
Knowl Inf Syst (2017) 52:531–562

DOI 10.1007/s10115-017-1022-8

REGULAR PAPER

Prequential AUC: properties of the area under the ROC

curve for data streams with concept drift

Dariusz Brzezinski1 · Jerzy Stefanowski1

Received: 27 April 2016 / Revised: 15 November 2016 / Accepted: 2 January 2017 /

Published online: 16 January 2017

© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Modern data-driven systems often require classifiers capable of dealing with

streaming imbalanced data and concept changes. The assessment of learning algorithms in

such scenarios is still a challenge, as existing online evaluation measures focus on efficiency,

but are susceptible to class ratio changes over time. In case of static data, the area under the

receiver operating characteristics curve, or simply AUC, is a popular measure for evaluating

classifiers both on balanced and imbalanced class distributions. However, the characteristics

of AUC calculated on time-changing data streams have not been studied. This paper ana-

lyzes the properties of our recent proposal, an incremental algorithm that uses a sorted tree

structure with a sliding window to compute AUC with forgetting. The resulting evaluation

measure, called prequential AUC, is studied in terms of: visualization over time, processing

speed, differences compared to AUC calculated on blocks of examples, and consistency with

AUC calculated traditionally. Simulation results show that the proposed measure is statisti-

cally consistent with AUC computed traditionally on streams without drift and comparably

fast to existing evaluation procedures. Finally, experiments on real-world and synthetic data

showcase characteristic properties of prequential AUC compared to classification accuracy,

G-mean, Kappa, Kappa M, and recall when used to evaluate classifiers on imbalanced streams

with various difficulty factors.

Keywords AUC ROC · Concept drift · Data streams · Classifier evaluation

Electronic supplementary material The online version of this article (doi:10.1007/s10115-017-1022-8)

contains supplementary material, which is available to authorized users.

B Dariusz Brzezinski

dariusz.brzezinski@cs.put.poznan.pl

1 Institute of Computing Science, Poznan University of Technology, Ul. Piotrowo 2,

60-965 Poznan, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-017-1022-8&domain=pdf
http://orcid.org/0000-0001-9723-525X
http://dx.doi.org/10.1007/s10115-017-1022-8

532 D. Brzezinski, J. Stefanowski

1 Introduction

In many data mining applications, e.g., in sensor networks, banking, energy management,

or telecommunication, the need for processing rapid data streams is becoming more and

more common [50]. Such demands have led to the development of classification algorithms

that are capable of processing instances one by one, while using limited memory and time.

Furthermore, due to the non-stationary characteristics of streaming data, classifiers are often

additionally required to react to concept drifts, i.e., changes in definitions of target classes

over time [20]. To fulfill these requirements, several data stream classification algorithms

have been proposed in recent years; for their review see, e.g., [7,14,20].

An important issue when learning classifiers from streaming environments is the way

classifiers are evaluated. Traditionally, the predictive performance of a static classifier is

measured on a separately curated set of testing examples [31]. However, batch techniques

are not applied in streaming scenarios, where simpler and less costly incremental procedures

are used, such as interleaving testing with training [33]. Moreover, since data streams can

evolve over time, predictive abilities of classifiers are usually calculated with forgetting,

i.e., sequentially on the most recent examples [21]. As a result, stream classifiers are mostly

evaluated using the least computationally demanding measures, such as accuracy or error rate.

Nevertheless, simple evaluation measures are not sufficient for assessing classifiers when

data streams are affected by additional complexity factors. In particular, this problem concerns

class imbalance, i.e., situations when one of the target classes is represented by much less

instances than other classes [27]. Class imbalance is an obstacle even for learning from static

data, as classifiers are biased toward the majority classes and tend to misclassify minority

class examples [10]. In such cases, simple performance metrics, such as accuracy, give

overly optimistic estimates of classifier performance [41]. That is why, for static imbalanced

data researchers have proposed several more relevant measures such as precision/recall,

sensitivity/specificity, G-mean, and, in particular, the area under the ROC curve [26,27].

The area under the ROC curve, or simply AUC, summarizes the relationship between

the true and false positive rate of a binary classifier, for different decision thresholds [18].

Several authors have shown that AUC is more preferable for classifier evaluation than total

accuracy [29,30,41], making it one of the most popular metrics for static imbalanced data.

However, in order to calculate AUC one needs to sort a given dataset and iterate through each

example. This means that AUC cannot be directly computed on large data streams, as this

would require scanning through the entire stream after each example. That is why, the use of

AUC for data streams has been limited only to estimations on periodical holdout sets [28,44]

or entire streams [13,36], making it either potentially biased or computationally infeasible

for practical applications.

To address these limitations, in an earlier paper [9] we introduced a new approach for cal-

culating AUC. We presented an efficient algorithm, which incorporates a sorted tree structure

with a sliding window as a forgetting mechanism, making it both computationally feasible

and appropriate for concept-drifting streams. As a result, we have introduced a new eval-

uation measure, called prequential AUC, suitable for assessing classifiers on evolving data

streams.

To the best of our knowledge, prequential AUC is the first proposal for efficiently cal-

culating AUC on drifting data streams. Nonetheless, the properties of this new evaluation

measure have not been thoroughly investigated in our previous work [9]. Thus, the aim of

this paper is to carry out a detailed study of basic properties of prequential AUC, which in

our view include the following issues.

123

Prequential AUC: properties of the area under the ROC curve 533

First, we will analyze whether prequential AUC leads to consistent results with traditional

AUC calculated on stationary data streams. For this purpose, we will use the definitions of

consistency and discriminancy proposed by Huang and Ling [30]. Although the computation

of traditional batch AUC is infeasible for real streams, it nevertheless serves as the best

AUC estimate for data without concept changes. Moreover, the proposed measure will be

compared with earlier attempts at using AUC to assess stream classifiers, in particular those

based on block processing [28,44]. Additionally, we perform a series of experiments, which

analyze the use of different AUC calculation procedures for visualizing concept changes

over time and assess the processing speed of the proposed measure. Finally, we compare

and characterize classifier evaluations made by AUC and other measures commonly used for

imbalanced data: G-mean, recall, and the Kappa statistic. For this purpose, we design a series

of synthetic datasets that simulate various difficulty factors, such as high class imbalance

ratios, sudden and gradual ratio changes, minority class fragmentation (small disjuncts),

appearing minority class subconcepts, and minority–majority class swaps.

In summary, the main contributions of this paper are as follows:

– Section 4.1 discusses the applicability of prequential AUC to performance visualization

over time, for stationary and drifting streams;

– Section 4.2 analyzes the consistency and discriminancy of prequential AUC compared to

AUC computed traditionally on an entire stationary dataset;

– Section 5.3 summarizes experiments performed to evaluate the speed of the proposed

measure;

– Section 5.4 analyzes parameter sensitivity of prequential AUC;

– Section 5.5 compares prequential AUC to other class imbalance evaluation measures on

a series of streams involving various difficulty factors.

Section 2 provides basic background for the conducted study and covers related work. To

make the paper self-contained, in Sect. 3 we recall our algorithm [9] for computing AUC

online with forgetting. Sections 5.1 and 5.2 summarize the experimental setup and used

datasets. Section 6 concludes the paper and discusses potential lines of future research. All of

the algorithms described in the paper are implemented in Java as part of the MOA framework

[3] and are publicly available.

2 Related work

2.1 Stream classifier evaluation

Requirements posed by data streams make processing time, memory usage, adaptability, and

predictive performance key classifier evaluation criteria [7,22]. In this paper, we focus only

on that last criterion.

The predictive performance of stream classifiers is usually assessed using evaluation

measures known from static supervised classification, such as accuracy or error rate. However,

due to the size and speed of data streams, re-sampling techniques such as cross-validation are

deemed too expensive and simpler error estimation procedures are used [33]. In particular,

stream classifiers are evaluated either by using a holdout test set or by interleaving testing with

training, one instance after another or using blocks of examples [20]. More recently, Gama

et al. [21] advocated the use of prequential procedures for calculating performance measures

in evolving data streams. The term prequential (blend of predictive and sequential) stems

123

534 D. Brzezinski, J. Stefanowski

from online learning [39] and is used in data stream mining literature to denote algorithms

that base their functioning only on the most recent data, rather than the entire stream.

Prequential accuracy was the first measure for evaluating stream classifiers, which worked

according to the aforementioned predictive-sequential procedure. The authors of [21] have

shown that computing accuracy only using the most recent examples, instead of the entire

stream, is more appropriate for continuous assessment and drift detection. However, it is

worth noting that prequential accuracy inherits the weaknesses of traditional accuracy, that

is, variance with respect to class distribution and promoting majority class predictions in

imbalanced data. Recent works have also introduced the use of prequential recall [46], i.e.,

class-specific accuracy; however, such a measure must be recorded for each single class.

A popular way of combining information about many imbalanced classes is the use of the

geometric mean (G-mean) of all class-specific accuracies [35], which has also been recently

recognized in online learning [47]. Finally, for imbalanced streams Bifet and Frank [2]

proposed to prequentially calculate the Kappa statistic with a sliding window. The Kappa

statistic (κ) is an alternative to accuracy, that may be seen as the probability of outperforming

a base classifier. Furthermore, this metric has been recently extended to take into account

class skew (κm) [4] and temporal dependence (κper) [49].

2.2 Area under the ROC curve

The receiver operating characteristics (ROC) curve is a graphical plot that visualizes the

relation between the true positive rate and the false positive rate for a classifier under varying

decision thresholds [18]. It was first used in signal detection to represent the trade-off between

hit and false alarm rates [15]; however, it has also been extensively applied in medical

diagnosis [37] and, more recently, to evaluate machine learning algorithms [17,41]. Unlike

single point metrics, the ROC curve compares classifier performance across the entire range of

class distributions, offering an evaluation encompassing a wide range of operating conditions.

The area under the ROC curve, or AUC, is one of the most popular classifier evaluation

metrics for static imbalanced data [31]. Its basic interpretation and calculation procedure can

be explained by analyzing the way in which ROC curves are created. If we denote examples

of two classes distinguished by a binary classifier as positive and negative, the ROC curve is

created by plotting the proportion of positives correctly classified (true positive rate) against

the proportion of negatives incorrectly classified (false positive rate). If a classifier outputs a

score proportional to its belief that an instance belongs to the positive class, decreasing the

classifier’s decision threshold (i.e., the score above which an instance is deemed to belong

to the positive class) will increase both true and false positive rates. Varying the decision

threshold results in a piecewise linear curve, called the ROC curve, which is presented in

Fig. 1. AUC summarizes the plotted relationship in a scalar metric by calculating the area

under the ROC curve.

The popularity of AUC for static data comes from the fact that it is invariant to changes

in class distribution. If the class distribution changes in a test set, but the underlying class-

conditional distributions from which the data are drawn stay the same, the ROC curve will

not change [48]. Moreover, for scoring classifiers it has a very useful statistical interpretation

as the expectation that a randomly drawn positive example receives a higher score than a

random negative example. Therefore, it can be used to assess machine learning algorithms

which are used to rank cases, e.g., in credit scoring, customer targeting, or churn prediction.

Furthermore, AUC is equivalent to the Wilcoxon–Mann–Whitney (WMW) U statistic test

of ranks [24]. It is worth mentioning that this statistical interpretation led to the development

of algorithms that are capable of computing AUC without building the ROC curve itself, by

123

Prequential AUC: properties of the area under the ROC curve 535

Fig. 1 Example ROC curve

counting the number of positive–negative example misorderings in the ranking produced by

classifier scores [48]. Additionally, several researchers have shown that for static data AUC

is a more preferable classifier evaluation measure than total accuracy[30].

Nonetheless, the use of AUC for evaluating classifier performance has been challenged in

a publication by Hand et al. [23]. Therein, the authors derive a linear relationship between a

classifier’s expected minimum loss and AUC under a classifier-dependent distribution over

cost proportions. In other words, the authors have shown that the fact that two classifiers have

equal AUC does not necessarily imply they have equal expected minimum loss. To amend

this deficiency, Hand et al. [23] proposed an alternative for allowing fairer comparisons:

the H-measure. However, this criticism concerns using AUC to assess classification perfor-

mance, and does not affect its usefulness for evaluating ranking performance. Moreover,

the relationship between AUC and expected loss is classifier-dependent only if one takes

into account solely optimal thresholds [19]. This is especially of note in the context of data

stream mining, as due to concept drift an optimal threshold for a part of the stream will be

suboptimal after a change occurs. Therefore, if one anticipates concept or data distribution

changes, it might be better to consider classification performance for all thresholds created

by a classifier, which is exactly what AUC is measuring [19]. Despite the fact that it has been

surrounded with some controversy, AUC still remains one of the most used measures under

imbalanced domains; for a broader discussion and extensions of AUC see [6].

AUC has also been used for data streams, however, in a very limited way. Some researchers

chose to calculate AUC using entire streams [13,36], while others used periodical holdout

sets [28,44]. Nevertheless, it was noticed that periodical holdout sets may not fully capture

the temporal dimension of the data [33], whereas evaluation using entire streams is neither

feasible for large datasets nor suitable for drift detection. It is also worth mentioning that

an algorithm for computing AUC incrementally has also been proposed [5], yet one which

calculates AUC from all available examples and is not applicable to evolving data streams.

123

536 D. Brzezinski, J. Stefanowski

Although the cited works show that AUC is recognized as a measure which should be used

to evaluate data stream classifiers, until now it has been computed the same way as for static

data. In the following section, we present a simple and efficient algorithm for calculating AUC

incrementally with forgetting, which we previously introduced in [9]. Later, we investigate

the properties of the resulting evaluation measure with respect to classifiers for evolving

imbalanced data streams.

3 Prequential AUC

As AUC is calculated on ranked examples, we will consider scoring classifiers, i.e., classifiers

that for each predicted class label additionally return a numeric value (score) indicating the

extent to which an instance is predicted to be positive or negative. Furthermore, we will limit

our analysis to binary classification. It is worth mentioning that most classifiers can produce

scores, and many of those that only predict class labels can be converted to scoring classifiers.

For example, decision trees can produce class-membership probabilities by using Naive

Bayes leaves or averaging predictions using bagging [40]. Similarly, rule-based classifiers

can be modified to produce instance scores indicating the likelihood that an instance belongs

to a given class [16].

We propose to compute AUC incrementally after each example using a special sorted

structure combined with a sliding window forgetting mechanism. It is worth noting that, since

the calculation of AUC requires sorting examples with respect to their classification scores,

it cannot be computed on an entire stream or using fading factors without remembering the

entire stream. Therefore, for AUC to be computationally feasible and applicable to evolving

concepts, it must be calculated using a sliding window.

A sliding window of scores limits the analysis to the most recent data, but to calculate

AUC, scores have to be sorted. To efficiently maintain a sorted set of scores, we propose to

use the red-black tree data structure [1]. A red-black tree is a self-balancing binary search

tree that is capable of adding and removing elements in logarithmic time while requiring

minimal memory. With these two structures, we can efficiently calculate AUC sequentially

on the most recent examples. Algorithm 1 lists the pseudo-code for calculating prequential

AUC. Contrary to [9], here we present an extended version of the algorithm that deals with

score ties.

For each incoming labeled example, the score assigned to this example by the classifier is

inserted into the window (line 15) as well as the red-black tree (line 10), and if the window

of examples has been exceeded, the oldest score is removed (lines 5 and 15). The red-black

tree is sorted in descending order according to scores, in case of score ties positives before

negatives, and in ascending order according to arrival time. This way, we maintain a structure

that facilitates the calculation of AUC and ensures that the oldest score in the sliding window

will be promptly found in the red-black tree. After the sliding window and tree have been

updated, AUC is calculated by summing the number of positive examples occurring before

each negative example (lines 18–28) and normalizing that value by all possible pairs pn

(line 29), where p is the number of positives and n is the number of negatives in the window.

This method of calculating AUC, proposed in [48], is equivalent to summing the area of

trapezoids for each pair of sequential points on the ROC curve, but more suitable for our

purposes, as it requires very little computation given a sorted collection of scores. We note

that in line 26 we take into account score ties between positive and negative examples by

reducing the increment of AUC.

123

Prequential AUC: properties of the area under the ROC curve 537

Algorithm 1 Prequential AUC

Input: S: stream of examples, d: window size

Output: θ̂ : prequential AUC after each example

1: W ← ∅; idx ← 0; ⊲ Sliding window/example number

2: n ← 0; p ← 0; ⊲ Number of negatives/positives in the window

3: for all scored examples xt ∈ S do

4: if idx ≥ d then

5: scoreT ree.remove(W [idx mod d]); ⊲ Remove oldest score

6: if is Posi tive(W [idx mod d]) then

7: p ← p − 1;

8: else

9: n ← n − 1;

10: scoreT ree.add(xt); ⊲ Add new score

11: if is Posi tive(xt) then

12: p ← p + 1;

13: else

14: n ← n + 1;

15: W [idx mod d] ← xt ;

16: idx ← idx + 1;

17: AUC ← 0; c ← 0; prevc ← 0; last PosScore ← ∞; ⊲ Calculate AUC [48]

18: for all scored examples s ∈ scoreT ree do

19: if is Posi tive(s) then

20: if s.value �= last PosScore then

21: prevc ← c;

22: last PosScore ← s.value

23: c ← c + 1;

24: else

25: if s.value = last PosScore then ⊲ Tied scores for positives and negatives

26: AUC ← AUC + (c + prevc)/2;

27: else

28: AUC ← AUC + c;

29: θ̂ ← AUC
pn ;

An example of using a sliding window and a red-black tree is presented in Fig. 2. Win-

dow W contains six examples, all of which are already inserted into the red-black tree.

As mentioned earlier, examples in the tree are sorted (depth-first search wise) descending

according to scores s, positives before negatives, and ascending according to arrival time

t . When a new instance is scored by the classifier (t : 7, l: +, s: 0.80), the oldest instance

(t : 1) is removed from the window and the tree. After the new scored example is inserted,

AUC is calculated by traversing the tree in a depth-first search manner and counting labels

as presented in lines 17–29 of Algorithm 1. In this example, the resulting AUC would be

0.875.

Although prequential AUC requires a sliding window and is not fully incremental (cannot

be computed based solely on its previous value), in [9], we have shown that the presented

algorithm requires O(1) time and memory per example and is, therefore, suitable for data

stream processing.

Prequential AUC aims at extending the list of available evaluation measures, particularly

for assessing classifiers and detecting drifts in streams with evolving class distributions.

However, we must verify if this measure is suitable for visualizing performance changes over

time. Furthermore, we are also interested in how averaged prequential AUC relates to AUC

calculated periodically on blocks or once over the entire stream. Finally, we must evaluate

the newly proposed measure on real-world and synthetic data to verify its processing speed

and applicability to large streaming data with different types of drift and imbalance ratios. In

123

538 D. Brzezinski, J. Stefanowski

(a) (b)

Fig. 2 Red-black tree of examples from window W , where l is the example’s true label, s its assigned score,

and t its timestamp (AUC(a): 0.833, AUC(b): 0.875). a Before adding a new instance. b After adding a new

instance

the following sections, we examine the aforementioned characteristics of prequential AUC

and present the main contributions of this study.

4 Properties of prequential AUC

We start the study of properties of prequential AUC by comparing it against other attempts at

computing AUC on data streams. First, we will compare the differences in visualizations of

classifier performance on stationary and drifting streams. In the second part of this section,

we will examine the consistency of prequential and block AUC with batch calculations on

stationary data.

4.1 AUC visualizations over time

As it was mentioned in Sect. 2, there have already been attempts to use AUC as an evaluation

measure for data stream classifiers. Some researchers [28,44] calculated AUC on periodical

holdout sets, i.e., consecutive blocks of examples. Others [13,36], for experimental purposes,

treated small data streams as a single batch of examples and calculated AUC traditionally.

Furthermore, there has been a proposal of an algorithm for computing AUC incrementally,

instance after instance [5]. With the proposed prequential estimation, this gives in total four

ways of evaluating data stream classifiers using AUC: batch, block-based, incremental, and

prequential.

Figures 3 and 4 present visualizations of the aforementioned four AUC calculation proce-

dures. More precisely, both plots present the performance of a single Hoeffding Tree classifier

[20] on a dataset with 20 k examples created using the RBF generator (the dataset will be

discussed in more detail in Sect. 5.2). The first dataset contained no drifts, whereas in the

second dataset a sudden drift was added after 10 k examples. Prequential and block AUC

were calculated using a window of d = 1000 examples (the impact of the d parameter will

123

Prequential AUC: properties of the area under the ROC curve 539

Fig. 3 Batch, incremental, block-based, and prequential AUC on a data stream with no drifts (RBF20k)

Fig. 4 Batch, incremental, block-based, and prequential AUC on a data stream with a sudden drift after 10 k

examples (RBF20kSD)

123

540 D. Brzezinski, J. Stefanowski

be analyzed in Sect. 5.4). It is worth noting that similar comparisons were previously done

for incremental and prequential accuracy [21,33].

On the stream without any drifts, presented in Fig. 3, we can see that AUC calculated in

blocks or prequentially is less pessimistic than AUC calculated incrementally. This is due to

the fact that the true performance of an algorithm at a given point in time is obscured when

calculated incrementally—algorithms are punished for early mistakes regardless of the level

of performance they are eventually capable of, although this effect diminishes over time. This

property has also been noticed by other researchers when visualizing classification accuracy

over time [21,33]. Therefore, if one is interested in the performance of a classifier at a given

moment in time, prequential and block AUC give less pessimistic estimates, with prequential

calculation producing a much smoother curve.

Figure 4 presents the difference between all four AUC calculation methods in the presence

of concept drift. As one can see, after a sudden drift occurring after 10 k examples, the

change in performance is most visible when looking at prequential AUC over time. AUC

calculated on blocks of examples also depicts this change, but delayed according to the

block size. However, the most relevant observation is that AUC calculated incrementally

is not capable of depicting drifts due to its long “memory” of predictions. For this reason,

prequential evaluations should be favored over incremental and block-based assessment in

drifting environments where class labels are available after each example [21].

In summary, on streams without drift prequential AUC provides a smoother and less

pessimistic classifier evaluation than block-based and incremental calculations. Furthermore,

prequential AUC is best at depicting sudden changes over time. It is also worth emphasizing

that incremental and batch AUC calculations are presented here only for reference, as they

do not fulfill computational requirements of data stream processing. Based on the presented

analysis, we believe that similarly as prequential accuracy should be favored over batch,

incremental, and block-based accuracy [21], prequential AUC should be preferred to batch,

block, and incremental AUC when monitoring classifier performance online on drifting data

streams.

4.2 Prequential AUC averaged over entire streams

4.2.1 Motivation

The above analysis shows that prequential AUC has several advantages when monitored over

time, especially in environments with possible concept drifts. However, in many situations,

particularly when comparing classifiers over multiple datasets, it is easier to examine simple

numeric values rather than entire performance plots. In such cases, researchers are more

interested in performance values averaged over entire streams.

As it was shown in Fig. 4, in the presence of concept drift, prequential AUC is the most

appropriate calculation procedure for showcasing reactions to changes, even when averaged

over the entire stream. However, if no drifts are expected, AUC calculated traditionally in a

batch manner over all examples should give the best performance estimate. This observation

stems from the fact that in a stationary stream all examples represent a stationary set of

concepts, and therefore, all predictions can be simultaneously taken into account during

evaluation. Although the computation of batch AUC is not feasible for large data streams,

we are interested in how prequential and block calculations averaged over the entire stream

compare to AUC calculated once using all predictions.

First, it is worth noticing that if we simultaneously take all examples into account, their

order of appearance does not affect the final batch AUC estimation, as long as an exam-

123

Prequential AUC: properties of the area under the ROC curve 541

Table 1 Classifiers with the same batch AUC but different prequential and block AUC (for a window of

d = 2)

C1 − − − − − − − − + + + + + + + +

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C2 − − − − − − − − + + + + + + + +

t 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16

Table 2 An example in which one classifier has higher batch AUC but lower prequential and block AUC (for

d = 2)

C3 + − + − + − + − + − + − + − + −

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C4 − − − − − − − − + + + + + + + +

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ple receives a certain score regardless of its position in the stream. This is contrary to

AUC calculated prequentially or in blocks where the order of examples affects the final

averaged performance values. Let us analyze two examples that demonstrate this issue.

In each of the presented examples, the arrival time of each instance will be denoted by

t and scores will be sorted from highest to lowest, left to right. We assume that classi-

fiers are trained to output higher scores for positive examples and lower scores for negative

examples.

Table 1 presents a stream where two classifiers (C1, C2) give the highest score to negative

instances (−) and the lowest score to positive instances (+). As a result, batch AUC calculated

on the entire dataset at once will be 0.00, regardless of the arrival order of examples. However,

if positive and negative instances are clearly separated (e.g., all negative instances appear

before all positive, as in C1), averaged AUC calculated in blocks or prequentially with a

window of d = 2 instances will give an estimate of 1.00 and 0.93, respectively. Such high

estimates are due to the fact that for most window positions all instances have the same class

label. On the other hand, if the same examples arrive in a different order (C2), prequential or

block AUC with the same window of d = 2 when averaged over the stream will be 0.00 just

as batch AUC.

Table 2 presents an additional issue. For C3 batch AUC is 0.57, averaged block AUC is

1.00, and averaged prequential AUC is 0.53. For Classifier 4, on the other hand, batch AUC

is 0.00, block AUC 1.00, and prequential AUC 0.93. This shows that prequential AUC does

not have to be necessarily higher than batch AUC. It is worth noting, that if the sequence of

interleaved positives and negatives for C4 started with a negative example, block AUC would

be 0.00.

The above examples show that depending on the calculation procedure, one can obtain

AUC estimates that are far away from each other. This might be beneficial for concept-

drifting streams, but not for stationary distributions. Since we cannot ensure equal prequential,

block-based, and batch AUC estimates, we are interested in how different these estimates

are on average. More importantly, we are interested in how these differences affect classifier

evaluation. To answer these questions, we will use criteria for comparing evaluation measures

proposed by Huang and Ling [30].

123

542 D. Brzezinski, J. Stefanowski

4.2.2 Theoretical background

When discussing two different measures f and g used for evaluating two learning algorithms

A and B, we want f and g to be consistent with each other. That is, when f shows that

algorithm A is better than B, then g will not say B is better than A [30]. Furthermore, if f is

more discriminating than g, we expect to see cases where f can tell the difference between

A and B but g cannot, but not vice versa. These intuitive descriptions of consistency and

discriminancy were made precise by the following definitions [30].

Definition 1 For two measures f , g and two classifier outputs a, b on a domain Ψ , f and g

are strictly consistent if there exists no a, b ∈ Ψ , such that f (a) > f (b) and g(a) < g(b).

Definition 2 For two measures f , g and two classifier outputs a, b on a domain Ψ , f is

strictly more discriminating than g if there exists a, b ∈ Ψ such that f (a) �= f (b) and

g(a) = g(b), and there exists no a, b ∈ Ψ , such that g(a) �= g(b) and f (a) = f (b).

As we have already shown in Tables 1 and 2, counter examples on strict consistency and

discriminancy do exist for average AUC calculated on an entire stream and using blocks or

sliding windows. Therefore, it is impossible to prove strict consistency and discriminancy

between batch and prequential or block AUC, based on Definitions 1 and 2. In this case, we

have to rather consider the degree of being consistent and the degree of being more discrimi-

nating. This leads to the definitions of the degree of consistency and degree of discriminancy

[30].

Definition 3 For two measures f , g and two classifier outputs a, b on a domain Ψ , let R =

{(a, b)|a, b ∈ Ψ, f (a) > f (b), g(a) > g(b)}, S = {(a, b)|a, b ∈ Ψ, f (a) > f (b), g(a) <

g(b)}. The degree of consistency of f and g is C (0 ≤ C ≤ 1), where C = |R|
|R|+|S| .

Definition 4 For two measures f , g and two classifier outputs a, b on a domain Ψ , let P =

{(a, b)|a, b ∈ Ψ, f (a) > f (b), g(a) = g(b)}, Q = {(a, b)|a, b ∈ Ψ, g(a) > g(b), f (a) =

f (b)}. The degree of discriminancy for f over g is D = |P|
|Q| .

As it was suggested by Huang and Ling, two measures should agree on the majority of

classifier evaluations to be comparable. Therefore, we require prequential AUC averaged

over the entire stream to be C > 0.5 consistent with batch AUC. Furthermore, the degree

of discriminancy D shows how many times it is more likely that a given measure can tell

the difference between two algorithms, when the other measure cannot. In the following

paragraphs, we will say that measures f and g are statistically consistent if C > 0.5 and that

measure f is more discriminating than a base measure g if D < 1 [30].

Since prequential and block AUC are dependent on the ranking of examples, their order in

the stream, and the used window size d , it is difficult to formally prove whether they are statis-

tically consistent (C > 0.5) and more discriminating (D < 1) than AUC calculated using the

entire stream at once. Therefore, we will use simulations to verify statistical consistency with

batch AUC and whether we can decide which calculation procedure is most discriminating.

More importantly, empirical evaluations on artificial datasets will give us an insight into the

practical degree of consistency and discriminancy for different class imbalance ratios and

window sizes.

4.2.3 Simulations

We generate datasets with 4, 6, 8, and 10 examples, which could be ranked by two hypothetical

classifiers. For each number of examples, we enumerate all possible orderings of examples

123

Prequential AUC: properties of the area under the ROC curve 543

of all possible pairs of classifier-ranked lists with 50, 34, 14% minority class examples and

calculate prequential (and block) AUC for all possible window sizes (1 < d < n). For a

dataset with n p positive examples and n examples in total, there are
((n

n p
)+2−1

2

)

·n! such non-

repeating pairs of ranked lists with different example orderings. Due to such a large number

of ordering/ranking possibilities, we were only able to exhaustively test datasets up to 10

instances. The three class imbalance ratios were chosen to show performance on a balanced

dataset (50%), 1:2 imbalance ratio (34%), and the extreme case of only one positive instance

regardless of the dataset size (14%).

We exhaustively compare all orderings of examples for all possible example rankings

to verify the degree of consistency and discriminancy for different window sizes d . To

obtain the degree of consistency, we count the number of pairs for which “AUC(a) <

AUC(b) and p AUC(a) < p AUC(b)” and the number of pairs for which “AUC(a) <

AUC(b) and p AUC(a) > p AUC(b),” where AUC(·) denotes batch-calculated AUC and

p AUC(·) prequential AUC averaged over the entire stream. To obtain the degree of discrim-

inancy, we count the number of pairs which satisfy “AUC(a) < AUC(b) and p AUC(a) =

p AUC(b)” and the number of pairs which satisfy “AUC(a) = AUC(b) and p AUC(a) <

p AUC(b)”. Similar computations were done for block AUC, denoted as bAUC(·). Tables 3,

4, 5, 6, 7 and 8 shows the experiment results, with prequential AUC always shown on the

left side and block AUC on the right side. In the table headers AUC, prequential AUC, and

block-based AUC are denoted as A(·), p A(·), bA(·), respectively.

Regarding consistency (Tables 3, 4, 5), the results show that both block-based and pre-

quential AUC have a high percentage of decisions consistent with batch AUC. More precisely,

both estimations usually achieve a degree of consistency between 0.80 and 0.90, which is

much larger than the required 0.50. However, it is also worth noticing that, for all class imbal-

ance ratios and most window sizes, prequential AUC is more consistent with batch AUC than

its block-calculated competitor. What is even more important is that this difference is most

apparent for smaller window sizes, where prequential AUC usually has a 0.05 higher degree

of consistency. Finally, it is worth noticing that larger windows persistently allow to achieve

estimations that are more consistent with batch AUC.

In terms of the degree of discriminancy (Tables 6, 7, 8), the results vary. For very small

window sizes, batch AUC seems to be better at differentiating rankings (D > 1), whereas

windows of sizes d > 3 invert this relation (D < 1). However, once again it is worth

noticing that prequential AUC is usually more discriminant (has smaller D) than block

AUC regardless of the window size or class imbalance ratio. Moreover, higher class imbal-

ance ratios appear to make the differentiation more difficult for prequential and block

estimations, especially for smaller window sizes. This is understandable, as with such

small datasets, for higher class imbalance ratios only a single positive example is avail-

able. If a window is too small compared to the class imbalance ratio, no positive examples

are available in a window. This situation is especially visible in the datasets with 14%

minority class examples, where for all dataset sizes n the number of positive examples

is n p = 1.

A direct conclusion can be drawn from this observation: Window sizes used for prequen-

tial (or block) AUC estimations should be large enough to always contain at least one positive

example to ensure higher discriminancy. Nevertheless, apart from very small window sizes

compared to the class distribution, prequential AUC is comparably discriminant with AUC

calculated on the entire stream. Although not presented in this manuscript, the authors also

analyzed the measures’ indifference (ratio of cases where neither of the measures can differ-

123

544 D. Brzezinski, J. Stefanowski

T
a

b
le

3
D

eg
re

e
o
f

co
n
si

st
en

cy
w

it
h

b
at

ch
-c

al
cu

la
te

d
A

U
C

fo
r

b
al

an
ce

d
d
at

as
et

s
(5

0
%

b
o
th

cl
as

se
s)

n
d

A
(a

)
<

A
(b

)
&

p
A
(a

)
<

p
A
(b

)

A
(a

)
<

A
(b

)
&

p
A
(a

)
>

p
A
(b

)

C
n

d
A
(a

)
<

A
(b

)
&

b
A
(a

)
<

b
A
(b

)

A
(a

)
<

A
(b

)
&

b
A
(a

)
>

b
A
(b

)

C

(a
)

P
re

q
u

en
ti

a
l

A
U

C
(b

)
B

lo
ck

-b
a

se
d

A
U

C

4
2

2
2

6
3

0
0
.8

8
3

4
2

2
0

8
5

6
0
.7

8
8

4
3

2
7

6
0

1
.0

0
0

4
3

2
3

6
2

8
0
.8

9
4

6
2

7
8
,5

5
8

1
4
,2

0
6

0
.8

4
7

6
2

6
7
,2

3
0

1
7
,4

2
8

0
.7

9
4

6
3

9
5
,0

8
6

1
1
,6

8
8

0
.8

9
1

6
3

8
7
,1

5
0

1
4
,1

6
4

0
.8

6
0

6
4

1
0

6
,5

6
6

1
0
,0

9
8

0
.9

1
3

6
4

9
2
,9

3
0

1
9
,3

5
6

0
.8

2
8

6
5

1
0

9
,1

5
2

3
8

4
0

0
.9

6
6

6
5

1
0

1
,5

2
0

7
,6

0
8

0
.9

3
0

8
2

5
3
,1

5
8
,
6

2
8

1
1
,1

8
5
,9

7
6

0
.8

2
6

8
2

4
5
,4

0
5
,5

8
6

1
3
,3

5
8
,8

1
0

0
.7

7
3

8
3

6
3
,2

4
0
,0

3
4

1
0
,4

2
5
,2

3
7

0
.8

5
8

8
3

5
3
,8

5
0
,2

0
2

1
4
,3

9
1
,8

8
7

0
.7

8
9

8
4

6
9
,1

8
2
,3

0
4

9
,9

7
2
,7

7
0

0
.8

7
4

8
4

6
6
,5

6
7
,0

4
0

8
,6

2
4
,1

6
7

0
.8

8
5

8
5

7
0
,7

6
1
,1

9
2

7
,6

9
3
,0

1
2

0
.9

0
2

8
5

6
3
,5

7
2
,5

6
0

1
2
,0

8
6
,7

3
0

0
.8

4
0

8
6

7
3
,4

7
9
,1

6
8

6
,4

1
1
,4

0
8

0
.9

2
0

8
6

6
4
,6

1
1
,7

9
2

1
4
,2

3
2
,1

9
2

0
.8

1
9

8
7

7
5
,5

0
3
,5

2
0

2
,4

0
3
,3

6
0

0
.9

6
9

8
7

7
2
,1

3
6
,0

8
0

4
,4

4
8
,8

8
0

0
.9

4
2

1
0

2
6

0
,6

3
4
,8

6
6
,7

8
4

1
4
,0

6
3
,9

9
9
,5

2
4

0
.8

1
2

1
0

2
5

1
,4

8
7
,8

8
7
,1

0
4

1
7
,0

0
0
,4

4
1
,7

6
2

0
.7

5
2

1
0

3
7

1
,1

3
0
,1

6
3
,4

6
3

1
3
,2

9
0
,4

8
5
,7

5
2

0
.8

4
3

1
0

3
5

9
,4

9
0
,7

5
7
,9

3
5

1
6
,8

8
3
,7

4
1
,6

9
6

0
.7

7
9

1
0

4
7

4
,0

3
7
,6

4
4
,4

0
4

1
4
,1

6
3
,9

4
3
,5

8
2

0
.8

3
9

1
0

4
6

4
,5

1
2
,4

1
9
,5

1
3

2
0
,5

0
9
,7

0
8
,2

9
9

0
.7

5
9

1
0

5
7

8
,9

2
0
,7

0
0
,3

6
4

1
1
,1

7
6
,3

4
1
,2

9
0

0
.8

7
6

1
0

5
7

6
,7

1
4
,1

4
7
,7

3
5

9
,0

7
8
,4

9
3
,5

6
6

0
.8

9
4

1
0

6
7

3
,1

6
8
,7

3
0
,7

4
2

1
3
,4

6
7
,3

5
0
,8

1
6

0
.8

4
5

1
0

6
7

1
,8

5
5
,7

0
3
,7

0
0

1
3
,9

3
4
,7

2
6
,8

7
2

0
.8

3
8

1
0

7
7

9
,0

7
6
,2

7
5
,2

9
6

9
,2

9
3
,0

5
8
,7

4
4

0
.8

9
5

1
0

7
7

0
,3

1
2
,6

0
8
,7

2
0

1
6
,5

5
2
,8

3
7
,6

3
2

0
.8

0
9

1
0

8
8

3
,9

4
4
,2

4
4
,8

8
0

6
,7

0
1
,3

2
0
,8

0
0

0
.9

2
6

1
0

8
7

4
,3

7
8
,6

8
5
,6

0
0

1
5
,5

9
0
,5

3
0
,0

8
0

0
.8

2
7

1
0

9
8

6
,5

3
9
,8

2
4
,0

0
0

2
,9

2
6
,6

2
7
,2

0
0

0
.9

6
7

1
0

9
8

3
,3

6
5
,1

0
7
,8

4
0

4
,8

1
7
,8

3
6
,8

0
0

0
.9

4
5

123

Prequential AUC: properties of the area under the ROC curve 545

T
a

b
le

4
D

eg
re

e
o
f

co
n
si

st
en

cy
w

it
h

b
at

ch
-c

al
cu

la
te

d
A

U
C

fo
r

im
b
al

an
ce

d
d
at

as
et

s
(3

4
%

m
in

o
ri

ty
cl

as
s)

n
d

A
(a

)
<

A
(b

)
&

p
A
(a

)
<

p
A
(b

)

A
(a

)
<

A
(b

)
&

p
A
(a

)
>

p
A
(b

)

C
n

d
A
(a

)
<

A
(b

)
&

b
A
(a

)
<

b
A
(b

)

A
(a

)
<

A
(b

)
&

b
A
(a

)
>

b
A
(b

)

C

(a
)

P
re

q
u

en
ti

a
l

A
U

C
(b

)
B

lo
ck

-b
a

se
d

A
U

C

4
2

9
6

8
0
.9

2
3

4
2

9
2

8
0
.9

2
0

4
3

1
1

2
8

0
.9

3
3

4
3

1
0

2
1

8
0
.8

5
0

6
2

4
4
,3

2
8

7
4

3
0

0
.8

5
6

6
2

3
9
,2

2
2

9
5

8
2

0
.8

0
4

6
3

5
3
,3

1
8

7
3

1
2

0
.8

7
9

6
3

4
9
,4

8
2

7
5

9
0

0
.8

6
7

6
4

5
8
,7

7
4

6
9

0
4

0
.8

9
5

6
4

5
2
,3

0
2

1
1
,4

6
8

0
.8

2
0

6
5

6
2
,0

6
4

3
3

1
2

0
.9

4
9

6
5

5
9
,4

9
6

5
3

5
2

0
.9

1
7

8
2

3
4
,2

5
0
,7

3
0

6
,9

8
0
,0

0
6

0
.8

3
1

8
2

2
8
,9

4
5
,2

6
0

8
,4

6
3
,2

5
8

0
.7

7
4

8
3

4
0
,6

9
9
,4

9
7

6
,7

9
3
,1

4
2

0
.8

5
7

8
3

3
4
,6

8
2
,9

6
1

8
,7

6
1
,1

5
7

0
.7

9
8

8
4

4
4
,1

9
3
,3

3
1

6
,9

8
2
,8

9
9

0
. 8

6
4

8
4

4
3
,3

6
1
,9

8
7

6
,7

4
0
,6

4
5

0
.8

6
5

8
5

4
5
,4

6
3
,9

5
6

5
,4

2
6
,9

9
8

0
.8

9
3

8
5

4
1
,7

0
5
,6

5
0

7
,6

2
3
,6

3
6

0
.8

4
5

8
6

4
7
,5

1
6
,6

4
0

4
,3

2
6
,8

6
4

0
.9

1
7

8
6

4
2
,3

8
2
,6

0
8

8
,9

8
5
,3

3
6

0
.8

2
5

8
7

4
9
,2

8
1
,1

2
0

2
,1

2
7
,6

0
0

0
.9

5
9

8
7

4
7
,7

4
3
,9

2
0

3
,4

1
8
,5

6
0

0
.9

3
3

1
0

2
1

4
,0

5
6
,0

9
5
,1

3
6

2
,9

9
1
,7

2
3
,2

0
4

0
.8

2
5

1
0

2
1

2
,1

9
5
,0

3
3
,2

7
6

3
,4

1
3
,0

2
1
,3

0
6

0
.7

8
1

1
0

3
1

6
,5

0
6
,9

3
0
,0

2
5

3
,0

5
8
,6

0
9
,6

6
8

0
.8

4
4

1
0

3
1

3
,7

9
2
,3

9
8
,2

8
1

3
,6

7
5
,8

3
1
,2

3
2

0
.7

9
0

1
0

4
1

7
,3

9
7
,8

5
1
,5

6
5

3
,4

5
8
,5

3
6
,9

4
4

0
.8

3
4

1
0

4
1

5
,9

0
3
,2

9
8
,9

1
0

4
,1

1
3
,6

4
7
,6

1
0

0
.7

9
4

1
0

5
1

7
,8

5
7
,9

0
2
,4

8
9

3
,0

7
7
,5

8
3
,8

2
0

0
.8

5
3

1
0

5
1

7
,3

0
6
,0

2
5
,7

8
4

3
,1

0
2
,2

0
0
,5

6
5

0
.8

4
8

1
0

6
1

7
,3

6
8
,2

6
7
,2

8
2

3
,2

0
8
,7

7
4
,6

3
4

0
.8

4
4

1
0

6
1

7
,4

6
9
,1

3
4
,5

3
2

2
,9

4
7
,9

0
1
,7

2
6

0
.8

5
6

1
0

7
1

8
,5

4
1
,6

5
8
,2

0
8

2
,1

9
8
,9

6
5
,3

9
2

0
.8

9
4

1
0

7
1

6
,8

6
4
,1

2
0
,8

9
6

3
,4

6
6
,8

6
8
,3

0
4

0
.8

2
9

1
0

8
1

9
,4

6
9
,1

7
8
,7

2
0

1
,6

5
3
,8

8
3
,9

2
0

0
.9

2
2

1
0

8
1

7
,2

9
3
,4

5
1
,7

6
0

3
,6

5
6
,5

2
7
,9

2
0

0
.8

2
5

1
0

9
2

0
,3

3
8
,1

7
4
,0

8
0

8
3

4
,8

2
5
,6

0
0

0
.9

6
1

1
0

9
1

9
,8

2
2
,3

6
0
,3

2
0

1
,2

1
6
,0

1
0
,8

8
0

0
.9

4
2

123

546 D. Brzezinski, J. Stefanowski

Table 5 Degree of consistency with batch-calculated AUC for imbalanced datasets (14% minority class)

n d A(a) < A(b) &

p A(a) < p A(b)

A(a) < A(b) &

p A(a) > p A(b)

C n d A(a) < A(b) &

bA(a) < bA(b)

A(a) < A(b) &

bA(a) > bA(b)

C

(a) Prequential AUC (b) Block-based AUC

4 2 96 8 0.923 4 2 92 8 0.920

4 3 112 8 0.933 4 3 102 18 0.850

6 2 6888 840 0.891 6 2 6096 784 0.886

6 3 8068 1240 0.867 6 3 8152 644 0.927

6 4 8568 1220 0.875 6 4 8276 934 0.899

6 5 9264 816 0.919 6 5 8880 1200 0.881

8 2 701,568 96,768 0.879 8 2 571,680 71,040 0.889

8 3 841,168 145,632 0.852 8 3 796,032 90,528 0.898

8 4 868,680 164,584 0.841 8 4 914,944 64,888 0.93

8 5 891,960 164,384 0.844 8 5 923,656 77,832 0.922

8 6 936,144 139,056 0.871 8 6 940,368 99,312 0.904

8 7 1,006,560 82,080 0.925 8 7 982,800 105,840 0.903

10 2 99,792,000 14,636,160 0.872 10 2 81,250,560 11,632,320 0.875

10 3 121,113,792 21,683,232 0.848 10 3 105,151,848 16,303,848 0.866

10 4 125,448,672 25,481,808 0.831 10 4 126,349,656 12,907,656 0.907

10 5 127,000,512 27,198,096 0.824 10 5 139,374,336 8,251,152 0.944

10 6 128,755,248 27,134,520 0.826 10 6 142,754,112 12,808,368 0.918

10 7 132,687,744 24,559,776 0.844 10 7 141,324,576 10,824,720 0.929

10 8 139,400,640 19,555,920 0.877 10 8 142,572,240 12,827,520 0.917

10 9 148,861,440 10,805,760 0.932 10 9 146,603,520 13,063,680 0.918

entiate two distinct rankings [30]), which remained very small throughout all window sizes

and class imbalance ratios.1

Apart from the number of ranking pairs where prequential or block estimations are consis-

tent or more discriminating than batch AUC, one may be interested in the absolute difference

between the values of these estimations. To verify these differences, we have calculated and

plotted the values of p AUC(a)−AUC(a) and bAUC(a)−AUC(a) for the three analyzed

class imbalance ratios. Due to space limitations, Figs. 5 and 6 present these differences only

for the balanced datasets.2

The left-hand side of each figure presents a three-dimensional plot, where the x-axis

denotes the difference between prequential (or block) AUC and batch AUC, the y-axis

describes window sizes, and the z-axis shows the number of rankings for which a given

difference was observed. The right-hand side of each figure shows a two-dimensional top

view of the same plot. The left plots are intended to demonstrate the dominating difference

values and their variation for each window size. It is also worth noticing that these plots usu-

ally demonstrate peaks around the 0.0 difference. The right plots, on the other hand, clearly

show the range of possible differences for each window size.

1 Results for the degree of indifference are in Appendix A in the supplementary materials.

2 Plots for imbalanced datasets are in Appendix B in the supplementary materials.

123

Prequential AUC: properties of the area under the ROC curve 547

T
a

b
le

6
D

eg
re

e
o
f

d
is

cr
im

in
an

cy
co

m
p
ar

ed
to

b
at

ch
-c

al
cu

la
te

d
A

U
C

fo
r

b
al

an
ce

d
d
at

as
et

s
(5

0
%

b
o
th

cl
as

se
s)

n
d

A
(a

)
<

A
(b

)
&

p
A
(a

)
=

p
A
(b

)

A
(a

)
=

A
(b

)
&

p
A
(a

)
<

p
A
(b

)

D
n

d
A
(a

)
<

A
(b

)
&

b
A
(a

)
=

b
A
(b

)

A
(a

)
=

A
(b

)
&

b
A
(a

)
<

b
A
(b

)

D

(a
)

P
re

q
u

en
ti

a
l

A
U

C
(b

)
B

lo
ck

-b
a

se
d

A
U

C

4
2

8
0

8
1

0
.0

0
4

2
7

2
0

∞

4
3

6
0

8
7
.5

0
4

3
7

2
4

1
8

.0
0

6
2

2
6
,7

5
6

3
5

0
0

7
.6

4
6

2
3

4
,8

6
2

2
0

1
0

1
7

.3
4

6
3

1
2
,7

4
6

4
0

4
4

3
.1

5
6

3
1

8
,2

0
6

2
8

0
2

6
.5

0

6
4

2
8

5
6

4
7

2
4

0
.6

0
6

4
7

2
3

4
4

1
2

2
1

.7
5

6
5

6
5

2
8

4
0

3
2

1
.6

2
6

5
1

0
,3

9
2

2
7

1
2

3
.8

3

8
2

1
6
,2

1
4
,7

5
6

2
,3

5
3
,1

8
2

6
.8

9
8

2
2

1
,7

9
4
,9

6
4

1
,8

2
7
,8

6
8

1
1

.9
2

8
3

6
,8

9
4
,0

8
9

2
,7

3
8
,3

3
9

2
.5

2
8

3
1

2
,3

1
7
,2

7
1

2
,1

5
2
,1

2
0

5
.7

2

8
4

1
,3

0
4
,2

9
8

2
,9

9
6
,7

6
4

0
.4

4
8

4
5
,2

6
8
,1

6
5

2
,2

5
8
,6

3
2

2
.3

3

8
5

2
,1

0
4
,7

9
2

2
,8

7
0
,9

4
4

0
.7

3
8

5
4
,8

9
9
, 7

0
6

2
,2

6
2
,6

3
4

2
.1

7

8
6

3
5

6
,7

1
2

2
,8

9
1
,1

3
6

0
.1

2
8

6
1
,4

0
3
,3

0
4

2
,4

7
5
,1

9
2

0
.5

7

8
7

2
,6

5
2
,4

8
0

2
,3

4
9
,3

6
0

1
.1

3
8

7
3
,9

7
4
,4

0
0

1
,7

5
1
,0

4
0

2
.2

7

1
0

2
1

6
,4

7
4
,0

7
0
,2

4
4

2
,3

2
5
,7

1
4
,6

3
6

7
.0

8
1

0
2

2
2
,6

8
4
,6

0
7
,6

8
6

1
,7

6
4
,4

6
1
,4

8
8

1
2

.8
6

1
0

3
6
,7

5
1
,6

5
2
,7

9
4

2
,6

9
2
,7

3
5
,0

8
5

2
.5

1
1

0
3

1
4
,7

9
7
,8

0
2
,3

7
8

2
,1

0
8
,3

5
0
,1

8
3

7
.0

2

1
0

4
1
,1

3
5
,3

3
3
, 0

2
5

2
,7

8
2
,7

7
6
,3

9
4

0
.4

1
1

0
4

4
,3

1
4
,7

9
3
,1

9
9

2
,6

4
8
,7

0
0
,6

1
3

1
.6

3

1
0

5
1
,5

2
3
,9

4
9
,0

9
9

2
,6

9
3
,1

6
5
,2

7
2

0
.5

7
1

0
5

5
,8

2
8
,3

4
9
,4

5
2

2
,1

3
3
,6

7
2
,4

8
6

2
.7

3

1
0

6
2

0
5
,9

0
1
,5

2
2

2
,4

6
4
,4

1
6
,6

6
6

0
.0

8
1

0
6

1
,0

5
1
,5

5
2
,5

0
8

2
,5

7
7
,7

8
0
,7

0
0

0
.4

1

1
0

7
8

3
7
,7

3
0
,3

9
2

2
,6

8
8
,3

8
8
,9

4
4

0
.3

1
1

0
7

2
,3

4
1
,6

1
8
,0

8
0

2
,3

8
1
,2

0
8
,0

0
0

0
.9

8

1
0

8
1

6
3
,8

3
8
,8

8
0

2
,5

1
3
,9

8
2
,9

6
0

0
.0

7
1

0
8

8
4

0
,1

8
8
,8

8
0

2
,2

3
0
,4

1
3
,8

4
0

0
.3

8

1
0

9
1
,7

0
7
,1

4
8
,8

0
0

2
,1

1
3
,6

9
5
,3

6
0

0
.8

1
1

0
9

2
,9

9
0
,6

5
5
,3

6
0

1
,6

0
7
,1

1
4
,8

8
0

1
.8

6

123

548 D. Brzezinski, J. Stefanowski

T
a

b
le

7
D

eg
re

e
o
f

d
is

cr
im

in
an

cy
co

m
p
ar

ed
to

b
at

ch
-c

al
cu

la
te

d
A

U
C

fo
r

im
b
al

an
ce

d
d
at

as
et

s
(3

4
%

m
in

o
ri

ty
cl

as
s)

n
d

A
(a

)
<

A
(b

)
&

p
A
(a

)
=

p
A
(b

)

A
(a

)
=

A
(b

)
&

p
A
(a

)
<

p
A
(b

)

D
n

d
A
(a

)
<

A
(b

)
&

b
A
(a

)
=

b
A
(b

)

A
(a

)
=

A
(b

)
&

b
A
(a

)
<

b
A
(b

)

D

(a
)

P
re

q
u

en
ti

a
l

A
U

C
(b

)
B

lo
ck

-b
a

se
d

A
U

C

4
2

4
0

0
∞

4
2

4
4

0
∞

4
3

2
4

0
∞

4
3

2
4

0
∞

6
2

1
5
,9

2
2

1
6

7
6

9
.5

0
6

2
1

8
,8

7
6

1
0

5
0

1
7

.9
8

6
3

7
0

5
0

2
0

8
0

3
.3

9
6

3
1

0
,6

0
8

1
0

4
2

1
0

.1
8

6
4

1
9

8
8

2
4

0
8

0
.8

3
6

4
3

8
9

6
2

1
5

6
1

.8
1

6
5

2
3

0
4

2
0

4
0

1
.1

3
6

5
2

8
3

2
1

4
1

6
2

.0
0

8
2

1
0
,8

2
2
,3

8
4

1
,4

4
5
,6

9
0

7
.4

9
8

2
1

4
,6

4
4
,6

0
2

1
,0

6
1
,4

0
4

1
3

.8
0

8
3

4
,5

6
0
,4

8
1

1
,6

9
8
,1

6
2

2
.6

9
8

3
8
,6

0
9
,0

0
2

1
,2

0
6
,6

2
5

7
.1

3

8
4

9
0

4
,8

1
0

1
,8

6
1
,8

2
2

0
.4

9
8

4
1
,9

7
8
,4

0
8

1
,8

3
5
,3

4
0

1
.0

8

8
5

1
,1

5
6
,8

2
8

1
,8

6
4
,4

9
6

0
.6

2
8

5
2
,7

1
8
,4

9
6

1
,6

2
0
,1

5
0

1
.6

8

8
6

1
9

1
,4

9
6

1
,8

3
1
,6

8
0

0
.1

0
8

6
6

6
7
,0

5
6

1
,5

2
2
,2

2
4

0
.4

4

8
7

6
4

6
,5

6
0

1
,5

1
7
,7

6
0

0
.4

3
8

7
8

9
2
,8

0
0

1
,1

0
0
,8

8
0

0
.8

1

1
0

2
4
,2

3
1
,4

6
4
,8

6
0

5
1

2
,0

0
2
,3

1
6

8
.2

6
1

0
2

5
,6

7
1
,2

2
8
,6

1
8

3
8

4
,8

1
6
,4

4
4

1
4

.7
4

1
0

3
1
,7

1
3
,7

4
3
,5

0
7

6
0

5
,4

8
6
,5

7
8

2
.8

3
1

0
3

3
,8

1
1
,0

5
3
,6

8
7

4
5

1
,9

7
7
,6

8
7

8
.4

3

1
0

4
2

9
5
,3

9
7
,1

7
8

6
8

0
,0

6
7
,4

7
9

0
.4

3
1

0
4

1
,1

3
4
,8

3
9
,1

6
7

6
0

2
,1

4
4
,2

6
0

1
.8

8

1
0

5
2

9
7
,6

9
7
,5

0
0

6
6

0
,1

1
3
,5

6
2

0
.4

5
1

0
5

8
2

4
,9

5
7
,4

6
0

6
2

5
,1

1
4
,2

4
9

1
.3

2

1
0

6
4

3
,1

6
2
,6

2
4

6
6

5
,0

2
6
,7

3
6

0
.0

6
1

0
6

2
0

3
,1

6
8
,2

8
2

6
6

9
,1

6
0
,8

3
8

0
.3

0

1
0

7
1

0
4
,0

0
5
,5

1
2

7
6

5
,1

9
0
,6

3
2

0
.1

4
1

0
7

5
1

3
,6

3
9
,9

1
2

5
5

7
,6

9
5
,8

4
8

0
.9

2

1
0

8
7

9
,6

0
2
,4

8
0

6
1

4
,2

5
5
,0

4
0

0
.1

3
1

0
8

2
5

2
,6

8
5
,4

4
0

4
7

4
,1

7
6
,1

6
0

0
.5

3

1
0

9
1

1
4
,5

8
9
,4

4
0

4
8

6
,8

6
4
,0

0
0

0
.2

4
1

0
9

2
4

9
,2

1
7
,9

2
0

3
4

1
,1

0
7
,2

0
0

0
.7

3

123

Prequential AUC: properties of the area under the ROC curve 549

Table 8 Degree of discriminancy compared to batch-calculated AUC for imbalanced datasets (14% minority

class)

n d A(a) < A(b) &

p A(a) = p A(b)

A(a) = A(b) &

p A(a) < p A(b)

D n d A(a) < A(b) &

bA(a) = bA(b)

A(a) = A(b) &

bA(a) < bA(b)

D

(a) Prequential AUC (b) Block-based AUC

4 2 40 0 ∞ 4 2 44 0 ∞

4 3 24 0 ∞ 4 3 24 0 ∞

6 2 3072 0 ∞ 6 2 3920 0 ∞

6 3 1492 0 ∞ 6 3 2004 0 ∞

6 4 1012 0 ∞ 6 4 1590 0 ∞

6 5 720 0 ∞ 6 5 720 0 ∞

8 2 330,624 0 ∞ 8 2 486,240 0 ∞

8 3 142,160 0 ∞ 8 3 242,400 0 ∞

8 4 95,696 0 ∞ 8 4 149,128 0 ∞

8 5 72,616 0 ∞ 8 5 127,472 0 ∞

8 6 53,760 0 ∞ 8 6 89,280 0 ∞

8 7 40,320 0 ∞ 8 7 40,320 0 ∞

10 2 48,867,840 0 ∞ 10 2 70,413,120 0 ∞

10 3 20,498,976 0 ∞ 10 3 41,840,304 0 ∞

10 4 12,365,520 0 ∞ 10 4 24,038,688 0 ∞

10 5 9,097,392 0 ∞ 10 5 15,670,512 0 ∞

10 6 7,406,232 0 ∞ 10 6 7,733,520 0 ∞

10 7 6,048,480 0 ∞ 10 7 11,146,704 0 ∞

10 8 4,339,440 0 ∞ 10 8 7,896,240 0 ∞

10 9 3,628,800 0 ∞ 10 9 3,628,800 0 ∞

-1

-0.5

 0

 0.5

 1 2

 3

 4

 5

 6

 7

 8

 9

 0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

8000000000

Estimation difference

Estimation difference

Window size

W
in

d
o

w
 s

iz
e

(a) (b)

Fig. 5 Differences between prequential and batch AUC for different window sizes on the largest balanced

dataset (50% examples of both classes). a Three-dimensional plot. b Two-dimensional top view

As Fig. 5 shows, most prequential estimates of AUC are very close to AUC calculated

on the entire dataset. As it was observed for all three class imbalance ratios, one can notice

single points above the bell curve directly above the zero difference value. This showcases

that the most common difference between batch and prequential AUC is zero. This is not

123

550 D. Brzezinski, J. Stefanowski

-1

-0.5

 0

 0.5

 1 2

 3

 4

 5

 6

 7

 8

 9

 0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

8000000000

Estimation difference

Estimation difference

Window size

W
in

d
o

w
 s

iz
e

(a) (b)

Fig. 6 Differences between block and batch AUC for different window sizes on the largest balanced dataset

(50% examples of both classes). a Three-dimensional plot. b Two-dimensional top view

so obvious for block-based estimates, presented in Fig. 6. When compared with prequential

AUC, block estimates have much “wider” bell curves without such strong peaks around zero.

Looking at the two-dimensional plots, it is worth noticing that for small window sizes

(small compared to the class imbalance ratio) prequential AUC gives a more optimistic

estimate compared to batch AUC. This issue is related to that of lower discriminancy for

small windows or high class imbalance ratios (plots for the 14% minority class dataset have

much fewer distinct points2). When there are no positive examples in the window, AUC for

that window is equal to 1, which can lead to overestimating AUC over time. However, as the

plots show, larger windows clearly mitigate this problem. The two-dimensional plots also

show that, compared to prequential computation, block-based calculations are more prone to

over- and under-estimation of AUC.

4.2.4 Summary of results

The above analyses have shown that prequential AUC averaged over time is highly consistent

and comparably discriminant to AUC calculated on the entire stream. We have also seen that

the absolute difference between these two measures is small for most example orderings.

Furthermore, we have noticed that the window size used for prequential calculation should

be large enough to contain a sufficient number of positive examples at all time, to avoid

overly optimistic AUC estimates and, as an effect, low discriminancy. Finally, prequential

AUC proved to be more consistent, more discriminant, and closer in terms of absolute values

to batch AUC than block-calculated AUC.

5 Processing speed, parameter sensitivity, and classifier evaluation

In this section, we experimentally evaluate prequential AUC on real and synthetic data

streams. The proposed measure is first analyzed in terms of its processing time and compared

with the Kappa statistic (κ) [2]. Next, we check the sensitivity of the proposed measure with

respect to the window size d . Finally, we conduct experiments that compare how prequential

AUC, accuracy, recall, G-mean, κ , and κm [4] evaluate classifiers on imbalanced data streams

with various types of drift.

123

Prequential AUC: properties of the area under the ROC curve 551

5.1 Experimental setup

For experiments comparing prequential AUC with other evaluation measures, we used six

commonly analyzed data stream classifiers [11,14,20]:

– Naive Bayes (NB),

– Hoeffding Tree (HT),

– Hoeffding Tree with ADWIN (HTADWIN),

– Online Bagging (Bag),

– Accuracy Updated Ensemble (AUE),

– Selectively Recursive Approach (SERA).

Naive Bayes was chosen as a probabilistic classifier without any forgetting mechanism.

The Hoeffding Tree was selected as a single stream classifier without (HT) and with a drift

detector (HTADWIN). The last three algorithms are ensemble classifiers representing: an online

approach (Bag), a block-based approach with forgetting (AUE), and a dynamic block-based

oversampling method designed for imbalanced streams (SERA).

All the algorithms and evaluation methods were implemented in Java as part of the MOA

framework [3]. The experiments were conducted on a machine equipped with a dual-core

Intel i7-2640M CPU, 2.8 GHz processor and 16 GB of RAM. For all the ensemble methods

(Bag, AUE, SERA) we used 10 Hoeffding Trees as base learners, each with a grace period

nmin = 100, split confidence δ = 0.01, and tie-threshold ψ = 0.05 [20]. AUE and SERA

were set to create new components every d = 1000 examples.

5.2 Datasets

In experiments comparing prequential AUC with accuracy, recall, G-mean, and the Kappa

statistic, we used 4 real and 13 synthetic datasets.3 For the real-world datasets we chose

four data streams which are commonly used as benchmarks [8,25,34,43]. More precisely,

we chose Airlines (Air) and Electricity (Elec) as examples of fairly balanced

datasets, and KDDCup and PAKDD as examples of moderately imbalanced datasets. It is

worth noting that we used the smaller version of the KDDCup dataset and transformed it into

a binary classification problem, by combining every class other than “NORMAL” into one

“ATTACK” class.

Synthetic datasets were created using custom stream generators prepared for this study.

The Ratio datasets are designed to test classifier performance under different imbalance

ratios without drift. Examples from the minority class create a five-dimensional sphere,

whereas majority class examples are uniformly distributed outside that sphere. The Dis

datasets are created in a similar manner, but the minority class is fragmented into spherical

subclusters (playing the role of small disjuncts [32]). Datasets Dis2, Dis3, Dis5 have 2, 3,

and 5 clusters, respectively. In the AppDis datasets, every stream begins with a single well-

defined cluster, and additional clusters are added as the stream progresses. New disjuncts

appear suddenly in negative class space after 40 k (AppDis2,3,5), 50 k (AppDis3,5), 60 and

70 k (AppDis5) examples. In static data mining, the problem of small disjuncts is known to

be more problematic than class imbalance per se [32], however, to the best of our knowledge

this issue has not been analyzed in stream classification. Datasets MinMaj, GradualRC,

SuddenRC contain class ratio changes over time. In MinMaj the negative class abruptly

becomes the minority; such a virtual drift relates to a problem recently discussed in [46].

3 Source code, datasets, stream generators, and test scripts are available at: http://www.cs.put.poznan.pl/

dbrzezinski/software.php.

123

http://www.cs.put.poznan.pl/dbrzezinski/software.php
http://www.cs.put.poznan.pl/dbrzezinski/software.php

552 D. Brzezinski, J. Stefanowski

Table 9 Characteristic of datasets

Dataset No. of inst (k) #Attrs Class ratio Noise (%) No. of drifts Drift type

Ratio5050 100 5 1:1 0 0 None

Ratio1090 100 5 1:9 0 0 None

Ratio0595 100 5 1:19 0 0 None

Ratio0199 100 5 1:99 0 0 None

Dis2 100 5 1:9 0 0 None

Dis3 100 5 1:9 0 0 None

Dis5 100 5 1:9 0 0 None

AppDis2 100 5 1:9 0 1 Sudden

AppDis3 100 5 1:9 0 2 Sudden

AppDis5 100 5 1:9 0 4 Sudden

MinMaj 100 5 1:19/19:1 0 1 Sud. virt.

GradualRC 100 3 1:1 → 1:100 5 1 Grad. virt.

SuddenRC 100 3 1:1/1:100/1:10/1:1 10 3 Rec. virt.

Air 539 7 ∼24:30 – – Unknown

Elec 45 8 ∼19:26 – – Unknown

KDDCup 494 41 ∼1:4 – – Unknown

PAKDD 50 30 ∼1:4 – – Unknown

RBF20k 20 20 1:1 0 0 None

RBF20kSD 20 20 1:1 0 1 Sudden

SuddenRC was created using a modified version of the SEA generator [42] and contained

three sudden class ratio changes (1:1/1:100/1:10/1:1) appearing every 25 k examples. Analo-

gously, GradualRC uses a modified Hyperplane generator [45] and simulates a continuous

ratio change from 1:1 to 1:100 throughout the entire stream. We note that Ratio, Dis,

AppDis, and MinMaj are unevenly imbalanced, i.e., for a class ratio of 1:99 a positive

example can occur less (or more) frequently than every 100 examples.

Additionally, two small data streams created using the RBF generator [3] (RBF20k ,

RBF20kSD) were used to showcase the evaluation speed of prequential AUC. The charac-

teristics of all the datasets are given in Table 9.

5.3 Prequential AUC evaluation time

Some researchers have argued that AUC is too computationally expensive to be used for

evaluating data stream classifiers. In particular, the inability to calculate AUC efficiently made

authors suggest, for example, that “the Kappa statistic is more appropriate for data streams

than a measure such as the area under the ROC curve” [2]. Therefore, to verify whether AUC

calculated prequentially overcomes these limitations, we compare its processing time with

that of the Kappa statistic. We have already noted in Sect. 3 that the time required per example

to calculate prequential AUC is constant; however, we want to also calculate evaluation time

on a concrete data stream.

We examine the average evaluation time required per example for two small data streams:

one without drift (RBF20k) and one with a single sudden drift (RBF20kSD). We use the MOA

framework to compare the time required to evaluate a single Hoeffding Tree using both

123

Prequential AUC: properties of the area under the ROC curve 553

Table 10 Evaluation time per example (ms) using prequential AUC and κ on a window of d = 1000 examples

(averaged over 10 runs ± standard deviation)

Prequential AUC Prequential κ

RBF20k 7.230 ± 0.158 7.189 ± 0.246

RBF20kSD 7.344 ± 0.519 7.287 ± 0.243

measures.4 The calculation of the measures does not depend on the number of attributes,

and therefore, we evaluate their running time only on two datasets averaged over ten runs.

Table 10 presents evaluation time per example using prequential AUC and prequential Kappa

(κ) on a window of d = 1000 examples (an identical window size was used in [2]).

As results in Table 10 show, evaluation using prequential AUC is only slightly slower than

using the Kappa statistic on both datasets. The difference is very small and proportionally

AUC is 0.57% slower for RBF20k and 0.79% for RBF20kSD. This difference could be larger

for a larger window size; however, due to the properties of red-black trees, it would grow

logarithmically. It is also worth noting that in these experiments, the difference between

prequential AUC and the Kappa statistic may be obscured by the time required to train and

test the classifier. However, this only shows that the evaluation time for both measures is

comparably small even when related to the classification time of a single Hoeffding Tree.

As the described experiments show, prequential AUC offers similar evaluation time com-

pared to the Kappa statistic for a window size of d = 1000 examples. Furthermore, this

difference can grow only logarithmically for larger window sizes. Thus, prequential AUC

should not be deemed too computationally expensive for evaluating data stream classifiers.

This stands in contrast to AUC calculated on entire streams and is one of the key features

making prequential AUC applicable to real-world data streams.

5.4 Parameter sensitivity

In many data stream mining algorithms, the sliding window size is a parameter which strongly

influences the performance of the algorithm [20,45]. Therefore, we decided to verify the

impact of using different window sizes d for calculating prequential AUC. Table 11 presents

the average prequential AUC of a Hoeffding Tree on different datasets while using d ∈

[100; 5000].

Additionally, in Fig. 7 we present a box plot summarizing the differences in averaged

AUC estimates for different window sizes. The plot was created by, first calculating average

prequential AUC on each dataset over all window sizes, and later calculating and plotting the

differences between the general mean and the value obtained for a certain d . For example,

for the KDDCup dataset the mean value of average prequential AUC for all window sizes

d ∈ [100; 5000] is 0.994. Therefore, the deviation for d = 100, where prequential AUC for

KDDCup equals 0.997, is: 0.997−0.994
0.994

× 100% ≈ 0.3%.

Analyzing values in Table 11, one can see that differences in each row are very small. The

box plot in Fig. 7 confirms this observation and shows that all but one value are within 3%

from the mean value on each dataset. The biggest deviations were obtained for window sizes

d ∈ {100, 200} on Ratio0199 and PAKDD datasets. PAKDD is the hardest of the analyzed

datasets and requires larger windows for better AUC estimates. Ratio0199, on the other

4 Originally, MOA calculates several evaluation metrics per example, and therefore, we created two separate

evaluation functions which calculate only prequential AUC and prequential Kappa, respectively.

123

554 D. Brzezinski, J. Stefanowski

Table 11 Average prequential AUC of a Hoeffding Tree using different window sizes d

100 250 500 750 1000 2000 3000 4000 5000 Mean

Ratio5050 0.982 0.983 0.983 0.984 0.984 0.984 0.984 0.984 0.984 0.984

Ratio1090 0.987 0.987 0.987 0.987 0.986 0.986 0.986 0.986 0.986 0.986

Ratio0595 0.988 0.987 0.987 0.987 0.987 0.986 0.986 0.986 0.986 0.987

Ratio0199 0.949 0.929 0.928 0.931 0.932 0.934 0.934 0.933 0.932 0.934

Dis2 0.965 0.965 0.965 0.965 0.965 0.964 0.964 0.964 0.963 0.964

Dis3 0.966 0.966 0.966 0.966 0.965 0.965 0.964 0.964 0.963 0.965

Dis5 0.965 0.964 0.964 0.964 0.964 0.964 0.964 0.963 0.963 0.964

AppDis2 0.985 0.985 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984

AppDis3 0.982 0.982 0.982 0.982 0.982 0.981 0.981 0.981 0.981 0.982

AppDis5 0.980 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981

MinMaj 0.986 0.985 0.985 0.984 0.985 0.984 0.984 0.984 0.984 0.985

GradualRC 0.537 0.530 0.541 0.541 0.545 0.550 0.554 0.557 0.560 0.546

SuddenRC 0.748 0.751 0.751 0.753 0.753 0.754 0.755 0.756 0.756 0.753

Air 0.651 0.652 0.652 0.653 0.653 0.655 0.657 0.659 0.660 0.655

Elec 0.871 0.864 0.860 0.857 0.856 0.855 0.856 0.856 0.857 0.859

KDDCup 0.997 0.996 0.994 0.994 0.994 0.994 0.993 0.992 0.992 0.994

PAKDD 0.544 0.563 0.573 0.577 0.579 0.584 0.585 0.586 0.586 0.575

The average was calculated based on samples gathered every 100 examples

Fig. 7 Box plot of average prequential AUC for window sizes d ∈ [100; 5000]. The depicted values are the

percentage deviation from the mean on each dataset

hand, is highly skewed and unevenly imbalanced, therefore, in parts of the stream minority

examples appear less often than 100 or 200 examples (the largest positive class “gap” in this

dataset is 700 examples). It is worth noting that this observation is in accordance with the

123

Prequential AUC: properties of the area under the ROC curve 555

Table 12 Average prequential performance values for Naive Bayes (NB) and Online Bagging (Bag)

NB Bag

Acc. AUC Gµ κ κm Rec. Acc. AUC Gµ κ κm Rec.

Ratio5050 0.95 0.98 0.95 0.91 0.91 0.99 0.98 0.99 0.98 0.96 0.96 1.00

Ratio1090 0.95 0.98 0.84 0.73 0.54 0.72 0.97 0.99 0.95 0.84 0.70 0.94

Ratio0595 0.96 0.98 0.68 0.54 0.28 0.46 0.98 0.99 0.81 0.71 0.51 0.68

Ratio0199 0.99 0.98 0.12 0.07 0.01 0.04 0.99 0.98 0.00 0.00 −0.02 0.00

Dis2 0.92 0.95 0.56 0.41 0.22 0.32 0.94 0.97 0.72 0.59 0.39 0.56

Dis3 0.92 0.96 0.53 0.38 0.21 0.28 0.94 0.98 0.75 0.63 0.45 0.59

Dis5 0.92 0.96 0.51 0.37 0.21 0.26 0.95 0.98 0.75 0.64 0.45 0.59

AppDis2 0.94 0.94 0.76 0.63 0.43 0.60 0.97 0.99 0.91 0.82 0.68 0.84

AppDis3 0.94 0.94 0.73 0.60 0.41 0.58 0.97 0.99 0.90 0.81 0.68 0.82

AppDis5 0.94 0.95 0.74 0.62 0.45 0.60 0.97 0.99 0.90 0.83 0.71 0.83

MinMaj 0.95 0.98 0.80 0.60 0.05 0.69 0.98 0.99 0.85 0.80 0.69 0.77

GradualRC 0.93 0.67 0.25 0.16 0.47 0.12 0.93 0.66 0.33 0.20 0.48 0.14

SuddenRC 0.81 0.71 0.48 0.33 0.40 0.50 0.88 0.77 0.64 0.51 0.64 0.53

Air 0.65 0.66 0.54 0.20 0.02 0.37 0.65 0.66 0.56 0.22 0.03 0.39

Elec 0.73 0.78 0.61 0.40 0.37 0.91 0.82 0.91 0.80 0.63 0.58 0.86

KDDCup 0.98 0.98 0.74 0.28 0.40 0.94 1.00 1.00 0.87 0.51 0.95 0.99

PAKDD 0.54 0.64 0.51 0.11 −1.32 0.64 0.80 0.62 0.00 0.00 0.00 0.00

analysis performed in Sect. 4, where we noted that the window size should be large enough

to incorporate at least one positive example at all times. In terms of other dependencies upon

d , as discussed in previous sections the memory required to calculate AUC grows linearly to

d , whereas the processing time for single example grows logarithmically with respect to d .

Due to the small dependency upon d in terms of AUC estimation, in the remaining exper-

iments we decided to use d = 1000 as a value with low variance, relatively low time and

memory consumption, and one that was often proposed in other studies [2,21,45]. However,

as the presented results show, using any window size from the analyzed range would yield

very similar results.

5.5 Comparison of imbalanced stream evaluation measures

We experimentally compared classifier evaluations performed using prequentially calculated

accuracy (Acc.), AUC, G-mean (Gµ), Cohen’s Kappa (κ), Kappa M (κm), and positive class

recall (Rec.). For this purpose we tested six classifiers: NB, Bag, HT, HTADWIN, AUE, and

SERA. The results were obtained using a sliding window of d = 1000 examples [2,21] and

by sampling performance values every 100 examples. Tables 12, 13 and 14 present average

results for all six measures.

Comparing performance values on all datasets, one can notice that all classifiers showcase

high accuracy. This is caused mainly by the fact that practically all datasets are highly

imbalanced and even a simple majority stub would yield high accuracies. The remaining five

measures are better at differentiating classifier performance and showcasing difficulties in

the datasets.

123

556 D. Brzezinski, J. Stefanowski

Table 13 Average prequential performance values for a Hoeffding Tree without (HT) and with a drift detector

(HTADWIN)

HT HTADWIN

Acc. AUC Gµ κ κm Rec. Acc. AUC Gµ κ κm Rec.

Ratio5050 0.97 0.98 0.97 0.95 0.95 1.00 0.98 0.99 0.98 0.96 0.95 1.00

Ratio1090 0.97 0.99 0.94 0.83 0.68 0.92 0.97 0.99 0.95 0.83 0.68 0.93

Ratio0595 0.97 0.99 0.83 0.71 0.49 0.71 0.97 0.98 0.84 0.70 0.46 0.73

Ratio0199 0.99 0.93 0.04 0.02 −0.02 0.01 0.99 0.93 0.04 0.02 −0.01 0.01

Dis2 0.93 0.96 0.73 0.58 0.34 0.57 0.93 0.96 0.74 0.58 0.33 0.59

Dis3 0.94 0.97 0.74 0.60 0.39 0.57 0.94 0.96 0.77 0.63 0.41 0.63

Dis5 0.94 0.96 0.74 0.61 0.39 0.57 0.94 0.97 0.77 0.63 0.40 0.63

AppDis2 0.97 0.98 0.91 0.81 0.65 0.84 0.97 0.98 0.91 0.81 0.65 0.86

AppDis3 0.96 0.98 0.89 0.80 0.65 0.82 0.97 0.98 0.92 0.82 0.67 0.86

AppDis5 0.97 0.98 0.90 0.82 0.69 0.83 0.96 0.98 0.88 0.79 0.65 0.79

MinMaj 0.98 0.98 0.87 0.80 0.68 0.79 0.98 0.98 0.87 0.80 0.66 0.82

GradualRC 0.93 0.63 0.36 0.22 0.48 0.16 0.93 0.63 0.37 0.22 0.48 0.17

SuddenRC 0.88 0.75 0.64 0.51 0.63 0.53 0.88 0.75 0.65 0.52 0.64 0.54

Air 0.65 0.65 0.56 0.22 0.04 0.39 0.64 0.61 0.54 0.18 0.00 0.44

Elec 0.79 0.86 0.77 0.56 0.51 0.83 0.83 0.87 0.81 0.65 0.61 0.89

KDDCup 1.00 0.99 0.91 0.50 0.92 0.99 1.00 0.99 0.80 0.46 0.89 0.99

PAKDD 0.80 0.58 0.05 0.00 −0.01 0.01 0.80 0.59 0.04 0.00 −0.01 0.01

Table 14 Average prequential performance values for AUE and SERA

AUE SERA

Acc. AUC Gµ κ κm Rec. Acc. AUC Gµ κ κm Rec.

Ratio5050 0.97 0.99 0.97 0.95 0.94 0.98 0.98 0.99 0.97 0.95 0.95 0.98

Ratio1090 0.97 0.99 0.92 0.85 0.75 0.90 0.98 0.99 0.95 0.89 0.80 0.93

Ratio0595 0.98 0.98 0.78 0.69 0.52 0.66 0.98 0.99 0.91 0.82 0.68 0.85

Ratio0199 0.99 0.97 0.00 0.00 −0.02 0.00 0.99 0.98 0.41 0.36 0.23 0.28

Dis2 0.96 0.98 0.80 0.71 0.59 0.70 0.98 0.99 0.92 0.85 0.75 0.89

Dis3 0.96 0.98 0.80 0.72 0.59 0.70 0.97 0.98 0.91 0.84 0.75 0.87

Dis5 0.95 0.97 0.74 0.65 0.51 0.61 0.97 0.98 0.90 0.83 0.72 0.85

AppDis2 0.97 0.98 0.89 0.82 0.72 0.83 0.97 0.98 0.90 0.83 0.73 0.84

AppDis3 0.97 0.98 0.87 0.81 0.70 0.81 0.97 0.98 0.88 0.81 0.70 0.80

AppDis5 0.97 0.98 0.87 0.81 0.71 0.80 0.97 0.98 0.85 0.79 0.68 0.75

MinMaj 0.98 0.98 0.81 0.76 0.65 0.74 0.98 0.99 0.93 0.81 0.62 0.89

GradualRC 0.92 0.64 0.17 0.09 0.43 0.07 0.93 0.65 0.46 0.33 0.52 0.24

SuddenRC 0.87 0.76 0.64 0.51 0.61 0.54 0.87 0.76 0.65 0.52 0.62 0.55

Air 0.67 0.67 0.55 0.23 0.08 0.44 0.61 0.61 0.55 0.16 −0.07 0.42

Elec 0.76 0.82 0.71 0.49 0.42 0.81 0.75 0.82 0.69 0.46 0.40 0.81

KDDCup 0.87 0.96 0.38 0.11 −15.83 0.43 0.99 0.99 0.81 0.57 −0.06 0.97

PAKDD 0.80 0.62 0.01 0.00 0.00 0.00 0.80 0.64 0.14 0.03 0.00 0.03

123

Prequential AUC: properties of the area under the ROC curve 557

Table 15 Average algorithm

ranks in the Friedman test
NB Bag HT HTADWIN AUE SERA

Accuracy 5.47 2.47 3.59 3.88 3.06 2.53

AUC 4.88 1.59 3.76 4.29 3.82 2.65

G-mean 5.35 3.21 3.12 2.53 4.38 2.41

Kappa 5.24 3.06 3.76 3.24 3.71 2.00

Kappa M 5.41 2.41 3.88 4.00 2.76 2.53

Recall 4.94 3.38 3.35 2.41 4.32 2.59
Best rank marked in bold

Another observation worth noting is that G-mean, κ , κm, and recall show similar values

for consecutive datasets. For example, with growing class imbalance between the Ratio

datasets (from 1:1 to 1:99), values of all four aforementioned measures systematically drop.

AUC, on the other hand, performs differently. This is the result of AUC being a measure

that assesses the ranking capabilities of a classifier. On datasets where the classifiers rank

most examples correctly (Ratio, Dis, AppDis, MinMaj) AUC reports values similar to

accuracy. On the other hand, on datasets where the classifiers are unable to correctly rank

examples (GradualRC, SuddenRC, PAKDD) AUC values are lower than accuracy. This

phenomenon is known from static data mining, where it was reported that AUC and accuracy

are consistent measures, with AUC being more discriminating on some datasets [30].

To obtain a broader view of how each of the analyzed measures assessed the classifiers, we

performed a Friedman test with Nemenyi post-hoc analysis [12]. The resulting mean ranks

are presented in Table 15, whereas critical distance plots are available in Appendix B in the

supplementary materials.

The null hypothesis that all the classifiers perform similarly was rejected for each measure

with p < 0.001. Results based on G-mean and κ showcase SERA as the best classifier. Sim-

ilarly, SERA is second best according to accuracy, AUC, κm, and recall, outperformed only

three times by Bag and HTADWIN, respectively. Indeed, SERA is the only tested algorithm

designed specifically for imbalanced streams, one which oversamples positive examples from

previous data chunks. However, Figure S5 in the supplementary materials shows that groups

of classifiers which are not significantly different (at α = 0.05) are distinct for each measure.

We can see that AUE is ranked fairly high according to accuracy and κm, but no so according

to the remaining measures. We also note that HTADWIN, which is the only algorithm with

active drift detection, achieved highest mean rank reported using recall, but was ranked much

lower by other measures.

Differences between the analyzed measures were also visible on charts depicting perfor-

mance over time. Figure 8 presents selected plots, which best characterize the differences

between all the analyzed measures. We note that the presented line charts were smoothed

with Bezier curves to make the plots less noisy.

Figure 8a, b compares evaluations of HT on a balanced and imbalanced stream. We can see

that the biggest difference involves recall, which changes from almost perfect on the balanced

dataset to the second lowest statistic on the imbalanced one. Moreover, because the concept

generating the examples did not change, rankings produced by classifiers remained similar

and AUC remained at a high level, whereas measures that count crisp misclassifications

changed their absolute values.

Looking at Fig. 8c, one can notice that the Naive Bayes algorithm has difficulties in

adapting to new minority class subclusters that appear after 40 k examples. SERA has a similar

problem because it oversamples positive examples by selecting the most similar ones from

123

558 D. Brzezinski, J. Stefanowski

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Comparison of prequential performance over time (dataset: measure(s)). aRatio5050: HT, all mea-

sures. b Ratio0595: HT, all measures. c AppDis2: Recall. d AppDis2: SERA, all measures. e SuddenRC:

Bag, all measures. f MinMaj: NB, all measures

previous data chunks, which become outdated when the minority class is split. This shows

that recursive oversampling algorithms proposed for data streams could be improved to take

into account appearing subconcepts. Figure 8d additionally exemplifies that an algorithm can

adapt its ranking model fairly quickly (AUC), but due to static decision thresholds requires

more examples to offer better minority class predictions (κ, κm , G-mean, recall). In other

words, according to AUC, SERA recovered from the drift very quickly, but the threshold

converting example scores into crisp classifications ruled out many correct minority class

predictions. Therefore, it would be interesting to consider decision thresholds dynamically

tuned in the event of concept drift.

123

Prequential AUC: properties of the area under the ROC curve 559

Figure 8e shows that all measures except accuracy are capable of depicting sudden

class ratio changes over time. Similar observations were made for gradual ratio changes

(GradualRC). Finally, Fig. 8f shows that accuracy, κ , and κm are sensitive to minority-

majority class swaps. Conversely, recall and G-mean report the improving positive class

predictions, whereas AUC shows that ranking performance, and thus probably the class

boundaries, did not change. Figure 8f constitutes an example of the complementary proper-

ties of the analyzed measures.

6 Conclusions and outlook

In case of static data, AUC is one of the most popular measures for evaluating classifiers,

both on balanced and imbalanced classes. However, due to its computational costs, until

now AUC has not been successfully adapted to data stream mining. To overcome these

limitations, in [9] we proposed an efficient algorithm which calculates AUC with forgetting

on evolving data streams, by using a sorted tree structure with a sliding window. In this paper,

we investigated the basic properties of the resulting evaluation measure, called prequential

AUC, in the context of data stream classification.

Below, we summarize the main findings of this study:

– Prequential AUC was compared with earlier, limited attempts to calculate AUC for data

streams. As a result, prequential AUC was found to give less pessimistic estimations and,

therefore, preferable to batch, incremental, and block AUC estimations for streams with

concept drifts.

– The proposed measure was found to be statistically consistent and comparably discrim-

inant with AUC calculated on stationary data.

– Prequential AUC was also positively evaluated in terms of processing speed. This stands

in contrast to batch-calculated AUC, and is one of the key features making prequential

AUC applicable to real-world streams.

– The window size used for calculating AUC with forgetting was found to have negligible

impact on the resulting AUC estimation.

– We performed a comparative study of prequential accuracy, AUC, Kappa, Kappa M, G-

mean, and recall. On a set of imbalanced data streams with various difficulty factors, the

analyzed measures reacted differently to drifts and showcased characteristic properties

concerning: focus on one or both classes, sensitivity to class ratio changes or minority–

majority class swaps, ranking and crisp classification assessment.

The conclusions drawn in this paper can have important implications in evaluating and

designing data stream classifiers. Prequential AUC can be considered an additional tool for

comparing online learning algorithms on evolving data, especially ranking classifiers. This

can help open new studies, as the topics of ranking or probability calibration have still not be

thoroughly tackled in the context of evolving streams. Furthermore, the adaptation of AUC

for data streams opens questions about the possibility of introducing other ranking measures,

such as the H-measure, or in-depth ROC analysis to data stream mining. Our future studies,

already in progress, will also deal with the impact of additional class imbalance difficulty

factors [38] on stream classifiers. By analyzing ratio changes, small disjuncts, majority class

swaps, borderline examples, rare cases, outliers, and possible drifts between these classes,

we aim to create a complex testbed for algorithms learning from imbalanced streams.

123

560 D. Brzezinski, J. Stefanowski

Acknowledgements The authors would like to thank Maciej Piernik for insightful comments on a draft of

this paper, as well as Tomasz Pewinski and Jan Staniewicz for helping implement part of the experiments. We

also gratefully acknowledge the insightful comments made by the three anonymous reviewers. This research

was funded by the Polish National Science Center under Grant No. DEC-2013/11/B/ST6/00963. Dariusz

Brzezinski acknowledges the support of an FNP START scholarship.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bayer R (1972) Symmetric binary B-trees: data structure and maintenance algorithms. Acta Inf 1:290–306

2. Bifet A, Frank E (2010) Sentiment knowledge discovery in twitter streaming data. In: Proceedings of

13th discovery science international conference. Lecture notes in computer science, vol 6332, pp 1–15

3. Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: massive online analysis. J Mach Learn Res

11:1601–1604

4. Bifet A, Morales GDF, Read J, Holmes G, Pfahringer B (2015) Efficient online evaluation of big data

stream classifiers. In: Proceedings of 21st ACM SIGKDD international conference on knowledge discov-

ery data mining, pp 59–68

5. Bouckaert RR (2006) Efficient AUC learning curve calculation. In: Proceedings of Australian conference

on artificial intelligence. Lecture notes in computer science, vol 4304, pp 181–191

6. Branco P, Torgo L, Ribeiro RP (2016) A survey of predictive modelling under imbalanced distributions.

ACM Comput Surv 49(2):31:1–31:50

7. Brzezinski D, Steafnowski J (2016) Stream classification. In: Sammut C, Webb GI (eds) Encyclopedia

of machine learning. Springer, Berlin. doi:10.1007/978-1-4899-7502-7_908-1

8. Brzezinski D, Stefanowski J (2014) Combining block-based and online methods in learning ensembles

from concept drifting data streams. Inform Sci 265:50–67

9. Brzezinski D, Stefanowski J (2015) Prequential AUC for classifier evaluation and drift detection in

evolving data streams. In: New frontiers in mining complex patterns. Lecture notes in computer science,

vol 8983, pp 87–101

10. Chawla NV (2010) Data mining for imbalanced datasets: an overview. In: Maimon O, Rokach L (eds)

Data mining and knowledge discovery handbook, 2nd edn. Springer, Berlin, pp 875–886

11. Chen S, He H (2009) SERA: selectively recursive approach towards nonstationary imbalanced stream

data mining. In: International joint conference on neural networks. IEEE Computer Society, pp 522–529

12. Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

13. Ditzler G, Polikar R (2013) Incremental learning of concept drift from streaming imbalanced data. IEEE

Trans Knowl Data Eng 25(10):2283–2301

14. Ditzler G, Roveri M, Alippi C, Polikar R (2015) Learning in nonstationary environments: a survey. IEEE

Comp Intell Mag 10(4):12–25

15. Egan JP (1975) Signal detection theory and ROC analysis. Cognition and perception. Academic Press,

London

16. Fawcett T (2001) Using rule sets to maximize ROC performance. In: Proceedings 2001 IEEE international

conference on data mining, pp 131–138

17. Flach PA (2003) The geometry of ROC space: understanding machine learning metrics through ROC

isometrics. In: Proceedings of 20th international conference on machine learning, pp 194–201

18. Flach PA (2010) ROC analysis. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer,

Berlin, pp 869–875

19. Flach PA, Hernández-Orallo J, Ramirez CF (2011) A coherent interpretation of AUC as a measure

of aggregated classification performance. In: Proceedings of 28th international conference on machine

learning. Omnipress, pp 657–664

20. Gama J (2010) Knowledge discovery from data streams. Chapman and Hall, London

21. Gama J, Sebastião R, Rodrigues PP (2013) On evaluating stream learning algorithms. Mach Learn

90(3):317–346

22. Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation.

ACM Comput Surv 46(4):44:1–44:37

123

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/978-1-4899-7502-7_908-1

Prequential AUC: properties of the area under the ROC curve 561

23. Hand DJ (2009) Measuring classifier performance: a coherent alternative to the area under the ROC curve.

Mach Learn 77(1):103–123

24. Hanley JA, Mcneil BJ (1982) The meaning and use of the area under a receiver operating characteristic

(ROC) curve. Radiology 143:29–36

25. Harries M (1999) Splice-2 comparative evaluation: electricity pricing. Technical report, The University

of South Wales

26. He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284

27. He H, Ma Y (eds) (2013) Imbalanced learning: foundations, algorithms, and applications. Wiley-IEEE

Press, London

28. Hoens TR, Chawla NV (2012) Learning in non-stationary environments with class imbalance. In: Pro-

ceedings of 18th ACM SIGKDD international conference on Knowledge discovery data mining, pp

168–176

29. Hu B, Dong W (2014) A study on cost behaviors of binary classification measures in class-imbalanced

problems. CoRR arXiv:1403.7100

30. Huang J, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl

Data Eng 17(3):299–310

31. Japkowicz N, Shah M (2011) Evaluating learning algorithms: a classification perspective. Cambridge

University Press, Cambridge

32. Jo T, Japkowicz N (2004) Class imbalances versus small disjuncts. SIGKDD Explor 6(1):40–49

33. Kirkby R (2007) Improving Hoeffding trees. Ph.D. thesis, Department of Computer Science, University

of Waikato

34. Kosina P, Gama J (2015) Very fast decision rules for classification in data streams. Data Min Knowl

Discov 29(1):168–202

35. Kubat M, Holte RC, Matwin S (1997) Learning when negative examples abound. In: Proceedings of 9th

European conference on machine learning. Lecture notes in computer science, Springer, vol 1224, pp

146–153

36. Lichtenwalter R, Chawla NV (2009) Adaptive methods for classification in arbitrarily imbalanced and

drifting data streams. In: PAKDD Workshops, Lecture Notes in Computer Science, vol 5669, pp 53–75

37. Metz CE (1978) Basic principles of ROC analysis. Semin Nuclear Med 8(4):283–298

38. Napierala K, Stefanowski J (2016) Types of minority class examples and their influence on learning

classifiers from imbalanced data. J Intell Inf Syst 46(3):563–597

39. Philip Dawid A, Vovk VG (1999) Prequential probability: principles and properties. Bernoulli 5(1):125–

162

40. Provost FJ, Domingos P (2003) Tree induction for probability-based ranking. Mach Learn 52(3):199–215

41. Provost FJ, Fawcett T, Kohavi R (1998) The case against accuracy estimation for comparing induction

algorithms. In: Proceedings of 15th international conference on machine learning, pp 445–453

42. Street WN, Kim Y (2001) A streaming ensemble algorithm (SEA) for large-scale classification. In:

Proceedings of 7th ACM SIGKDD international conference on knowledge on discovery data mining, pp

377–382

43. Theeramunkong T, Kijsirikul B, Cercone N, Ho TB (2009) PAKDD data mining competition

44. Wang B, Pineau J (2013) Online ensemble learning for imbalanced data streams. CoRR arXiv:1310.8004

45. Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers.

In: Proceedings of 9th ACM SIGKDD international conference on knowledge discovery on data mining,

pp 226–235

46. Wang S, Minku LL, Yao X (2015) Resampling-based ensemble methods for online class imbalance

learning. IEEE Trans Knowl Data Eng 27(5):1356–1368

47. Wang S, Minku LL, Yao X (2016) Dealing with multiple classes in online class imbalance learning.

In: Proceedings on 25th international joint conference on artificial intelligence. IJCAI/AAAI Press, pp

2118–2124

48. Wu S, Flach PA, Ramirez CF (2007) An improved model selection heuristic for AUC. In: Proceedings of

18th European conference on machine learning. Lecture notes in computer science. Springer, vol 4701,

pp 478–489

49. Zliobaite I, Bifet A, Read J, Pfahringer B, Holmes G (2015) Evaluation methods and decision theory for

classification of streaming data with temporal dependence. Mach Learn 98(3):455–482

50. Zliobaite I, Pechenizkiy M, Gama J (2016) An overview of concept drift applications. In: Japkowicz

N, Stefanowski J (eds) Big data analysis: new algorithms for a new society, studies in big data, vol 16.

Springer, Berlin, pp 91–114

123

http://arxiv.org/abs/1403.7100
http://arxiv.org/abs/1310.8004

562 D. Brzezinski, J. Stefanowski

Dariusz Brzezinski received his M.Sc. and Ph.D. degrees in Computer

Science from Poznan University of Technology, Poland, in 2010 and

2015 respectively. He is currently a research assistant in the Depart-

ment of Data Processing Technologies at Poznan University of Tech-

nology. His research interests include data stream mining, concept drift,

and machine learning applications in structural crystallography.

Jerzy Stefanowski is an Associate Professor in the Institute of Com-

puting Science, Poznan University of Technology. He received the

Ph.D. and Habilitation degrees in computer science from this univer-

sity. His research interests include machine learning, data mining and

intelligent decision support—in particular rule induction, multiple clas-

sifiers, class imbalance, data preprocessing, and handling uncertainty in

data.

123

	Prequential AUC: properties of the area under the ROC curve for data streams with concept drift
	Abstract
	1 Introduction
	2 Related work
	2.1 Stream classifier evaluation
	2.2 Area under the ROC curve

	3 Prequential AUC
	4 Properties of prequential AUC
	4.1 AUC visualizations over time
	4.2 Prequential AUC averaged over entire streams
	4.2.1 Motivation
	4.2.2 Theoretical background
	4.2.3 Simulations
	4.2.4 Summary of results

	5 Processing speed, parameter sensitivity, and classifier evaluation
	5.1 Experimental setup
	5.2 Datasets
	5.3 Prequential AUC evaluation time
	5.4 Parameter sensitivity
	5.5 Comparison of imbalanced stream evaluation measures

	6 Conclusions and outlook
	Acknowledgements
	References

