of this direct evaluation 
of integration less computing time is required to form the element stiffness matrix than in the 
case where a quadrature rule is used. 

Now some examples of the homogenization method are introduced for 2D and 3D cases as 
well as the c¢mputation of the localized stress distribution. The above procedure was used for 
the 3D examples in order to reduce the computational time. 

E X A M P L E  4.1 (Discontinuous fiber in plane elasticity). Consider a plane-stress linearly- 
elastic problem to obtain the homogenized elastic constants for the microscopic cell structure 
shown in Fig. 4.1. In this case many short boron fibers are periodically arranged in an 
aluminum matrix. Although the real cross-section of fibers is circular, in this example a 
rectangular cross section is assumed to construct an approximated plane stress problem. The 
dimensions o = 100 mm and b = 2 mm are assumed in order to have 50% fiber volume in this 
composite material. This implies that e = 10 mm, where e is the parameter in the perturbation 
of u ~, while the size of the cell is defined by the proportionality relation 1:0.02. Figure 4.2 
shows the homogenized elastic constants for various lengths of short fibers. In this case, the 
gap of short fibers is held as a constant while the length of short fibers are varying. It is clear 
that the fiber length affects only D ~  which represents the elastic rigidity of the composite in 
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Basic Cell 

Boron Fiber E1111 = 538.492 GPa 
E1122 - 230.769 GPa 
E1212 = 153.846 Gpa 

AI Matrix E1111 = 108 OPa 
E1122--- 54 GPa 
E1212= 27 GPa 

Fig. 4.1. A plane stress model of a short fiber reinforced composite. 
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Fig. 4.2. Homogenized elastic constants of a composite plate reinforced by boron short fibers (constant gap). 
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the fiber direction. It is also clear that if the fiber length reaches to a comparable value of the 
gap 0.2 mm, the rigidity in the fiber direction is significantly reduced. However, if the gap is 
reduced proportionally to the fiber length, the homogenized elastic constants are almost 
constant, as shown in Fig. 4.3. Here, the gap is 10% of the fiber length. This means that if the 
gap can be reduced proportionally to the fiber length, the fiber length does not greatly affect 
the homogenized elastic constants. This may indicate that the fiber length should be decided 
by failure criteria of fibers, matrix and their bonding interface. 

EXAMPLE 4.2 (Continuous fiber in three-dimensional elasticity). Consider a boron fiber 
reinforced composite material. Fibers are assumed to be unidirectional, and their volume 
fraction is 40%, 50% and 60%, respectively, in an aluminum matrix as shown in Fig. 4.4. The 
homogenized elastic constants are obtained as in Fig. 4.5. The values of Young's moduli E~, 
E 2 and E 3 are compared with those obtained experimentaUy in [21]. It is clear that Young's 
moduli in the fiber direction is very close to that obtained by the homogenization method. 

EXAMPLE 4.3 (Honeycomb structures). Consider a honeycomb structure with and without 
shear panels on the top and bottom surfaces, its microstructure is given i~ Fig. 4.6. This 
example tries to show the effect of shear panels in a honeycomb structure. The model used is 
based on a unit cell with dimension ratios 

length/width/height/thickness = 0.7696/0.866/1.5/0.1. 

Proportional Gap 

300 

0 -  
0 

0-.----0,- C 0 

" 1 

• 

• D~212 

Ratio Fiber LMsthlFib~r Width 

Fig. 4.3. Homogenized elastic constants of a composite plate reinforced by boron short fibers (proportional gap). 
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, IO ,L.. 
z Q Boron Filx(60~) 

the Basic Cell Structure 

['! Aluminum Matrix 

Fig. 4.4. Boron fiber reinforced composite material. 

For an aluminum honeycomb, the homogenized elastic constants are computed for several 
different thicknesses of the additional shear panels. The results are shown in Fig. 4.7 and the 
characteristic deformations for a particular case are as in Fig. 4.8. The results for D2222 and 
D2233 are omitted because they behave similarly to D3333 and Dl133 , respectively. As expected, 
these panels reinforce the in plane rigidity (D~I~, D12~2 ) but have few influence on the out of 
plane rigidity (D3333, D1133 ). 

Boronl6061AI Composite 

300 

2OO 

1" 
( 

30 

J 

i 

io 5'o ~ 70 

u ~'l, E2 

0 ~ 3  

* c;23, 631 
A GI2 

i 1~1, E2(exp) 
• E3(exp) 

Boron. Volume % 

Fig. 4.5. Homogenized elastic constants of boron fiber reinforced aluminium. 
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2 

3 

i!i iii l i ! i i i i ! i! 

7 

W 
I_... ...~1 
I~ "  "Wl 

Fig. 4.6. Microstructure of a honeycomb. 

EXAMPLE 4.4 (Woven fiber reinforced composites). The fourth example is for a woven fiber 
reinforced composite material whose finite element model is shown in Fig. 4.9. In this case, 
fibers are not straight, but woven three-dimensionally in both directions of a plane so that the 
elastic modulus in the thickness direction, which is transverse to the plane, is different from 
the moduli in the plane directions. We assume boron fibers and A! matrix are used in Example 
4.1, although it may not be realistic. The homogenized elastic constants are obtained as 

Honey.Comb with Layers 

3O 

2O 

ii l01 
0.00 

7 j  f 

n,,,, ,in ! . . . .  

0.05 0.10 0.15 

a DHH 

• D$$35 

m DII33 

o 0,2z2 

Ratio of Layer ThicknesslLensth of Honey.Comb 

Fig. 4.7. Homogenized elastic constants of honeycombed structures. 
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Z Z '  

Fig. 4.8. Characteristic deformations (X tl, X 1~, X t3, X 22, X 23, X'3) ,, 
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X 

Fig. 4.9. Woven fiber reinforced composite (matrix and fiber finite element method). 

Dlltl = 119.94 GPa, D1122 = 57.84 GPa, Dl133 = 57.03 GPa, 

D2222 ---- 116.66 GPa, D2233 ffi 57.84 GPa, 

D3333 ---- 119.94 GPa, 

D2323 - 30.29 GPa, D1313 = 29.77 GPa, D1212 = 30.29 GPa, 

by solving the homogenization problem using 3240 HEXA8 elements. The characteristic 
deformations are given in Fig. 4.10. 

Now, once the homogenized elastic constants and the 'residual' stresses are computed, the 
macroscopic problem is solved to determine the homogenized response u ° by solving the 
discrete problem (3.41 ): 

Find u °' E V h , such that an(u °', v h) = f H ( u h )  VU h E V h . (4.17) 

After solving the macroscopic problem, it is necessary to compute the displacement and stress 
fields in the microscopic structure using the expansions (2.58) and (2.59): 

and 

H o 

n*' auk (x) ) _  ÷ 

Hkl  . H o 

o'ii (x, y)= E,jkt(x, y ) -  E,ipm(X , y) OXp (x, y) Ou k (x) E,ikt(x, y) 
#Ym Oxt 

(4.18) 

aq,~'(x, y) 
0y t 

(4.19) 
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*, Y 

• oj  x ! _ 
m 

<~ 

d 

Z 

X 

Fig. 4.10. Characteristic deformations (X 11, X 12, X 13 X 22 X23~ X33)" 

. J  

X23 
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In POSTMAT, by specifying the point x in a specified finite element ~2 e in the macroscopic 
domain, uN°(x) is computed by interpolating its nodal values as well as its first derivatives in 
the macroscopic coordinates x. Then, if the material constants are obtained by the homogeni- 

H o 
zation method, the approximations of the stresses o-~j (x, y) are computed using the charac- 

• H k  I 
teristic deformations X p (x, y) and the residual stresses ~H(x, y) in the finite element model 
of the cell domain ¥. 

EXAMPLE 4.5 (Continuation of Example 4.2). Consider a lamina of boron fiber reinforced 
aluminium with a microscopic structure as shown in Fig. 4.4, and let a laminate consist of two 
laminae whose fiber orientation is inclined +45 and -45 degrees w.r.t, the longitudinal 
direction as shown in Fig. 4.11. Also, let the length, width and thickness of the laminate be 4, 
1 and 0.2, respectively. Then, applying the homogenized elastic constants for 60% of boron 
volume fraction, one solves a macroscopic stress analysis problem of the laminate. Assuming a 
force distribution on the half portion of the free end as shown in Fig. 4.11, this stress analysis, 
problem (4.17), is solved by the finite element method using 8 x 4 x 4 uniform HEXA8 
elements. In order to avoid shear locking one applies the directional reduced integration 
method with hourglass control, as previously described. The approximated stress fields are 
computed in each lamina, and also at the microscopic level for points A, B and C. For these 
points, the microscale Von Mises equivalent stress contour lines are shown in Figs. 4.12, 4.13 
and 4.14. 

EXAMPLE 4.6 (Continuation of Example 4.3). Consider a macroscopic stn~cture as shown in 
Fig. 4.15 with an aluminium honeycomb microscale structure as shown in Fig. 4.6 and the 
same dimensions and load conditions as in Example 4.5. Similarly, after solving the macro- 
scopic stress analysis problem using HEXA8 elements with the directional reduced integration 
method with hourglass control, the microscopic stress fields are computed at points A, B and 
C and the corresponding Von Mises equivalent stress contour lines shown in Figs. 4.16, 4.17 
and 4.18, respectively. 

"~.~" - 45 0 

Fig. 4.11. A macroscopic stress analysis problem of a boron/AL laminate. 
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Max'-k-~ 1.461E+02 

Io242E+02 

1.024E+02 

8.051E+01 

5.864E+01 

Min.ff-~ 3.678E+01 

Fig. 4.12. Local distribution ofequivalent V o n M i s e s s t ~  at point A. 

Max'-k-~ 1.513E+02 

i. 288E+02 

1.062E+02 

8.367E+01 

6.113E+01 

.~-~ 3. 859E+01 
Min 

Fig. 4.13. Local distribution of equivalent Von Mises stress at point B. 
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2. 712E+01 

2 . 2 1 2 E + 0 1  

I. 712E+01 

iiiiiiiiiiiiiiiiii~iiiiii~ :::::::::::::::::::::::::::::: 
!ii:~ii::~i!i!ii'i~i~i~ii::i::~ 

Min.-/-~ - 7. 115E+00 

Fig. 4.14. Local distribution of equivalent Non Mises stress at point C. 

S. Application of the adaptive finite element method 

A general concern arising from the use of the finite element method is the accuracy of the 
solutions obtained. The main problem concerns the accuracy of the finite element solutions 
and how to improve them. A fairly standard technique to overcome this problem is the use of 
adaptive finite element methods. The initial ideas of these aOaptive methods appeared in the 
late 60's (see, for example, [22]) and, in the 70's, Babu[ka, Rheinboldt and their colleagues 
[23-26] introduced their fundamental concepts and techniques together with a posteriori error 
estimates. 

Fig. 4.15. A macroscopic stress analysis problem of a honeycomb plate. 
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Max.~_~ 6.943E+02 

5.871E+02 

4.799E+02 

3.728E+02 

2.656E+02 

Min.J-~ 1.584E+02 

Fig. 4.16. Local distribution of equivalent VonMises stress at point A. 

Max.~_~ 7.804E+02 

i!:::~:i:i:!i.: !iiii:~!ii:il ¸̧  !:::i 

6.664E+02 

5.525E+02 

4.385E+02 

3.246E+02 

Min./-~ 2.106E+02 

Fig. 4.17. Local distribution of equivalent Von Mises stress at point B. 
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Max'-k-~ --- 2.343E+02 

i 

- 1.912E+02 

- 1.482E+02 

- 1.051E+02 

6.201E+01 

Min._/-~ 1.894E+01 

Fig. 4.18. Local distribution of equivalent Von Mises stress at point C. 

The main idea of adaptive methods is to predict the amount of approximation error using 
only the finite element approximation, to modify the finite element mesh such that the 
approximation error is reduced with a minimum effort. These methods are traditionally 
classified with resp,',.ct to the type of mesh modification: r-methods for node relocation, 
h-methods for finite element refinement, and p-methods for higher order polynomial interpo- 
lation. For any of these methods there are several different approaches usually related with 
the choice of error approximation and/or the method of implementation (see, for example, 
[27-29]). Details on these methods can be found in the literature mentioned before and 
references cited therein. 

In the previous sections the homogenized elastic constants are computed using the finite 
element method with, consequently, the same accuracy concerns as above. 

The first question to consider is whether the application of adaptive methods is necessary in 
determining the homogenized constants. If the values of the homogenized elastic constants are 
insensitive to finite element discretization, the use of adaptive methods is not important. To 
ackiress this question, we reexamine the result of the convergence study of the finite element 
approximation given in Example 3.1. The base cell involves two different isotropic materials 
whose elastic moduli are significantly different. In this case, although the convergence rate is 
the same as the one predicted from the theory developed in Section 3, rather coarse meshes 
cannot provide accurate results. In other words, to achieve sufficiently accurate results, very 
refined finite eler, le~t meshes must be used if uniform refinement is assumed. This indicates 
that application of adaptive methods would significantly improve the accuracy of finite element 
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approximations without increasing too greatly the number of degrees of freedom of the finite 
element mesh. 

The second question to consider, after realizing the need for adaptive methods, is what kind 
of a posteriori error measure should be used. For this one recalls the a priori error estimate of 
the finite element approximation of the homogenized elastic constants from (3.22): 

-"  . °  

- Xnkt xkt), Dqn I Dqkt = a r ( X  n', _ X'J, - (5.1) 

where the finite element approximation of the characteristic deformations in the base cell 
satisfies the a priori error estimate 

{ a r ( xHq  _ X u, Xnq _ X q} 112 ~ { a r ( o  n _ XO; v "  - X q ) }  112 V V  H E~ V H , (5.2) 

that is, taking v n : X~ yields 

{ a y ( x H 4  _. x iJ  X Hq -- x i J ) }  112 ~ { a y ( x i j  ! _ l x i l  ~ xiJl _ tx iJ ) }  1,2 <<- C H "  II 'j'' X I I t , v  • 

(5.3) 

Following Diaz et al. [27, 28], these two a priori error estimates yield an error measure for the 
characteristic deformations, in each finite element Ye, defined by 

E~ = a y e ( X  ~ -- lx"J~ XiJl -- l x iJ ) l '2  (5.4) 

and, consequently, the error measure for the homogenized elastic constants in each finite 
element Ye is defined by 

i 

EOk~= F OEk~ (5.5) 
e ~ e  ~ e  * 

If (5.5) is applied, different adapted finite element meshes are obtained for independent 
combinations of i, j, k, I for the homogenized elastic constants Dqkt. Thus, it is recommended 
to use another error measure, 

Max E~kl. (5.6) E e "~ i,j,k,lffil,2,3 

which yields a unique adapted finite element mesh for all of the characteristic deformations 
and independent combinations of indices i, j, k, I of the homogenized elastic constants. 

In any case, error measures Ee are written in the form of interpolation errors of the 
characteristic deformations. If HEXA8 elements, 8 node solid elements, are applied to solve 
three-dimensional problems in their finite element approximations, the interpolation error of a 
function g which is twice differentiable in the master element is given by 

1[ 
g l -  g---- 2 (1 -- r 2) Or'--~ 

+ ( 1 - - $  2) 02g' + (1 -- t 2 ) O S  2 ~02g] at (r, s, t) ~ ~2M , (5.7) 

and then 
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and 

m 

+ (1 5 2 ) c3(glr g) 1 [Y-2r 02g - 03g 03g 
Or e 07 -Or + (1 - t 2) } Ot 2 Or ' 

O(g~sg) 1 { ( I - r 2 ) 0 3 g  

O( g, - g) 1 { c33g 
ot  = 2 (1 - r 2) Or 2 0 t  

2s O's~' + (I - t 2) at 20S J 

+ (1 - s 2) as e Ot at e J" 

(5.8) 

(5.9) 

(5.1o) 

Note that 

l and 

i~( gl -- g) 
Ox 

o (  g ,  - g) 
Oy 

o( g, - g) 
Oz 

oeg 
Or e 

ox o~ o~ 
Or Or ar 
ax Oy az 
Os Os Os 
Ox Oy Oz 

m 

Ot Ot Ot 

- 1  

m 

(++++ +++ ++++) 
c30rOx + Or ay + #r ~r 

Or 

m 

o( g, - g) 
ar 

o( g, - g) 
as 

o( g, - g) j 
. O t  

8y 2 c3Z 2 

( c)XOyO2g_..+ OXc)ZOIg + OYOZO2g ) 
+ 2 Or Or Ox Oy Or Or Ox #z Or Or #y Oz 

(5.11) 

(5.12) 

etc. 

Then, the first derivatives of the interpolation error of g can be expressed in terms of the 
Jacobian matrix of the transformation between the physical coordinate system and the 
normalized coordinate system in the master element, and of the higher order derivatives of g 
in the physical coordinate system. Si~ce the Jacobian matrix can be computed using the 
geometry of each finite element I~'~, the remaining issue to be discussed is a method to 
estimate the second and third derivatives of an unknown function g using its finite element 
approximation gh, spanned by the shape functions of the HEXA8 element for three- 

? + 

dimensional problems. Since Ogh/6x, O'gh~ OX Oy and others are computed, for example, at the 
2 x 2 x 2 Gauss integration points, their corresponding values at a nodal point can be 
approximately computed by applying an averaging method using their values at the Gauss 
integration points which surround the node. These avaraged values are then considered to be 
an estimate of the true derivatives of g at the nodal points. Consequently, assuming that these 
estimates at the nodal points are interpolated by the same shape functions as those of the 
HEXA8 element, their derivatives O/Ox (Ogh/Ox), O/Ox (O2gh/Ox Oy), etc., are available and 
can be computed at the 2 x 2 x 2 Gauss integration points. This means that the error 
- ,  - "- ~,+~,~ + - ~ , X? - can be computed. 
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Another way to define error measures is based on the sensitivity of the functional 

Fq(X sq, Y,,) = ½av(X"q, X s") - ar(XW', eq) ,  (5.13) 

whose first variation in X H'~ leads to the discrete problem (3.15), that defines the finite element 
approximation of the equation to determine the characteristic deformations in the base cell, 
where y~, are the coordinates of all the nodes of the finite element model of the base cell ¥. If 
the optimum location of the nodes yo is defined so that the functional F q reaches the 
minimum, the sensitivity of F q with respect to the location yo must be zero at the optimum: 

DF o aF q 8F q clX Hq OF q 

Dya = ay + - _ ox HO ayo ay~ - O . (5.14) 

Since DFq/Dya is computed at every node, its L 2 n o r m  can be computed at every finite 
element after interpolating these nodal values by using the shape functions of HEXA8, that is, 
an error measure E~ is computed based on the sensitivity of the functional F~ In this case, it 
is not necessary to estimate the higher order derivatives of g using its finite element 
approximation gh. Only the derivatives of the element stiffness matrix with respect to the 
nodal coordinates yo is required to define the error measure based on the sensitivity. 

E X A M P L E  5. I (Continuation of  Example 3.1 ). Consider the problem for convergence study 
in Example 3.1. In this case, non-uniform refinement is considered instead of the uniform 
refinement based on the adaptive method above described. Several mesh adaptations are 

0.13 

0.12 

0.11 
0.00 0.02 

• ira. 

I I  

• • • \S4~k~k~ ~ 

m w 

0.04 0 .06  0 .08  0 . 1 0  0 . 1 2  0.14 

n 1/o~, 

• llDIHlll(adapt) 

H=l /$qrKNumber of  Elements) 

1/D~1~ - 0.102958 - 0.14055 H 

(D,,,,). Fig. 5.1. Convergence of the adaptive method e 
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0.31 L .... 

0.29" - m ' ~  

0.28" " " f ~  

0 27" ~ 0  
0.26 . . . . . . . . . . .  , . . . . . . .  , . . . . . . . .  

0.00 0.02 0.04 0.06 0.08 0.10 0.12 ).14 

o 11D~2212 

• llD~212(adapt) 

H..l/Sqrt(Number Of Elements) 

1 / D ~ I  2 = 0.3(0564 - 0.35850H 

Fig. 5.2. Convergence of the adaptive method (D,~l~). 

performed and the corresponding results of the homogenized constants are shown in Fig. 5.4. 
Some of the mesh adaptations can be found. As one can realize, the adaptive method does not 
provide better results than the uniform refinement in the range of coarse meshes. However, 
after a certain number of non-uniform refinements, the adaptive method provides a better 
finite element result than that obtained with uniform refinements. 

0.32 

0.31 

~ ~ o.3o 

0.29 

0.28 

I l l  

I 

" - " v . . - i - - - v . . • v . . • v . . . i • . • 

0,00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 

n !1D~122 

U l l DH22( adopt) 

l t= l  lSqrl(Number of Elements) 

11D~122 = a31738- 0,23905H 

Fig. 5.3. Convergence of the adaptive method (D~22). 
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:t 
i 19o 1 

180 

'~ 170 t 

1400 :~O 

0 0 

Number of Elements 

H H 
• D'IIII, D~222 

H 
n D~333 

1000 

H H H Fig. 5.5. Convergence of the homogenized constants (Dm~, D3333). D 2222 

As one can see from Fig. 5.3, for the last adapted finite element mesh, the value of the 
homogenized coefficients Dl122 is bigger than the one 'predicted' by the uniform mesh 
refinements through extrapolation. First this value is only predicted, second, as was noted in 
(3.22), the finite element solution for DqHkt is always stiffer than the real one whenever ij - kl. 
However, when this is not the case, like for Dtn 2, nothing can be said a priori. 

EXAMPLE 5.2 (Continuation of Example 4.2). Consider the three-dimensional adaptive 
method applied to the base cell problem defined in Example 4.2 to determine the homogen- 
ized elastic constants. As shown in Figs. 5.4, 5.5 and 5.6, the adaptive method is effective in 
the range of coarse meshes. Once the number of finite elements reaches to a certain limit, 
improvement of the accuracy of the finite element approximation becomes very small. 
Uniform refinements were not performed for this example because the size of the finite 
element mesh becomes very large after two refinements. 
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H H H Fig. 5.6. Convergence of the homogenized constants ( D i m ,  D2233). DII33S 
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6. Final remarks 

In this paper the homogenization method was introduced to model the mechanical behavior 
of linear elastic composite materials. This method assumes that the composite material has a 
periodic microstructure, and it enables the computations of equivalent (homogenized) materi- 
al mechanical properties characterizing the overall behavior of the composite, as well as the 
local one, i.e., it enables the computation of local stress and strain distribution within the 
ndcrostructure of the composite. 

The numerical implementation of this method is introduced via a finite element technique, 
and a priori error estimations were derived for the solutions of the problems involving 
the composite microstructure and the global structure. A convergence study was done for 
a two-dimensional case providing a result compatible with the previous a priori error 
estimations. 

Then, the homogenization method is used to introduce the idea of a material preprocessor 
(PREMAT) for the computation of the homogenized properties of composites materials, and 
a material postprocessor (POSTMAT) for the computation of the stress and strain distribution 
within the composite microstructure. The implementation procedure is explained and several 
application examples are presented. These examples show the usefulness of PREMAT and 
POSTMAT capabilities. They enable the designer to model the mechanical response of 
composite materials, when there is no experimental data available, and they provide a first 
approximation of the. stress distribution on the composite microstructure. Also, for the 
composite designer, it provides a tool to study the influence of the geometric parameters of 
the microstructure in composite global response, as well as to locate the possible critical points 
of the microstructure where high stress concentration may occur. Also, it may be useful to try 
to understand what can eventually trigger the failure of the composite. 

Finally, an adaptive finite element method is introduced in order to improve the accuracy of 
the numerical results. An error measure is suggested for the homogenized material constants, 
based on the a priori error estimations and the numerical implementation presented. The 
adaptive method is then applied to 2D and 3D examples. The 2D case was compared with 
uniform mesh refinements of the previously made convergence study. After some mesh 
adaptations the method presented better results than the corresponding uniform refinements. 
However, one might note that, if the regularity of the solution of the involved problems is 
known or can be, somehow, 'guessed', the a priori error estimations provide a convergence 
rate, and one may be able, after performing some uniform mesh refinements, to extrapolate 
the 'exact' values of the homogenized constants. 
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