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Abstract

In the first part of the paper, we present a framework for describing basic techniques
to improve the representation of a mixed integer programming problem. We elaborate on
identification of infeasibility and redundancy, improvement of bounds and coefficients, and
fixing of binary variables. In the second part of the paper, we discuss recent extensions
to these basic techniques and elaborate on the investigation and possible uses of logical
consequences.
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Abstract

In the first part of the paper, we present a framework for describing basic techniques
to improve the representation of a mixed integer programming problem. We elaborate on
identification of infeasibility and redundancy, improvement of bounds and coefficients, and
fixing of binary variables. In the second part of the paper, we discuss recent extensions
to these basic techniques and elaborate on the investigation and possible uses of logical
consequences.

1 Introduction

The success of branch-and-cut algorithms for combinatorial optimization problems [Hoffman
and Padberg 1985, Padberg and Rinaldi 1991] and large scale 0-1 linear programming prob-
lems [Crowder, Johnson, and Padberg, 1983] has lead to a renewed interest in mixed integer
programming. The key idea of the branch-and-cut approach is reformulation. Problems
are reformulated so as to make the difference in the objective function values between the
solutions to the linear programming relaxation and the integer program as small as possible.

There are various ways to tighten the linear programming relaxation of an integer program.
Preprocessing and probing techniques [Brearley, Mitra, and Williams 1975, Dietrich and
Escudero 1990, Hoffman and Padberg, 1991] try, among others things, to reduce the size
of coefficients in the constraint matrix and to reduce the size of bounds on the variables.
Constraint generation techniques [Crowder, Johnson and Padberg, 1983, Van Roy and Wolsey,
1987] try to generate strong valid inequalities.

It is well known, that there are many ways to represent a mixed integer program by linear
inequalities while guaranteeing that the underlying set of feasible solutions is unchanged. In
the first part of this paper, we present a framework for describing various techniques that
modify a given representation of a mixed integer programming problem in such a way that the
set of feasible solutions of the linear programming relaxation is reduced, but the set of feasible
solutions to the mixed integer program is not affected. This may reduce the integrality gap,
i.e., the difference between the objective function values of the linear programming relaxation
and the integer program, which is crucial in the context of a linear programming based branch
and bound algorithm. We concentrate on identifying infeasibility and redundancy, improving
bounds and coeflicients, and fixing variables.

Several other papers have been written on this subject, most notably Dietrich and Es-
cudero [1990] and Hoffman and Padberg [1991]. Dietrich and Escudero consider coefficient
reduction for 0-1 linear programming problems containing variable upper bound constraints
and Hoffman and Padberg discuss the implementation of coefficient reduction for 0-1 linear



programming problems containing special ordered set constraints. Both papers deal with
pure 0-1 linear programming problems and in both papers the general ideas are somewhat
obscured by the specific perspective.

The purpose of this paper is twofold. First, to introduce a framework for describing
preprocessing and probing techniques for mixed integer programming problems and survey
some of the well-known basic techniques. In doing so, we clearly separate the underlying ideas
from the implementation issues. Second, to present some of the, more recently developed,
techniques that are currently employed by the state-of-the-art general purpose mixed integer
optimizers.

2 Basic preprocessing and probing techniques

The underlying idea of the basic techniques to improve a given representation of a mixed
integer programming problem min{cz + hy : Az + Gy < b,z € {0,1}",y € R™} is to analyze
each of the inequalities of the system of inequalities defining the feasible region in turn,
trying to establish whether the inequality forces the feasible region to be empty, whether the
inequality is redundant, whether the inequality can be used to improve the bounds on the
variables, whether the inequality can be strengthened by modifying its coefficients, or whether
the inequality forces some of the binary variables to either zero or one.
We assume that the inequality currently under consideration is of the form

Do 4% = Y 4t Y giyi— Dy g <b
JjEBt JEB~ Jj€CH i€C

where B = B U B~ is the set of binary variables, C = C* U C~ is the set of both integer
and continuous variables, and a; > 0 for j € B and g; > 0 for j € C. Note that we do
not distinguish integer and continuous variables. In addition, we assume that the lower and
upper bounds on the variables are denoted by /; and u;.

‘For the remainder of this section, let Az + Gy < b,z € {0,1}",y € R™ be a given
representation of a mixed integer programming problem, let a’z+g¢'y < b; be any inequality of
the system, and let A’z4G'y < b* denote the system of inequalities obtained from Az+Gy < b
by deleting row a‘z + g'y < b;.

2.1 Basic preprocessing techniques

Identification of infeasibility
Consider the following mixed integer programming problem

z=min 3 ez - D 4zt 3 giui— D 6

jeBt JEB- Jject JEC—
subject to
Az + Giy < b
z€{0,1}",ye R™

If z > b;, then obviously the feasible region is empty. Unfortunately, the above mixed integer
programming problem is as hard to solve as the original problem, but it should be clear that



any lower bound on z suffices (z > zpp > b;). The simplest, but also weakest, lower bound is
obtained by completely discarding the system Az + G'y < b'. In that case, we can conclude
that the problem is infeasible if

SPILTD RS oF P

JEB- JECH JEC—

Identification of redundancy
Consider the following mixed integer programming problem

z=max Y aigi— Y aizi+ Y giyi— O gLy
jeB* j€EB— ject jEC~
subject to
Aia,‘ + Giy S bi
z €{0,1}",y € R™

If z < b;, then obviously the inequality a'z + g'y < b; is redundant. Of course, the above
mixed integer programming problem is as hard to solve as the original problem, but it should
be clear that any upper bound on z suffices (z < zyp < b;). The simplest, but also weakest,
upper bound is obtained by completely discarding the system A'z + G’y < b'. In that case,
we can conclude that the inequality is redundant if

S a4 Y g - X gl <.

JEB+ jeC+ jec-

Improving bounds
Consider a variable yx, k € C* and the following integer programming problem

ae=min Y azi- Do 6@t Y G¥i- Y 6
JEB* JEB~ jeCH\{k} JEC-
subject to
AiZL‘ + Giy < bi
z€{0,1}",yeR™

Clearly, yx < (b; — zi)/ g.. Therefore, the upper bound uy on variable yx, k € C * can be
improved if (b; — 2)/g; < ux. When we discard the system A’z + G*y < b*, we can conclude
that the upper bound on variable yx, k € C* can be improved if

bit D ai= X gli+ D g5u)/gk < uk
JEB- JECH\{k} jec—
Next, consider a variable yi, £ € C~ and the following integer programming problem

so=min 3 ae; - Y azi+ D G- Y g

jeB+ JEB~ ject JECT\{k}



subject to
Az + Gy < b
z € {0,1}",ye R™

Obviously, yx > (zx — b.,-)/g};. Therefore, the lower bound /. on a variable yi, k € C™ can be
improved if (zx — b;)/g} > lx. When we discard the system A'z + G'y < b*, we can conclude
that the upper bound on variable yx, ¥ € Ct can be improved if

(=D ai+ Y gili— Y ghui—b)/gi >k

j€B~ ject 7€C~\{k}

2.2 Basic probing techniques

Probing techniques are based on the investigation of logical consequences, i.e., tentatively
setting a binary variable z4 to either 0 or 1 and exploring the consequences. In the framework
presented above, this amounts to adding the constraint zx = 0 or z; = 1 to the set of
constraints and applying the basic preprocessing techniques to this extended formulation.
Obviously, the findings have to be interpreted differently.

Fizing variables
Consider a binary variable z;, k € B* and the following extended mixed integer programming
problem

=min ) a3 dzi+ ) g - Y 6y

JEBt JEB~ JjECH Jjec-
subject to
Az + Gy < ¥
zr =1

z€{0,1}",ye R™

In case z; > b;, then obviously the feasible region of this extended formulation is empty.
Therefore, 2 # 1 in any feasible solution of the original formulation and zj can be fixed to
0. When we discard the system A‘z + Giy < &, we can fix the variable z; to 0 if

a- 3 i+ X gili— X ghu > b
jEB- JECH jec-

Next, consider a binary variable z;,k € B~ and the following extended mixed integer pro-
gramming problem

z=min Y aio;— 3 aeit D gy - D 6

jeB+ JEB- ject JjEC—
subject to

Az + Giy < b



zr =0
z € {0,1}",y € R™

If z; > b;, then obviously the feasible region of this extended formulation is empty. Therefore,
z # 0 in any feasible solution of the original formulation and zx can be fixed to 1. When we
discard the system Atz + Gy < b*, we can fix the variable z; to 1 if

- Z a;+ Z g§lj— Z g;:u]' > b;.

J€EB—\{k} ject Jjec-

Improving coefficients
Consider a binary variable z;,k € Bt and the following extended mixed integer programming
problem

zx=max Y alz;— Y. alz;+ Y. giyi— I Gy
JEB+ JEB- jec+ jec-
subject to
Alx + G’iy < b
z, =0

z€{0,1}",y e R™.

If 2, < b;, then obviously the inequality a‘z + g'y < b; is redundant in this extended formu-
lation. Consequently, under the assumption that z; = 0, the set of feasible solutions is not
affected if b; and a}'c are reduced by é = b; — z;.. Furthermore, also under the assumption that
z; = 1, the set of feasible solutions is not affected if b; and afC are reduced by é = b; — zx. To
see this, rewrite the inequality a'z + g'y < b; as

2. @mi= 3 aEit D gy 3 gy Shi-d=

JEBH\{k} JEB- Jject JjEC

Y. dizi— ) dzi+ Y giyi— Y gy <(bi—8)—(a-68) bS€Ry =
J€EBT\{k} j€EB- ject jec-

D azi+(ai=8zi— ) ajei+ D giy— D giyi<bi—6 S€Ry.
JEBH\{k} JjEB~ ject jEC-

Therefore, ax and b; can be decreased by b; — z; without changing the set of feasible solutions.
When we discard the system A'z + G'y < b', we can decrease a; and b; if

Yo d+ Y ghui— Y gl <bi

JEBt\{k} ject jeEC—

Next, consider a binary variable =,k € B~ and the following extended mixed integer pro-
gramming problem

Zr = maXx Z a;-zj — Z a;z]’—i- Z g;yj — Z g;yj

JjEB* JEB~ ject JeC-



subject to
Az + Gy < b
zr=1
z € {0,1}",ye R™.

If zx < b;, then obviously the inequality @'z 4+ g'y < b; is redundant in this extended for-
mulation. Consequently, under the assumption that z;, = 1, the set of feasible solutions is
not affected if a% is decreased by 6 = b; — z;. Furthermore, also under the assumption that
zi = 0, the set of feasible solutions is not affected if afc is increased by § = b; — 2.

Therefore, ay can be increased by b; — z; without changing the set of feasible solutions.
When we discard the system A’z + Gy < b*, we can increase ay, if

Z a;-—-a}'c-l— Z g;‘-udf,'— Z g;-lj<bi.

JjEBt JECH JEC—

Observe that if the simplest bounds are used, i.e., the system A*z+G'y < b* is discarded, only
variables appearing in the constraint under consideration can be fixed and only coefficients
of variables appearing in the constraint under consideration can be modified.

2.3 Implementation

The basic preprocessing and probing techniques can be implemented very efficiently. Define

Loy = Y a5+ Y ghuj— Y gil;

J€EBt ject Jec-

and

Loin == 22 4+ 2 ili= 3 gjuj,

JEB~ Jjec+ jec-
i.e., the maximum and minimum value of the summation on left-hand-side of the inequality

under consideration. It is not hard to see that the basic preprocessing and probing techniques
require the following tests

e identification of infeasibility:
L, > b;

¢ identification of redundancy:
Loy < b;

¢ improvement of bounds:
(bi = (Liin — 9406)) /04 < ur gi, k€ CTF

((Linin + ghur) = biy /i > e gk, k€ C™



e fixing of variables:

L. +a.>b =z ke BFUB~
e improvement of coefficients:

Liax—ak <bi =z, k€ BYUB~

Obviously, all these tests can be performed in constant time once the values Li,, and L.
have been computed. As-a consequence, the application of the basic preprocessing and probing
techniques to all the inequalities of the system Az + Gy < b requires O(n) time, where n is
the total number of nonzero’s in the system.

This concludes our discussion of the basic techniques to improve a given representation of
a mixed integer programming problem. We end this section with some observations. We
have assumed, without explicitly stating it, that we are always examining an inequality. The
techniques have to be modified slightly in case of an equality. The techniques have been
presented as simple and efficiently solvable approximations of mixed integer programming
problems. The simplicity and computational efficiency is a consequence of restricting attention
to information in a single inequality, i.e., discarding the information contained in the system
Alz + Giy < b,

3 Advanced preprocessing and probing techniques

3.1 Special substructures

As observed in the previous section, the computational efficiency is a consequence of restricting
attention to information in a single constraint. However, there is a trade off between efficiency
and effectivity; more effective, but computationally less efficient, techniques are obtained when
information from more than one inequality is used.

Dietrich and Escudero [1990] and Hoffman and Padberg [1991] investigate the trade off
between efficiency and effectivity for special substructures, consisting of more than one con-
straint, that often appear in 0-1 linear programming problems.

Dietrich and Escudero [1990] analyze coefficient improvement for the following special
substructure

Z{ajz:j + Z arzp} < b

1€J kel,
zp <z, Vkel;
zk, z; € {0,1},

i.e., they incorporate variable upper bound constraints z; < z; in the analysis. Unfortunately,
no computational results are reported.

Hoffman and Padberg [1991] analyse identification of infeasibility and redundancy as well
as coeflicient improvement for the following substructure

Z Z Tk < b

j€J keES,



Z Tz <1 Vjed
k€S,

Tk € {07 1}7

i.e., they incorporate non-overlapping clique constraints ) ;¢ Zjx < 1 (also called special
ordered set constraints) in their analysis. Computational results show an increase in effec-
tiveness at a moderate decrease in efficiency.

3.2 Logical implications

The basic preprocessing and probing techniques can be used effectively to derive logical im-
plications between variables.

First, consider a binary variable z,, k; € B and a continuous variable y;, k € C and the
following extended integer programming problems

do=min 3 djei- 3 efz+ 30 glui- 3 6y
JEBt JEB- JECH\{k} JEC™
subject to
Alg 4+ Ghy < b8

xklzl

r€{0,1}",ye R,

and
R S PILEED BT SE TR
jeB* j€EB- ject JECT\{k}
subject to
A2z + Gi2y < b2

IL’klzl

z€{0,1}",ye R™,

Clearly, yx < (b;, — z;cll )/ g};l and yi > (z;fl - b;,)/ g,’f, i.e., an analysis of the extended system
of inequalities may reveal that when z;, = 1, the upper and lower bound on the variable y;
may be improved. In case the improved bounds fix the variable yg, i.e., I = ur = v, we
have established the logical implication z4, = 1 = y; = vx. Analogously, it may be possible
to establish a logical implication zx, = 0 = Y = vs.

Second, consider two binary variables z4,, k4 € B and zy,, k2 € B and the following
extended formulation

z=min 3 dei= 3 awi+ 3 gu— Y 6

jeBt jEB~ Jject JEC™



subject to
Alz + Gy < b
T, =1
T, =1
ze{0,1}",ye R™

If z > b;, then obviously the feasible region of this extended formulation is empty. In that
case, the following logical implications have been identified

Tp, = 1= 28, =0,
Tp, =1 = 28, = 0.
Similarly, the following logical implications can be identified
T, = 0= 24, =0,
Tk, = 0= a4, =1,
Tg, = 1= 1, = 1,
Tp, =0=> 2, =0,
Tp, =02, =1,

wk2=1=>:1:k1=1.

Implementation

The identification of logical implications proceeds in two phases. Suppose, without loss of
generality, that we want to identify logical implications associated with z;, = 1. In the first
phase, the system Az + Gy < b is reduced by eliminating variable zy,, i.e., substituting
zk, = 1 throughout. In the second phase, each of the inequalities of the reduced system is
analysed in turn, using the basic preprocessing and probing techniques to modify bounds and
to fix variables, to establish whether any variables can be fixed. If so, logical implications
have been identified.

Logical implications can be used to strengthen various functions embedded in mixed integer
optimizers, such as probing, knapsack cover generation, flow cover generation, and primal
heuristics. :



3.2.1 Enhanced probing techniques

The basic probing techniques tentatively set a binary variable to one of its bounds and explore
the logical consequences. Suppose, without loss of generality, that a variable zj is tentatively
set to its upper bound. If there already exist logical implications associated with variable z
being fixed at its upper bound, they can be effectuated during the search for other logical
consequences. Observe that the effectuation of one logical implication may trigger effectuation
of various other logical implications.

Note that the system A'z + G'y < b is no longer completely discarded, since existing
logical implications may have been established during the analysis of inequalities other than
the one currently under consideration. Therefore, fixing variables and improving coefficients
of variables is no longer restricted to variables appearing in the constraint under consideration.
See for an example of this phenomenon the example below.

Implementation

Suppose, without loss of generality, that we probe with variable z; set to its upper bound. In
the first phase, the system Az + Gy < b is reduced by eliminating all the variables that are
known to be fixed when the system Az + Gy < b is extended with the equality zx = 1, i.e., all
the logical implications that become active when z; is tentatively fixed at 1 are effectuated.
In the second phase, each of the inequalities of the reduced system is analysed in turn, using
the basic preprocessing techniques to identify infeasibility and redundancy. If infeasibility is
detected, the variable on which we probe can be fixed permanently; if redundancy is detected,
the coefficient of the variable on which we probe can be improved in the inequality currently
under consideration.

Example
In order to provide some insight into the effectiveness of logical implications, consider the
following mixed integer program

min 24zy + 1229 + 1623 + 4y1 + 2y, + 3y3
subject to

Yi+3y2 215

y1+2y3 > 10

21 +y2 2 20

% < 1524

y2 < 20z,

ys < Sz3

y1,92,93 € Ry

z1,22,23 € {0,1}
Application of the basic preprocessing techniques will set the upper bounds on the continuous

variables to 15,20 and 5 respectively. The logical implications that can be identified from the
resulting formulation and their derivations are listed below

10



Implication Derivation
z1=0= n=_0 (z1=0¢y1=0)
y2=20 | (z21=0= y = 0= y, = 20)
y3=5 [(z1=0=2>yp=0=>y3=35)
z,=1 (a:1=0$y1:0=>y2=20¢a:2=1)
z3=1 (z1=0=>y1=0=>y3=5:>x3=1)
2o =0=> y2=0 ($2=0=>y2:0)
=15 |(z2=0=2y,=0=y = 15)
=1 (a:2=0=>y2=0:>y1=15=>:v1=1)
z3=0=> y3=0 |[(z3=0=y3=0)
=1 |(23=0=2>y3=0=2>yp>210= 12, =1)

Note that some of these logical implications would not have been identified if the upper
bounds on the continuous variables would not have been improved by the basic preprocessing
techniques. Also note that y3 = 0 = y; > 10, although, according to our definition, not a

logical implication itself, is used in the derivation of z3 = 0 = z; = 1.

Application of the enhanced probing techniques results in the following improved formu-

lation

min 24z + 1229 + 1623 + 4y, + 2y2 + 3y

subject to

4521 + y1 + 3y2 2> 60
Szo+y1 +2y3 > 15
1022 + 2y, + y2 > 30
¥ < 15z

Y2 < 20z2

ys < dz3

0<n <15
0<y2<20
0<ys<5

zy1,2223 € {0,1}

The value of the solution of the initial linear programming relaxation is 58.70. The value of
the solution of the improved linear programming relaxation is 79.10. The value of the optimal

solution is 79.33.

3.2.2 Implication inequalities

Logical implications define valid inequalities. These inequalities will be referred to as impli-

cation inequalities and are given below

¢ z;, = 1= y; = v; implies y; > I; + (v; — [;)z,.

e z;, = 1= y; = v; implies y; < u; — (u; — v;)z;.

e z; = 0= y; = v; implies y; > v; — (v; — [;)z;.

11




o z; = 0= y; = v; implies y; < v; + (u; — v;)z;.

Automatic disaggregation
A very important consequence of generating implication inequalities is that constraint will
automatically be disaggregated. Consider an inequality

Z y; < (Z Uj).’IJk,

JES JES
where y; € Ry for all j € S and z; € {0,1}. An analysis of this inequality will identify
the logical implications zx = 0 = y; = 0 for all j € §. Each of them defines an implication
inequality

y; < ujTg.

Collectively these implication inequalities provide a stronger linear approximation of the fea-
sible region than the original inequality.

Example

To provide a more concrete example, consider the following instance of the capacitated facility
location problem (CFLP). There are four possible locations for facilities and three demand
points. If a facility is opened in one of the four locations, it will have a production capacity
of 100 units. The costs associated with opening a facility at a certain location are 400, 500,
300, and 150 respectively; the demand points require 80, 70, 40 units respectively.

The mixed integer program for this instance of CFLP is given by

min...

Y11+ y21 + ys1 + ya = 80
Yiz+ Y22 + Y3z + ya2 = 70
%13 + Y23 + Y33 + ya3 = 40
Y11 + 12 + 413 < 10024
Y21 + Y22 + Y23 < 100z,
Y31 + Y32 + y33 < 100z
Ya1 + Ya2 + ya3 < 100z
vi; € Ry z,€{0,1}
Application of the basic preprocessing techniques will improve the upper bounds on the
continuous variables to y;; < d;, where d; indicates the demand associated with point j. The
following implication inequalities will be identified
yi; < djz;

The solution to the initial linear programming relaxation is given by y1; = 80,21 = 0.8, y22 =
70,22 = 0.7,y33 = 40,23 = 0.4 and all other variables equal to 0. Obviously, the solution
violates the three implication inequalities

y11 < 80z

12



Y22 < 70z
y33 < 40z3

If these three implication inequalities are added to the formulation and the thus obtained
linear program is solved, the solation is integral and therefore also optimal.

3.2.3 Clique inequalities

Logical implications can be used to derive clique inequalities, i.e., inequalities with only binary
variables of the form }~jcg+ 2, -3 c5- 2; < 1—[57|. The construction of clique inequalities
is based on logical implications between binary variables. Note that the four types of logical
implications between binary variables can be represented as follows:

ez, =1=z;=0

ez, =1=37%;=0

e T, =1=1z;=0

e T, =1= TJ =1
where Ty = 1 — z; denotes the complement of z;. That is, a logical implication identifies two
variables, either original or complemented, that cannot be 1 at the same time in any feasible
solution. Construct the graph G = (B° U B¢, E') with B° the set of original binary variables,
B¢ the set of complemented binary variables, and E the set of edges, where two variables are
joined by an edge if and only if the two variables cannot be 1 at the same time in a feasible
solution. Consequently, each implication defines an edge in the graph. Furthermore, there is
an edge between each variable and its complement.

It is not hard to see that every (maximal) clique C = C°UC*, with C° C B® and C° C B¢,
defines a valid clique-inequality

Z z; + Z T; <1
JEC? JECS
which implies
2= Y z; < 1-[C
JEC? jece
Two important observations can be made with respect to these clique-inequalities:
o if [C°NC° =1and k€ C°NC*, then z; = 0 for all j € C°\ {k} and z; = 1 for all
Jj € C\ {k}.

e if |C°N C*| > 1 the problem is infeasible.

Example
Consider the following system of inequalities

dz1 4+ 29— 324 <2
221+ 329+ 323 < 7
zy+4z,+ 223 <5
3z + 204 52322

z1,22,z3 € {0,1}

13



The following implication inequalities will be identified

Implication Derivation

=12 z4=1|(z1=1=>24=1)
zo=0 (:L‘1=1=>Z4=1=>272=0)

z1=0= z3=1|(z1=0=>23=1)

To=1=> 23=0|(22=1=23=0)

z3=1=> 2z7=0|(zs3=1=>2;=0)

z3=0= =1 (:E3=0‘—‘>.”L'1=l)

The graph G = (B° U B¢, E) for the system of inequalities is given in Figure 1 and contains
one maximal clique with cardinality greater than two: {zy,z2,23}. This clique defines the
inequality =1 + 22 + 23 < 1.

Figure 1. Auxiliary graph

Observe that the clique inequalities as well as implication inequalities are globally valid and
can thus be used effectively in a branch-and-cut approach, i.e., at every node of the branch-
and-bound tree. Furthermore, these inequalities may also strengthen various other compo-
nents of mixed integer optimizers. The variable upper bound constraints, that have been
identified as implication inequalities, and the clique constraints may strengthen the prepro-
cessing techniques based on special substructures (such as the ones studied by Dietrich and
Escudero [1990] and Hoffman and Padberg [1991]). Variable upper bound constraints are
also of crucial importance for the generation of simple and extended generalized flow cover
inequalities as done by systems such as MPSARX [Van Roy and Wolsey, 1987] and MINTO
[Nemhauser, Savelsbergh, and Sigismondi 1991].

3.2.4 Elimination of variables

Logical implications associated with fixing a binary variable at 1 together with logical im-
plications associated with fixing that variable at 0 may even reveal equalities, which may be
used to eliminate variables:

oxi=0:>y]-:u,~andwizl:yjzvjimplyyj:vj.
e 2;=0=>y;,=l;and z; = 1= y; = u; imply y; = {; + (u; — l;)z;.

o z;=0=>y;=ujand z; =1=y; =1 imply y; = u; — (u; — [;)z;.
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3.3 Probing on constraints

The probing techniques exploit the fact that in any feasible solution the value of a binary
variable is either 0 or 1. Or, formulated slightly different, the probing techniques exploit
the fact that there exists a simple scheme to divide the solution space in two parts. This
observation suggests that in certain situations it is also possible to probe on constraints, as
opposed to probing on variables.

Consider a clique inequality 3~ en+ 25— 2 ;en- 2 < 1—|N7|. The value of the left hand
side will be either —|[N~|or 1—|N~|. Ifitis ~|[N~|,thenz; = 0forall j € N* and z; = 1 for
all j € N™. If it is 1 — |N~|, then either z; = 1for some k € N*,z; = 0for all j € N*\ {k},
and z; =1forall j€ N~,orz;=0forall j€ N*, zx = 0 for some k € N7, and z; = 1 for
all j € N™\ {k}.

Generalized variable fizing

Instead of trying to fix a single binary variable, we can try to fix all the variables in a
clique inequality 3 .cn+ T; — Y jen-%j £ 1—|N~|. Consider the following extended integer
programming problem

z=min ) ajzj- Yzt Y dyi— Y ahy;
jeB* j€B- jec+ jec~
subject to
Aix + Giy -<_ bi
> wi= 3 =1 |NT
JEN* JEN-—

z € {0,1}",y e R™

If z > b;, then 3";cn+ 25 — 2 jen-2; # 1 — |N7| in any feasible solution, i.e., 3" ;en+ 25 —
> ;eN-%; = —|N~| and thus z; =0 forall j € N* and z; = 1forall j€ N~.

Generalized coefficient reduction
Consider a clique inequality 3> ;cn+ 2 — 3 jen-2; < 1 — [N7|, with N* C B¥ and N~ C
B~,|N~| £1 and the following extended integer programming problem

z=max ) a;zi— Y, @izt Y, ey~ D 4y

j€Bt j€B~ ject JEC™
subject to

Az +Gy< b

Yoz Y, zi=—|NT|

JENT JEN—
¢ €{0,1}",y e R™.

If z < b;, then a;- may be decreased for all j € N7, aj- may be increased for all 7 € N™, and
b; may be decreased by b; — z without changing the set of feasible solutions.
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In case }_;en+ T; — 2 jen-; = 1 — |[N7[, then the inequality a‘z + g'y < b; can be
rewritten as

D azit Yo (@ =8z~ Y djri— Y (a5 =8yt

JEBT\N+ JENH ) JEB-\N- JEN+

Za;.yj-Za;ijb,’—é-i-lN_l& 6eRy.
jeC+ JeC-

Therefore, also under the assumption that 3 cn+ 2, — Ljen-2; = 1 = [N 7], aj' may be
decreased for all j € N T, a; may be increased for all j € N~, and b; may be decreased by
b; — z without changing the set of feasible solutions.

4 Computational results

The basic preprocessing and probing techniques as well as the various applications of logical
implications described in the previous sections have been incorporated in MINTO, a Mixed
INTeger Optimizer [Nemhauser, Savelsbergh, and Sigismondi 1991]. MINTO is a software
system that solves mixed integer programs by a linear programming based branch-and-bound
algorithm. It also provides primal heuristics and constraint generation. Moreover, the user
can enrich the basic algorithm by providing a variety of specialized application routines that
can customize MINTO to achieve maximum efficiency for a problem class. The effectiveness

Problem #c,#v,#nz #c,#b,#i
egout 98,141,282 86,55,0

fixnet3 478,878,1756 | 500,378,0
fixnet4 478,878,1756 | 500,378,0
fixnet6 478,878,1756 | 500,378,0
khb05250 & 101,1350,2700 | 1326,24,0

gen 780,870,2592 | 720,144,6
att 1260,1112,4986 | 280,832,0
sample2 45,67,147 46,21,0
p0033 15,33,98 0,33,0

mod009 | 176,548,1711 | 0,548,0

Table 1: Characteristics of the test problems

of the preprocessing and probing techniques has been tested on a set of 10 mixed integer
programming problems. Table 1 shows for each of these problems its name, the number of
constraints, variables, and nonzero coefficients, and the number of continuous, binary and
integer variables.

Table 2 shows the value of the linear program relaxation (zrp), the value of the linear
programming relaxation after the basic preprocessing and probing techniques have been ap-
plied (z} p), the value of the linear programming relaxation after the basic preprocessing and
probing techniques as well as the enhanced probing techniques have been applied (27p), the
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value of the linear programming relaxation after the basic preprocessing and probing tech-
niques and the enhanced probing techniques have been applied and the derived clique and
implication inequalities have been added (23 p), these inequalities were added ‘on the fly’, i.e.,
they were iteratively added to the linear program in case they were violated by the current
linear programming relaxation, and, finally, the value of the mixed integer program (zp7p).
Table 3 shows the number of nodes required to solve the problem to optimality when MINTO

Problem 2LP zip z%P Z%P ZMIP
egout 149.588 495.565 511.875 562.112 568.100
fixnet3 40717.0 49051.5 50413.7 50414.2 51973.0
fixnet4 4257.96 6879.21 7703.47 7703.47 8936.00
fixnet6 1200.88 2527.43 3192.04 3192.53 3983.00
khb05250 | 95919464, 95919464. 95919464. 106750366. 106940226.
gen 112130. 112233. 112271. 112271. 112313.
att 125.969 149.052 149.145 149.145 160.200
sample2 247.000 247.000 247.000 290.480 375.000
p0033 2520.81 2828.33 2828.33 2838.54 3089.00
mod009 315.254 429.682 4344.06 7013.88 8691.00

Table 2: Effect of preprocessing and probing techniques on LP value

Problem | minto -p0 | minto -pl | minto
egout 553 9 3
fixnet3 131 5 5
fixnet4 2561 2739 | 1031
fixnet6 4795 3977 | 4305
khb05250 11483 63 13
gen 11 19 15
att 6459 133 127
sample2 336 71 51
p0033 15 7 7
mod009 >100000 | >100000 | 1520

Table 3: Effect of preprocessing and probing techniques on branch-and-bound tree

is used without any preprocessing and probing (option -p0), when MINTO is used with only
basic preprocessing and probing (option -pl), and when MINTO is used in its default setting,
i.e., with both basic and enhanced preprocessing and probing. Note that MINTO also gener-
ates knapsack covers, simple and extended generalized flow covers, and applies various other
techniques to enhance the overall solution process.

Inspecting the computational results, we observe the following. First, the preprocessing
and probing techniques are quite effective in reducing the integrality gap and the overall effort
required to solve most of these problems. Second, activating preprocessing and probing does
not always lead to a smaller search tree. This shows, that at this moment, we do not have
a clear understanding of how the different techniques embedded in state-of-the-art mixed
integer optimizers interact.
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5 Conclusion

In this paper, we have given an overview of simple and advanced preprocessing and probing
techniques to improve the representation of a mixed integer program. Our computational
results have demonstrated the effectiveness of these techniques.

As indicated above, these techniques can be used to enhance the performance of a mixed
integer optimizer. However, in a powerful mixed integer optimizer they should be used in
conjunction with other techniques, such as knapsack cover generation, flow cover generation,
and primal heuristics.
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