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Forcaster has to predict, sequentially, a string of uncertain quantities (X1, X 2, . . .), whose values are

determined and revealed, one by one, by Nature. Various criteria may be proposed to assess

Forecaster's empirical performance. The weak prequential principle requires that such a criterion

should depend on Forecaster's behaviour or strategy only through the actual forecasts issued. A wide

variety of appealing criteria are shown to respect this principle. We further show that many such

criteria also obey the strong prequential principle, which requires that, when both Nature and

Forecaster make their choices in accordance with a common joint distribution P for (X 1, X 2, . . .),
certain stochastic properties, underlying and justifying the criterion and inferences based on it, hold

regardless of the detailed speci®cation of P. In order to understand further this compliant behaviour,

we introduce the prequential framework, a game-theoretic basis for probability theory in which it is

impossible to violate the prequential principles, and we describe its connections with classical

probability theory. In this framework, in order to show that some criterion for assessing Forecaster's

empirical performance is valid, we have to exhibit a winning strategy for a third player, Statistician, in

a certain perfect-information game. We demonstrate that many performance criteria can be formulated

and are valid in this framework and, therefore, satisfy both prequential principles.

Keywords: farthingale; forecasting; goodness of ®t; limit theorems of probability theory; martingale;

perfect-information game; strong prequential principle; weak prequential principle

1. Introduction

The prequential approach to statistics (Dawid 1984, 1991, 1992a,b) is based on the idea that

we can judge the quality of an inference method by converting it into a forecasting system

and assessing the empirical success of the sequence of one-step-ahead forecasts that it

implies. In this context, it is natural to impose what we here term the `̀ weak prequential

principle'', which requires that any criterion for assessing the empirical validity of some

Forecaster should depend only on the actual one-step-ahead forecasts that he/she issues, and

the speci®c outcomes chosen by Nature, and not otherwise on Forecaster's strategy. We are

particularly concerned with forecasts which have an interpretation in terms of a (perhaps
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partially speci®ed) probability distribution, expressing Forecaster's uncertainty about the next

observable. Then Forecaster might be thought of as having issued his forecasts in accordance

with some overall joint distribution P for all the observables (X1, X 2, . . .). The weak

prequential principle then asserts the irrelevance of any aspect of P, beyond the sequence of

probability forecasts actually made (which are obtained by conditioning on the actually

realized past outcome values).

When we come to apply such a validity criterion, we typically want to examine stochastic

measures, such as signi®cance levels, which will generally depend on the full speci®cation

of P. However, if all we have observed is the string of forecasts issued by Forecaster, and

the outcomes determined by Nature, we shall not be in a position fully to determine P. The

`̀ strong prequential principle'' requires that the dependence of the stochastic properties of

the criterion on P should vanish, at least asymptotically; when this applies, it licenses

stochastic conclusions on the basis of the realized value of the validity criterion, even in the

absence of full knowledge of P. In particular, meaningful stochastic inferences may then be

made, given only the observed sequences of forecasts and outcomes, and no further

information about P. It is a remarkable fact that many useful inferences do in fact have this

strong property.

In this paper we ®rst illustrate the above considerations for a variety of appealing criteria

and then, in an attempt to understand this behaviour, introduce a new game-theoretic

framework for probability theory, the `̀ prequential framework'', which is particularly suited

to the study of such problems.

Section 2 introduces a variety of forecasting tasks, involving binary or uniformly bounded

continuous variables. In Section 3 we consider several validity criteria, with various

probabilistic motivations, which respect the weak prequential principle, while in Section 4 we

demonstrate that these all respect the strong prequential principle also. Section 6 introduces

the idea of a prequential game, which involves three players: Forecaster, Nature and Statis-

tician. No underlying probabilistic model is required for this. In Section 7 the prequential

framework is used to give de®nitions of, ®rst, `̀ full'' (`̀ almost certain'') events and then

`̀ prequential probability''. It is shown how results justifying the use of our performance

criteria may be derived in this framework, with proofs often parallelling standard proofs of

well-known probabilistic theorems . . . except that now it is not necessary to assume even the

existence of an underlying probability distribution. However, once the prequential result is

obtained, the standard probabilistic result then follows and, because of its prequential

provenance, must hold irrespective of the assumed underlying probability distribution. This

then provides the desired explanation of the good behaviour of the criteria considered.

Two appendices provide sample proofs of required results within the prequential

framework; speci®cally, they are related to the proofs of the strong law of large numbers

and the law of the iterated logarithm.

2. Forecasting tasks

Every forecasting task involves at least two participants: Nature and Forecaster. Successively,

for i � 1, 2, . . . , Nature determines a value xi for some uncertain quantity X i. In this paper
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we shall only consider the simplest cases where X i take values in (i) a two-element set (the

binary case) (we shall always take this set to be f0, 1g) or (ii) a closed interval of the real

line R (we shall always take it to be [ÿ1, 1]). Typical examples are as follows: X i � 1 if the

ith day is rainy and X i � 0 if not (the ®rst case); X i is the maximum temperature on the ith

day (in the second case, to ®t the temperature into the interval [ÿ1, 1] we can take, say,

1000 8C as our unit of measurement).

Just before X i is disclosed by Nature, Forecaster issues a forecast Fi for Xi. This can be

a probability forecast, or something weaker, as the following examples demonstrate.

Example 1. Probability forecasting of binary outcomes. X i takes values in f0, 1g; the

allowed forecasts are Fi � Pi 2 [0, 1] (interpreted as the probability that X i � 1).

Example 2. Mean-value forecasting of continuous outcomes. Xi takes values in [ÿ1, 1]; the

allowed forecasts are Fi � Mi 2 [ÿ1, 1] (interpreted as Forecaster's expected value, at the

time of issuing the forecast, of X i).

Example 3. Mean-value-and-variance forecasting of continuous outcomes. Xi takes values in

[ÿ1, 1]; the allowed forecasts are pairs Fi � (Mi, Di) with Mi 2 [ÿ1, 1] and Di > 0 (with

Mi interpreted as the expected value and Di as the variance, at the time of issuing the

forecast, of X i).

Example 4. Con®dence-interval forecasting of continuous outcomes. X i takes values in

[ÿ1, 1]; the allowed forecasts are pairs Fi � (Li, Ui) such that ÿ1 < Li < Ui < 1, with the

following interpretation: just before X i is disclosed, the odds are at least 99 to 1 that

Xi 2 [Li, Ui].

Example 5. Probability forecasting of continuous outcomes. Xi takes values in [ÿ1, 1]; the

allowed forecasts Fi are arbitrary probability distributions Pi on [ÿ1, 1], with Pi(E),

E � [ÿ1, 1], interpreted as the forecast probability that X i 2 E. A slight variation in this

forecasting task is where Forecaster is required to issue only continuous forecasts Pi (i.e. such

that Pi(fxg) � 0 for any point x 2 [ÿ1, 1]).

3. Weak prequential principle

We wish to consider how good Forecaster is at forecasting Nature's outcomes. In some cases,

each of Forecaster and Nature may use deterministic or stochastic strategies for deciding their

moves (forecasts and outcomes, respectively). In others, these moves may be regarded as

simply produced when required, with no underlying strategy (an example of this might be a

weather forecaster's sequence of daily probabilities of precipitation in the next 24 h). Let f i

be Forecaster's issued value of his forecast Fi for Xi, and xi the realized outcome of X i. (In

general, we denote uncertain quantities by capital letters and the speci®c values that they take

by the corresponding small letters.) The weak prequential principle requires that any criterion

for assessing the `̀ agreement'' between Forecaster and Nature should depend only on the
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actual observed sequences ( f 1, f 2, . . .) and (x1, x2, . . .), and not further on the strategies (if

any) which might have produced these.

3.1. Violations

To clarify ideas, we start by exhibiting two criteria which do not respect the weak prequential

principle.

3.1.1. Marginal probabilities

Suppose that the X i are binary, and that Forecaster uses a forecasting strategy; this is a rule

which determines his probability forecast for X i:

Fi � Pi :� P(X i � 1jX 1, . . . , X iÿ1), (1)

for any i and any values of the previous outcomes (X 1, . . . , X iÿ1). From all these conditional

probabilities we can build up a full joint distribution P over the in®nite sequence (X i) and

conversely, starting from any such distribution P, we can de®ne a strategy for Forecaster by

(1) (at any rate, for outcome sequences which are not assigned zero probability). Thus, we

can regard Forecaster's strategy as equivalent to his using the joint distribution P to model

Nature's outcomes.

For this distribution, let ði denote the marginal probability P(Xi � 1). Then we might

impose, as our agreement criterion, the requirement that

1

n

Xn

i�1

(xi ÿ ði)! 0 (2)

as n!1.

In this case, Forecaster's actually issued one-step-ahead probability forecasts would be

given by

f i � pi :� P(X i � 1jX 1 � x1, . . . , X iÿ1 � xiÿ1), (3)

where x1, x2, . . . are the actual outcomes chosen by Nature. It is clear that, given only the

sequences (xi) and ( pi), but not the underlying distribution P used to construct these forecasts,

it is impossible to determine the marginal probabilities (ði), and this can readily be con®rmed

by constructing different P, having different marginal probabilities (ði), which yield identical

forecasts ( pi) for some data sequence (xi). Consequently the criterion (2) does not depend

only on the observed sequences ( pi) and (xi), but further on the strategy P which Forecaster

uses; it thus violates the weak prequential principle.

3.1.2. Signi®cance level

Consider a problem of probability forecasting of (say) continuous outcomes, where again a

strategy for Forecaster may be expressed in terms of his underlying joint probability model P
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for the (Xi). Let us take a test statistic T, and assess the agreement beteween Forecaster and

Nature by means of the observed signi®cance level

á :� P(T > t), (4)

t being the value of T for the speci®c sequence (xi). Again it is clear that, although quoting

the value t of the test statistic (the `̀ nominal inference'' (Dawid 1983)) would respect the

weak prequential principle, the associated signi®cance level á (the `̀ stochastic inference'')

will typically depend further on P and thus would not do so.

We shall nevertheless see later that, for suitable test statistics, the dependence of á on P

may be asymptotically negligible. Both types of behaviour are exhibited in Example 6

below.

Our further examples will be formulated directly in terms of the sequences of forecasts

and outcomes, so that they will automatically respect the weak prequential principle.

3.2. Probability forecasting of binary outcomes

Let f i � pi be the issued probability of the outcome 1 for the binary variable X i, and xi the

realized value of X i.

3.2.1. Calibration

We might require that

1

n

Xn

i�1

(xi ÿ pi)! 0 (5)

as n!1. This is the `̀ simple calibration requirement'' (Dawid 1982, 1986).

An important generalization of requirement (5) is that we might average, not over all i,

but over some `̀ predictable'' sequence ik ; if (i1, i2, . . .) is an increasing sequence of

predictable ®nite stopping times, we can require that

1

n

Xn

k�1

(xik
ÿ pik

)! 0 (6)

as n!1. We might then regard the ( pi) as being poor probability assessments if (5), or (6)

for a suitable subsequence or subsequences, were to fail. Dawid (1985) showed that two

sequences of forecasts which both satisfy (6) for suf®ciently many subsequences must be

asymptotically equivalent.

3.2.2. Central limit theorem

Another criterion (Seillier-Moiseiwitsch and Dawid 1993) is motivated by the central limit

theorem. Choose a large constant B . 0, and wait until the ®rst n such that
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Xn

i�1

pi(1ÿ pi) > B: (7)

Then we could require that, for this n,

Bÿ1=2
Xn

i�1

(xi ÿ pi) (8)

be `̀ not large'' as judged by the distribution N (0, 1). We could quote, as a measure of

disagreement, the `̀ observed signi®cance level'' obtained by referring (8) to N (0, 1), a small

value counting against the validity of the issued forecasts. Once again, it is possible to apply

such a criterion to predictable sequences ik and further, in this case, to treat values calculated

from disjoint subsequences as independent, thus allowing `̀ omnibus'' reference of a sum of

squares of such values to a ÷2 distribution (Seillier-Moiseiwitsch and Dawid 1993).

3.2.3. Law of the iterated logarithm

Yet another criterion is related to the law of the iterated logarithm. We might require that

either X1
i�1

pi(1ÿ pi) ,1 (9)

or

lim sup
n!1

Xn

i�1

(xi ÿ pi)

�
2
Xn

i�1

pi(1ÿ pi)

( )
ln ln

Xn

i�1

pi(1ÿ pi)

( )" #1=2

� 1: (10)

In other words, we require (10) to hold so long as the denominator of its left-hand side

tends to in®nity, and we would thus reject the validity of the forecasts ( pi) if both (9) and

(10) were to fail. Again, one could extend consideration to predictable subsequences.

3.3. Mean-value forecasting of continuous outcomes

Now let f i � mi be the issued mean-value forecast for the real quantity X i, with realized

value xi.

3.3.1. Strong law of large numbers

For this forecasting task we might require that (in accordance with the strong law of large

numbers)

1

n

Xn

i�1

(xi ÿ mi)! 0 (n!1): (11)
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3.4. Mean-value-and-variance forecasting of continuous outcomes

Now f i � (mi, di). Here natural requirements (in addition to (11)) are the following.

3.4.1. Central limit theorem

Select a large number B . 0, wait until Xn

i�1

di > B

and refer

Bÿ1=2
Xn

i�1

(xi ÿ mi) (12)

to N (0, 1).

3.4.2. Law of the iterated logarithm

Require that either X1
i�1

di ,1 (13)

or

lim sup
n!1

Xn

i�1

(xi ÿ mi)

�
2
Xn

i�1

di

 !
ln ln

Xn

i�1

di

 !( )1=2

� 1: (14)

3.5. Con®dence-interval forecasting of continuous outcomes

If Forecaster claims that just before observing each X i the odds in favour of Xi 2 [Li, Ui] are

at least 99:1, we could require that

lim inf
n!1

1

n

Xn

i�1

I(xi 2 [li, ui]) > 0:99, (15)

where I(E) is de®ned to be 1 if event E happens and 0 if not. We could similarly require that,

for each increasing sequence ik of predictable ®nite stopping times,

lim inf
n!1

1

n

Xn

k�1

I(xi k
2 [li k

, ui k
]) > 0:99: (16)
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3.6. Probability forecasting of continuous outcomes

In the rest of this section, f i � pi is the issued probability distribution for Xi.

3.6.1. Strong law of large numbers

Let Zi, i � 1, 2, . . . , be arbitrary uniformly bounded measurable functions of (X1, . . . , Xi).

Put

zi � Zi(x1, . . . , xi),

mi � EY� pi
Zi(x1, . . . , xiÿ1, Y );

these are the `̀ realized'' values of Zi and of the one-step-ahead expectations of Zi (we

assume that the latter exist). Then require

1

n

Xn

i�1

(zi ÿ mi)! 0 (n!1): (17)

3.6.2. Central limit theorem; law of the iterated logarithm

In a similar way we could also introduce the one-step-ahead variances

di � varY� pi
Zi(x1, . . . , xiÿ1, Y )

and formulate criteria motivated by the central limit theorem and the law of the iterated

logarithm.

3.7. Prequential decision theory

Fix a sequence of loss functions ëi(x, a), x ranging over the outcome space [ÿ1, 1] and a

over some ®xed decision space A . Forecaster's loss at stage i, if he takes decision ai and

Nature then produces xi, is ëi(xi, ai). We assume that the (ëi) are uniformly bounded. For

every possible forecast p (a distribution over [ÿ1, 1]), take Bi( p) to be the Bayes act under

X � p for loss function ëi, i.e.

Bi( p) � arg min
a2A

�
ëi(x, a) p dx

(assuming that this arg min exists). We could consider Bi( p) to be the decision that Forecaster

would take at stage i, if he issues forecast distribution p for X i. We can then assess the

quality of the forecasts ( pi) by the cumulative loss of their implied decisions:Xn

i�1

ëi(xi, Bi( pi)):

We thus might reject ( pi) if some other forecaster is able to issue forecasts (qi) such that
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lim
n!1

Xn

i�1

ëi(xi, Bi( pi))ÿ
Xn

i�1

ëi(xi, Bi(qi))

 !
� 1: (18)

More generally, we might reject the ( pi) if some other decision maker, with the same

information as Forecaster, is able to select actions ai (ai selected before xi is disclosed) such

that

lim
n!1

Xn

i�1

ëi(xi, Bi( pi))ÿ
Xn

i�1

ëi(xi, ai)

 !
� 1: (19)

3.8. Cumulative probability integral transform

Forecaster is now required to assess a probability distribution Pi for real Xi, having

continuous cumulative distribution function. Let pi be the issued distribution. De®ne

ui � probY� pi
(Y < xi). Then we might assess (in various possible ways) the (ui) for

agreement with the hypothesis that they were obtained by random sampling from U [0, 1] (the

uniform probability distribution in [0, 1]). For example, we could formally apply the

Kolmogorov±Smirnov test for uniformity or, as a test for independence, the uniform

conditional test (Cox and Lewis 1966). A wide range of other tests could be similarly

performed.

3.9. Farthingale

Fix a sequence of quantities

Si � Si(P1, X1, . . . , Pi, X i), i � 0, 1, . . . , (20)

such that all Si > 0, S0 � 1, and, for all i > 1, and ®xed P1, X 1, P2, X2, . . . ,

EY�Pi
Si(P1, X1, . . . , Piÿ1, X iÿ1, Pi, Y ) � Siÿ1(P1, X1, . . . , Piÿ1, X iÿ1): (21)

We shall call a sequence satisfying (21) a farthingale. It is similar to a martingale, except

that the distribution used for taking the expectation in (21) is speci®ed internally, rather than

being constructed from an external global distribution for the (Xi).

We can interpret Si as the accumulated capital, after game i, of Gambler playing a

sequence of games against Forecaster, each of which is regarded as fair by Forecaster at the

time it is offered. Gambler starts with £1 and never risks going into debt. If Forecaster is

`̀ successful'' in describing Nature's outcomes, it should not be possible for Gambler to win

an unlimited amount. Accordingly, we might require, as a validity criterion, that the realized

sequence

si � Si( p1, x1, . . . , pi, xi)

be bounded.

As an elaboration, for ®nite as well as in®nite outcome sequences, we might use
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á � (supi si)
ÿ1 as a measure of mismatch between forecasts and outcomes, small values of

á being `̀ signi®cant''.

As a particular case, suppose all pi are required to have positive densities (which will be

denoted by the same symbols). Let Q be some ®xed strategy whereby Gambler produces a

positive density qi for X i after seeing p1, x1, . . . , piÿ1, xiÿ1, pi. Putting S0 � 1 and

Si( p1, x1, . . . , pi, xi) � Siÿ1( p1, x1, . . . , piÿ1, xiÿ1)
qi(xi)

pi(xi)
, i > 1,

where qi is calculated from p1, x1, . . . , piÿ1, xiÿ1, pi, we obtain a farthingale. Actually, we

can obtain all positive farthingales with initial value 1 this way.

Note that, if qi depends only on (x1, . . . , xiÿ1), so that Q can be considered as a joint

distribution for the (Xi), and if Forecaster likewise produces his forecasts ( pi) as appropriate

conditional probabilities from some joint distribution P, then Si is just the likelihood ratio

for testing Q against P on the basis of data (x1, . . . , xi) and thus re¯ects the relative

performance of Gambler's Q as against Forecaster's P. If this likelihood ratio were to tend

to in®nity, then Forecaster should be discredited as being worse at forecasting than Gambler.

Even in our more general context, the intuitive force of this argument continues to apply.

Dawid (1985, Section 13.2) proposed, as an agreement criterion, the boundedness of all

computable farthingales; Vovk (1993a) suggested a non-algorithmic approach similar to that

of this paper. In Sections 6 and 7 below we shall see how the idea underlying the

farthingale can be made the cornerstone of a general approach to probability.

4. Probabilistic behaviour

Some motivation and justi®cation for the criteria introduced in the previous section can be

given, if we are willing to make the assumption that, for some `̀ underlying'' joint distribution

P for (X1, X 2, . . .), Nature simulates her outcome values from P, and Forecaster uses the

same `̀ true'' distribution P to construct his forecasts. In such a case, we should surely regard

Forecaster as doing as well as possible. Under such a model, various stochastic properties can

be derived relating these `̀ ideal'' forecasts to observed outcomes. These describe how our

criteria should behave in such ideal circumstances and can thus be regarded as validating

their use for assessing empirical performance in general.

We assume the usual regularity conditions that ensure the existence of the relevant

regular conditional probabilties.

4.1. Probability forecasting of binary outcomes

If P is the underlying probability distribution, then the `̀ ideal'' probability forecast for the

binary quantity Xi is

Pi � EP(X ijX 1, . . . , X iÿ1): (22)
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By the usual martingale strong law of large numbers (see, for example, Stout (1974, Theorem

3.3.1)), with P probability 1

1

n

Xn

i�1

(X i ÿ Pi)! 0 (23)

(Dawid 1982). This is true no matter what P is and can thus be regarded as a justi®cation for

insisting on the calibration criterion (5) as a necessary requirement for `̀ valid'' forecasts.

Similarly, the stochastic analogue of (6) holds with P probability 1, thus justifying its use.

The martingale central limit theorem of Billingsley (1986, Theorem 35.9) implies that the

random variable

Bÿ1=2
XôB

i�1

(X i ÿ Pi), (24)

where ôB is the smallest n satisfyingXn

i�1

Pi(1ÿ Pi) > B, (25)

should weakly converge to N (0, 1) as B!1, provided thatX1
i�1

Pi(1ÿ Pi) � 1 (26)

with P probability 1.

Without invoking condition (26), which is not quite `̀ prequential'' (it depends on the

behaviour of non-realized forecasts), we can still assert that, for any interval (a, b),

lim inf
B!1

P Bÿ1=2
XôB

i�1

(X i ÿ Pi) 2 (a, b) or ôB � 1
 !

> Ö(b)ÿÖ(a), (27)

where Ö(:) is the standard normal distribution function; the interpretation of
PôB

i�1 for

ôB � 1 is obviously not essential to the meaning of (27). It is easy to see that (27) implies

the weak convergence of (24) to N (0, 1) when (26) holds almost surely. These considerations

then justify the use of criterion (8), judged against a standard normal reference distribution.

The law of the iterated logarithm for the case of binary outcomes asserts that, with P

probability 1, either X1
i�1

Di ,1 (28)

or

lim sup
n!1

Xn

i�1

(X i ÿ Mi)

�
2
Xn

i�1

Di

 !
ln ln

Xn

i�1

Di

 !( )1=2

� 1, (29)
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where Mi � Pi and Di � Pi(1ÿ Pi). This follows from the general result of Stout (1970,

Theorems 1 and 2).

4.2. Mean-value forecasting of continuous outcomes

Here we have, as `̀ ideal mean-value forecast'',

Mi � EP(X ijX 1, . . . , X iÿ1): (30)

By the martingale variant of Kolmogorov's strong law of large numbers (Stout 1974, Theorem

3.3.1), with P probability 1,

1

n

Xn

i�1

(X i ÿ Mi)! 0 (n!1), (31)

which again justi®es the use of criterion (11).

4.3. Mean-value-and-variance forecasting of continuous outcomes

In the context of mean-value-and-variance forecasting of continuous outcomes, we have ideal

forecasts

Mi � EP(XijX 1, . . . , X iÿ1),

Di � varP(XijX1, . . . , X iÿ1):
(32)

For justi®cation of the criteria in Section 3.4, it again suf®ces to refer to the appropriate

central limit theorem (Billingsley 1986), and its prequential variant analogous to (27), and

also to the general law of the iterated logarithm: with P probability 1, either (28) or (29)

holds (Stout 1970).

4.4. Con®dence-interval forecasting of continuous outcomes

Let us assume that Forecaster uses some measurable strategy for selecting (Li, Ui) as a

function of the past outcomes X 1, . . . , X iÿ1. We can interpret an ideal Forecaster's claim that

the odds in favour of Xi 2 [Li, Ui] are at least 99:1 as the following assertion about the

underlying probability distribution P:

P(Xi 2 [Li, Ui]jX 1, . . . , X iÿ1) > 0:99, (33)

for all i. The martingale analogue of Kolmogorov's strong law of large numbers implies that

1

n

Xn

i�1

fI(Xi 2 [Li, Ui])ÿ P(X i 2 [Li, Ui]jX1 . . . , X iÿ1)g ! 0
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with P probability 1, which in its turn implies that

lim inf
n!1

1

n

Xn

i�1

I(X i 2 [LiUi]) > 0:99 (34)

with P probability 1, thus justifying requirement (15). Analogously, the stochastic analogue of

(16) also holds with P probability 1.

4.5. Probability forecasting of continuous outcomes

Now each ideal forecast Pi, i � 1, 2, . . . , is the conditional distribution (under P) of the

random variable X i, given past outcomes:

Pi(E) � P(X i 2 EjX 1, . . . , X iÿ1), (35)

E ranging over the measurable subsets of [ÿ1, 1].

If now Zi, i � 1, 2, . . . , are arbitrary uniformly bounded measurable functions of

(X 1, . . . , X i), and Mi � E(ZijX 1, . . . , X iÿ1), then we again have the strong law of large

numbers:

1

n

Xn

i�1

(Zi ÿ Mi)! 0 (n!1) (36)

with P probability 1; similarly the appropriate central limit theorem and law of the iterated

logarithm are again special cases of the classical results mentioned above.

4.6. Prequential decision theory

Recall that the (ëi) are uniformly bounded. For any predictable sequence (Ai) of actions ((Ai)

being predictable may be interpreted as Ai being chosen by some measurable strategy given

X1, . . . , X iÿ1), Xn

i�1

ëi(Xi, Bi(Pi))ÿ
Xn

i�1

ëi(Xi, Ai)

is, under suitable measurability assumptions, a P supermartingale with bounded increments,

and so, with P probability 1,

lim inf
n!1

Xn

i�1

ëi(X i, Bi(Pi))ÿ
Xn

i�1

ëi(X i, Ai)

 !
,1 (37)

(Shiryayev 1984, Corollary to Theorem VII.5.1). This justi®es rejection of the issued

probability forecasts ( pi) if another decision maker, with the same information, can force

(19).

As a special case of the above, we can require that Ai � Bi(Qi), where Qi is the

probability forecast for Xi derived by Second Forecaster, who calculates his forecasts as
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appropriate conditional probabilities based on some joint distribution Q. In this case we

must have

lim inf
n!1

Xn

i�1

ëi(X i, Bi(Pi))ÿ
Xn

i�1

ëi(X i, Bi(Qi))

 !
,1 (38)

with P probability 1.

4.7. Cumulative probability integral transform

Suppose that the conditional distributions Pi are continuous, and de®ne Ui � U (Pi, Xi),

where U ( p, x) � probY� pfY < xg. Then, under P, the (Ui) are independent random variables

distributed exactly as U [0, 1] (Rosenblatt 1952). This then justi®es, as a criterion of

empirical validity of the forecasts, the application to the (ui) (where ui � U ( pi, xi) is the

realized value of Ui) of any suitable test for this independent uniform distributional model.

4.8. Farthingale

Assuming that all Si are measurable, (Si) is a non-negative martingale under P, and so, for all

c . 1,

Pfsup Si , cg > 1ÿ 1

c
(39)

(this is a special case of Doob's inequality (see, for example, Shiryayev (1984))); this implies

that

PfSi boundedg � 1: (40)

4.9. Marginal probabilities

Finally let us consider the criterion (2), which does not respect the weak prequential

principle. General forms of the strong law of large numbers may be invoked to argue that,

under some conditions on P, we should have, with P probability 1,

1

n

Xn

i�1

(Xi ÿ ði)! 0 (41)

as n!1. However, the generality of such a result is considerably less than in the cases

considered above. For example, if under P the (X i) are modelled as exchangeable, being

independent Bernoulli trials with probability parameter È, where È is an unobserved

quantity with a uniform distribution over [0, 1], then we have ði � 1
2
, but the P-almost sure

limit of (1=n)
Pn

i�1 Xi is the random variable È, rather than the constant 1
2

as would be

required by (41). This stands in contrast with property (23), which does still hold in this

exchangeable case.
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5. Strong prequential principle

It is noteworthy that each of the probabilistic properties listed in Sections 4.1±4.8, which

may be regarded as providing `̀ stochastic justi®cation'' for the corresponding criteria in

Section 3, holds for all P. It is only required that the same joint distribution P should govern

both Nature's (randomized) strategy for determining outcomes, and Forecaster's strategy for

producing probability forecastsÐa requirement that may be regarded as an expression of the

`̀ null hypothesis'' that we do indeed have agreement between Forecaster and Nature. This

robustness is surprising, since the relevant `̀ stochastic inferences'' are constructed using, in a

fundamental way, the distribution P, and thus the strategies of the players; nevertheless, when

those strategies agree, they can be essentially ignored. That is to say, the stochastic inferences

considered above, while seemingly in violation of the weak prequential principle (since they

are de®ned in terms of the strategies used, not just the sequences of outcomes), in fact turn

out to be in accordance with that principle (at least asymptotically). A stochastic inference

with this robustness property, and its associated agreement criterion, will be said to respect

the strong prequential principle.

5.1. Collusion

Another way of expressing the strong prequential principle is as follows. Suppose that Nature,

instead of being oblivious to the choices made by Forecaster, in fact observes them and reacts

appropriately. Speci®cally, if Forecaster has issued a probability forecast Pi for Xi, then

Nature will produce xi by simulating from Pi; if Forecaster gives a mean-and-variance

forecast (Mi, Di) for Xi, Nature will simulate from some distribution with that mean and

variance, etc. Any such strategy for Nature may be called collusive. (There is just one

collusive strategy for probability forecasting, but typically many when the forecasts are less

fully speci®ed.)

If Nature is colluding with Forecaster, she is endeavouring, in so far as is possible, to

bring about agreement between outcomes and forecasts. Hence the `̀ null hypothesis'', to be

addressed by some proposed agreement criterion, may now be formulated as the assertion

that Nature is being collusive, and a stochastic justi®cation for the criterion should be based

on performance under this hypothesis.

However, collusion does not of itself determine a full distribution for the (X i), under

which such performance could be assessed, since Forecaster is still free to choose his

forecasts (Fi) as he desires. Suppose that he in fact does so by using some ®xed

deterministic strategy for constructing Fi in the light of previous outcomes and forecasts,

and suppose that Nature uses a collusive strategy. It is easy to see that this pair of strategies

now determines Nature's joint distribution P for simulating (x1, x2, . . .), and that Forecaster's

forecasts are then consistent with P. Conversely, any common P, underlying both Nature's

and Forecaster's choices, can be interpreted as arising this way. Consequently, the strong

prequential principle may be rephrased as requiring that, so long as Nature plays a collusive

strategy, the desired stochastic inference will be probabilistically justi®ed, no matter what

Forecaster's strategy may be.
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5.2. Super-strong prequential principle

So far we have assumed that the only past information available, to both Nature and

Forecaster, is the set of previous forecasts and outcomes. More generally, we could allow both

players to have access to (the same) additional information, e.g. temperature information

when forecasting rain. This set-up can be formally expressed in terms of a ®ltered space

(Ù, F , (F i)), with the outcome sequence X i being adapted and the forecast sequence Fi

being predictable. We consider a probability distribution P de®ned on (Ù, F ). At every stage

i, Forecaster issues his forecast for Xi in accordance with the relevant conditional distribution

P(:jF iÿ1) given all observed past information, and Nature simulates Xi from the same

distribution. All the results of Sections 4.1±4.8 can be easily extended to this more general

setting, with the proofs essentially unchanged.

We could further strengthen the strong prequential principle to require validity of

stochastic inferences in this more general setting (still requiring that Nature and Forecaster

use the same, otherwise arbitrary, underlying distribution P or, equivalently, that Forecaster

use any P, while Nature operates a collusive strategy). This we shall term the super-strong

prequential principle.

An application of the above general framework (wherein the database is extended to

include the results of extraneous randomization) allows Forecaster to use a stochastic

strategy which, given past outcomes (x1, . . . , xiÿ1) and forecasts ( f 1, . . . , f iÿ1), determines,

not a ®xed forecast Fi, but rather a distribution Ði for Fi. After observing past outcomes

and forecasts, Forecaster ®rst randomly generates Fi from Ði, and then Nature, playing a

collusive strategy, randomly generates X i in accordance with Fi. The super-strong

prequential principle requires validity of stochastic inferences in this randomized set-up.

5.3. Counter-example

We see from Section 4 above that all the criteria introduced in Sections 3.2±3.9 satisfy the

strong (indeed, the super-strong) prequential principle.

To clarify ideas, we now exhibit an example for which the strong prequential principle is

violated.

Example 6. Consider a special case of probability forecasting of continuous outcomes. For

simplicity, we shall here relax the technical restriction that the values be con®ned to [ÿ1, 1]

or any other ®nite interval (similar examples could be constructed incorporating this

restriction, or in other contexts we consider, such as probability forecasting of binary

outcomes).

Let us consider as our agreement criterion the observed signi®cance level (4), based on

the statistic T � X n for a ®xed n . 1. Although the actual value of the statistic depends

only on the observed outcomes and is thus in accord with the weak prequential principle,

the signi®cance level explicitly involves the distribution P, i.e. the strategy used by

Forecaster.
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To verify that this does not respect the strong prequential principle, consider two different

strategies for Forecaster, corresponding to the following two joint distributions.

(i) Under P1, the X i are modelled as following a stationary normal autoregressive model:

X 1 � N (0, 4
3
),

X i � N (0:5X iÿ1, 1) (i . 1):

(ii) Under P2, the X i are modelled as independent, each having distribution N (2, 1),

except for X 1 � N (0, 4
3
).

The marginal distribution of X n (n . 1) under P1 is N (0, 4
3
), while under P2 it is N (2, 1).

Suppose that Nature produces data xi � 4, all i. Then, for each i both strategies P1 and

P2 produce the identical sequence of probability forecasts: N (0, 4
3
) for i � 1, and N (2, 1) for

i . 1. If the strong prequential principle were satis®ed, our assessment of agreement with

the data would be the same for both P1 and P2. However, using the criterion above, we ®nd

that á � probfN (0, 1) . 121=2g � 0:00027 for case (i), while á � probfN (0, 1) . 2g �
0:023 for case (ii). Since these differ, although the sequences of outcomes and forecasts do

not, this criterion does not respect the strong prequential principle.

It is interesting to note that, had we used instead the statistic T �Pn
i�1 X i, we would

have obtained asymptotically identical observed signi®cance levels in the two cases above,

even though the null distributions of T are quite different. This can be veri®ed directly. The

reason is that, in each case, this statistic is essentially equivalent to that considered in (12),

and the result then follows as in Section 4.3. This phenomenon extends to general stationary

autoregressive moving-average models. u

Appendix 1 describes a range of plausible agreement criteria, all respecting the weak

prequential principle. Whereas some of them also respect the strong prequential principle,

still others do not.

These counter-examples notwithstanding, we have seen that, perhaps surprisingly, it is

indeed possible to construct numerous appealing inferences and agreement criteria which do

satisfy the strong, as well as the weak, prequential principle. The purpose of the remainder

of this paper is to seek to understand more fully why this should be, and when.

6. Prequential games

The main reason why there are so many inferences satisfying the strong prequential principle

seems to be that these inferences can be expressed within the prequential framework, a new

game-theoretic approach to probability theory which has the weak and strong prequential

principles `built in'. In the prequential framework, each forecasting task is represented as a

perfect-information game (with the goal of the game to be speci®ed) involving, besides

Nature and Forecaster, one more player, Statistician. Statistician plays against the combined

forces of Forecaster and Nature. The role of Statistician will be to demonstrate that our

Prequential probability 141



inferences are valid. We shall discuss what this means in more detail in the next section. Here

we describe the means that Statistician should have to accomplish his task.

We shall use the term `̀ game'' somewhat loosely, often to denote a partially speci®ed

game in which, for example, the rules of play are speci®ed, but not the starting situation or

the criterion for determining who has won. In describing our games, we shall often say that

one player pays some amount to another player. We mean not money but in®nitely divisible

points. We let £n stand for `̀ n points''.

A typical prequential game can be represented as in Figure 1. In addition to the moves

(Fi) of Forecaster and (Xi) of Nature, we have moves (Hi) for Statistician. The players,

playing in the order indicated by the arrows, are allowed to see each other's past moves (the

situation of complete information). The rules of an individual game will determine the

allowable moves for each player. After each stage, when all three players have moved,

Forecaster pays a certain amount, depending on those moves, to Statistician; again, the rules

of a particular game will specify how this amount is to be calculated. Finally, we shall need

a rule for determining who has won the game (this may not be determined until an in®nite

number of stages of the game).

We now describe in more detail some speci®c prequential games relevant for our

purposes.

6.1. Probability forecasting of binary outcomes

The simplest prequential game corresponds to X i binary. Forecaster's moves are

Fi � Pi 2 [0, 1]; Statistician's moves are Hi 2 R. The interpretation of the moves is as

follows. Before Xi is disclosed by Nature, Forecaster selects Pi 2 [0, 1], interpreted as his

probability that X i � 1, or equivalently as his expectation (`̀ fair price'') for X i. We take this

to mean (cf. de Finetti (1974, Section 3.3)) that Forecaster allows Statistician to buy, before

Xi is disclosed, any number Hi (possibly negative or non-integer) of tickets, each of which

will pay £Xi; the price is £Pi for a ticket.

De®ne

K i �K iÿ1 � Hi(X i ÿ Pi), i > 1, (42)

K 0 being some given initial value. We interpret K 0 as Statistician's initial capital; then K i

is Statistician's capital at stage i (we shall sometimes refer to K i as the capital process).

Note that, given any ®xed strategy whereby Statistician chooses Hi as a function of previous

moves, (K i) will be a farthingale in the sense of (21).

F1

H1

X1

F2

H2

X2

. . .

Forecaster:

Statistician:

Nature:

Fig. 1. Typical prequential game; the arrows indicate the order of moves of the three players.
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We shall denote this game by G bin(K 0). (To complete the description of the game we

still need to specify a rule for determining the winner; we shall do this in the next section.)

6.2. Mean-value forecasting of continuous outcomes

This game G mean(K 0) is a straightforward generalization of G bin(K 0). The only difference

is that now Nature is allowed to select Her move Xi from [ÿ1, 1] and Forecaster is also

allowed to select his move Fi � Mi from [ÿ1, 1]; again, Mi is interpreted as Forecaster's

`̀ fair price'' for Xi, before its value is disclosed by Nature. The tickets offered by Forecaster

will be called E tickets. The capital process K i is de®ned (cf. (42)) by

K i �K iÿ1 � Hi(X i ÿ Mi), i > 1:

6.3. Mean-value-and-variance forecasting of continuous outcomes

Now Forecaster's moves are Fi � (Mi, Di), where Mi 2 [ÿ1, 1] and Di > 0; Statistician's

moves are Hi � (Vi, Wi), with Vi, Wi 2 R. Instead of (42), we have now

K i �K iÿ1 � Vi(Xi ÿ Mi)� Wif(X i ÿ Mi)
2 ÿ Dig: (43)

Intuitively, before Nature discloses X i, Forecaster, besides the E tickets, is offering for sale

also var tickets, which oblige Forecaster to pay some `̀ ®ne'' if his forecast Mi is bad. A var

ticket obliges Forecaster to pay £(X i ÿ Mi)
2 to Statistician; Di is the price for a var ticket.

After Forecaster's move, Statistician decides how many E tickets (Vi) and var tickets (Wi) he

would like to buy; (43) shows Statistician's capital at each stage.

This game will be denoted by G mean&var(K 0).

6.4. Con®dence-interval forecasting of continuous outcomes

Now Nature's moves are Xi 2 [ÿ1, 1] and Forecaster's moves are (Li, Ui) with

ÿ1 < Li < Ui < 1; Statistician's moves are Hi > 0; (42) is replaced by

K i �K iÿ1 � HifI(X i =2 [Li, Ui])ÿ 0:01g: (44)

Intuitively, before Nature discloses X i, Forecaster offers tickets which will pay £1 in case

Xi =2 [Li, Ui] for the price of £0.01. The requirement Hi > 0 means that Forecaster does not

assert that the odds in favour of X i 2 [Li, Ui] are exactly 99:1, but that they are at least 99:1.

Our notation for this game will be G 99%(K 0).

6.5. Probability forecasting of continuous outcomes

The game G prob(K 0) is, like G mean(K 0), generalization of G bin(K 0). The difference from

G bin(K 0) is that Nature's moves Xi are now allowed to belong to the whole of [ÿ1, 1],
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Forecaster's moves Fi � Pi are probability distributions in [ÿ1, 1], Statistician's moves Hi are

Borel functions on [ÿ1, 1], and (42) is replaced by

K i �K iÿ1 � Hi(Xi)ÿ
�

Hi dPi: (45)

The interpretation is as follows. Forecaster's move Pi means that he is willing to sell

Statistician any of the following tickets: for any Borel function H : [ÿ1, 1]! R, the H ticket

obliges Forecaster to pay £H(X i) to Statistician after Xi is disclosed; the price for the H

ticket is given by its mean value
�

H dPi with respect to the forecast distribution Pi.

The variant of this game where the forecasts Pi are required to be continuous

distributions in [ÿ1, 1] will be denoted by G prob9(K 0); we need this variant to examine the

cumulative probability integral transform.

For prequential decision theory we shall need one more player, Second Forecaster; just

before Xi is disclosed, Second Forecaster announces his forecast Qi (a probability

distribution in [ÿ1, 1]) for X i. This game will be denoted by G prob�SF(K 0). When

considering (37) instead of (38), we shall need a more powerful player, Decision Maker,

who can directly choose actions Ai rather than probability distributions Qi; the

corresponding game will be denoted by G prob�DM(K 0).

By forecasting task we shall mean a game with K 0 unspeci®ed (so far we have used

this notion informally); to denote a forecasting task we shall simply drop `(K 0)' from our

notation for the corresponding game.

7. Prequential framework

Statistician is a mathematician whose role is to deduce various probabilistic consequences

from Forecaster's assertions about the world. Thus he might wish to demonstrate that the

calibration property (5) holds, but this cannot be expected in complete generality; rather, only

under the `̀ null hypothesis'' that Forecaster's forecasts provide a valid model of Nature's

outcomes. In previous sections this null hypothesis of agreement between Forecaster and

Nature was interpreted in terms of the existence of a common (albeit unspeci®ed) joint

distribution P underlying both Nature's and Forecaster's strategies. Here we take a different

approach.

The tickets offered to Statistician by Forecaster in the games described in the previous

section are priced `̀ fairly'', from the point of view of Forecaster. If Forecaster's forecasts are

`̀ good'' (in agreement with Nature), Statistician should not be able to make much money

by betting at these fair prices. Conversely, if the forecasts are bad, Statistician should be

able to pro®t from their mismatch with Nature's outcomes. Thus, for any speci®c realization

of the game, we can regard it as evidence that Forecaster was wrong (i.e. out of agreement

with Nature) when Statistician, starting from £1 (or any other positive capital), managed

greatly to increase his capital, without ever risking getting into debt (and, the greater the

increase in his capital, the more convincing the evidence).

Statistician could thus prove that the calibration property (5) holds, whenever Nature

and Forecaster are in agreement, if he could ensure that, whatever Nature and Forecaster
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might do, either (5) will hold or he will be able to demonstrate (by substantially

increasing his capital) that Forecaster and Nature are not in agreement. If he can ®nd a

strategy with this property, then he will have achieved his goal. This idea is the basis of

the next de®nition.

7.1. Full events

Let G be any of the above forecasting tasks and let E be some substantive event, i.e. a

property of the sequence of moves F1 X1 F2 X2 . . . of Forecaster and Nature alone. In our

applications, the statement `̀ ( f1x1 f 2x2 . . .) 2 E'' will express some desirable property, such

as (5), which Statistician claims should hold if Forecaster's forecasts are empirically valid.

Given any substantive event E, we can complete the description of a prequential game as

follows. We say that Statistician wins game G E if, in game G (1), (a) K i > 0, for all i and

(b) either E occurs, or K i !1.

The disjunction in (b) corresponds to Statistician having demonstrated either that Nature

has colluded with Forecaster to bring about the occurrence of E or that there was a

mismatch between forecasts and outcomes, which has allowed Statistician to amass an

in®nite fortune (while never going into debt). We are particularly interested in events E for

which Statistician can force a win in game G E. Then, whenever E does not occur, we have

evidence of non-collusion between Nature and Forecaster, with such a mismatch between

forecasts and outcomes that Statistician makes an in®nite fortune from a sequence of `̀ fair

bets''. We can thus regard such an event E as a criterion of agreement between forecasts

and outcomes. We shall say that event E is full (and its complement Ec is null) in

forecasting task G if Statistician has a winning strategy in game G E.

Our programme now is to show, for various interesting events E, that Statistician has a

winning strategy in G E (and even, wherever possible, to exhibit such a strategy) and thus

to demonstrate that E is full. We can then regard Forecaster as discredited if E fails to

occur (so that Statistician, playing his winning strategy, makes an in®nite amount of

money).

The following theorem asserts the existence of Statistician's winning strategies for many

of the events considered above.

Theorem 1.

(a) (Compare (31).) Event

1

n

Xn

i�1

(Xi ÿ Mi)! 0 (n!1)

is full in forecasting task G mean.

(b) (Compare (28) and (29).) Event eitherX1
i�1

Di ,1
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or

lim sup
n!1

Xn

i�1

(Xi ÿ Mi)

�
2
Xn

i�1

Di

 !
ln ln

Xn

i�1

Di

 !( )1=2

� 1

is full in forecasting task G mean&var.

(c) (Compare (34).) Event

lim inf
n!1

1

n

Xn

i�1

I(X i 2 [Li, Ui]) > 0:99

is full in forecasting task G 99%.

(d) (Compare (37).) Event

lim inf
n!1

Xn

i�1

ëi(X i, Bi(Pi))ÿ
Xn

i�1

ëi(X i, Ai)

 !
,1

is full in forecasting task G prob�DM.

(e) (Compare (40).) Let (Si) be non-negative functions, as in (20), satisfying S0 � 1 and

(21). Then event

sup
i

Si(P1, X 1, . . . , Pi, Xi) ,1

is full in forecasting task G prob.

For all the above assertions, proofs in our prequential framework can be closely modelled

on already existing proofs of their probabilistic counterparts. Two sample proofs are given

in the appendices. Appendix 2 proves a prequential analogue of Doob's convergence

theorem for non-negative martingales and brie¯y describes other ideas that we need to

deduce from it the `̀ prequential strong law of large numbers'', (a) above. Appendix 3 proves

the `̀ prequential law of the iterated logarithm'' (upper half), (b) above; it is further shown

how the proof given there also implies (c) and (a). The proofs are, in essence, simple

modi®cations of well-established martingale-based proofs.

It is important that we can explicitly construct winning strategies for Statistician which

satisfy many desiderata: are measurable, computable, etc. (in the case of items (d) and (e),

provided that the loss functions and the functions Si satisfy these desiderata).

Theorem 1 (a) implies that event (36) is full in forecasting task G prob (in some sense

game G prob(1) is easier for Statistician to play than G mean(1); in G prob(1), Forecaster is

required to give more speci®c forecasts). Analogously, Theorem 1 (d) implies that event

(38) is full in the forecasting task G prob�SF. It is also clear that the events (23) and `̀ (28) or

(29)'' (with Mi � Pi, Di � Pi(1ÿ Pi)) are full in G bin.

7.1.1. Connection with the conventional notion of almost sure event

Let E be any full event. Fix any joint distribution P for (X 1, X2, . . .). Let Forecaster use

either the strategy that calculates its forecasts from P (see (22), (30), (32), and (35)) or a
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measurable strategy that `̀ agrees'' with P (as in (33)), and let Nature use the collusive

randomized strategy in which Xi is simulated from the distribution function

Fi(t) � P(X i < tjX1 � x1, . . . , X iÿ1 � xiÿ1). Then (X 1, X2, . . .) is simulated from P.

Consider the behaviour of Statistician's capital process (K i) (with K 0 � 1) under his

measurable winning strategy. Since every non-negative supermartingale is bounded with

probability 1 (we already used a similar fact in Section 4.8) and (K i) is now a non-negative

P supermartingale (even a P martingale in all cases except (33)), the event `̀ K i !1'' has

P probability 0; therefore, by Theorem 1(b) of the requirement for a full event, E occurs with

P probability 1. This argument holds for any P.

To see now that each of the agreement criteria mentioned in Theorem 1 must satisfy the

strong prequential principle (as already con®rmed directly in Section 4), it is enough to

combine the above argument with the results of Theorem 1. In fact, an essentially identical

argument demonstrates that the super-strong prequential principle will also be satis®ed in

such cases, thus allowing Forecaster to take into account additional information, beyond the

revealed history of the game.

7.2. Prequential probability

The above development has allowed us to introduce a game-theoretic analogue of the concept

of an event's having probability 0 or 1. We now extend this framework to allow measurement

of non-extreme probabilities.

Up to now, Statistician was effectively playing against Forecaster (with Nature as a

neutral player), and Forecaster had in®nite capital. Suppose now that Statistician starts with

capital K 0 2 [0, 1], Forecaster with capital 1ÿK 0. After i stages, Statistician's capital

becomes K i. Either player loses when his capital becomes negative. Let E be some event.

We wish to de®ne what it means for E to be `̀ reasonably certain'' (unless the forecasts are

bad).

Say that Statistician wins game G E(K 0) if (a) his capital K i reaches above 1 before

reaching below 0 or (b) his capital K i is always in [0, 1], and E happens. If, for K 0

small, Statistician wins the game, then if E has not occurred, we must be in situation (a);

and then the large increase in Statistician's capital provides strong (although less than

categorical) evidence that Forecaster was wrong (out of agreement with Nature).

If Statistician has and uses a winning strategy for G E(K 0), then (a) his capital can

never be negative (at least if he stops as soon as it exceeds 1) and (b) whenever E fails, he

will have made more than £1 out of £K 0, thus casting doubt on the agreement between

Forecaster and Nature. The smaller K 0, the greater the doubt. In other words, if E is an

event for which Statistician can ®nd a winning strategy in G E(K 0) with K 0 small, then,

whenever E fails, an outcome occurs (large increase in Statistician's capital) that is not very

credible under the hypothesis that Forecaster's forecasts and Nature's outcomes are in

agreement. Intuitively, the complement of E has `̀ low probability'', and thus E has `̀ high

probability'', under this hypothesis; the smaller we can make K 0, the higher is the

`̀ probability'' of E. This motivates the following de®nition.
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Let

F (E) � f1ÿK 0: Statistician can force a win in G E(K 0)g
be the range of Forecaster's initial capital for which Statistician has a winning strategy.

Clearly,

(a 2 F (E), b , a)) b 2 F (E):

We de®ne the prequential probability of an event E to be

PP(E) � sup F (E),

with sup Æ � 0. This notion generalizes that of a full event; it can be shown that, for all our

forecasting tasks, an event E is full if and only if PP(E) � 1 (provided that we allow

Statistician to buy in®nitely many tickets or, in the case of G prob, to buy tickets with

potentially in®nite pay-off, with natural conventions for operations with in®nities).

We could generalize further and de®ne `̀ prequential expectation'' (cf. Vovk 1993b,

Section 5). However, we shall not discuss this here.

Now we can state the theorem corresponding to the remaining agreement criteria.

Theorem 2.

(a) In forecasting tasks G mean&var and G bin,

PP Bÿ1=2
XôB

i�1

(Xi ÿ Mi) 2 (a, b) or ôB � 1
 !

! Ö(b)ÿÖ(a)

as B!1, where (a, b) is any interval of the extended real line and

ôB � min n:
Xn

i�1

Di > B

 !
:

(b) Let the cumulative probability integral transform CPIT be the transformation that

maps every forecast or outcome sequence ( p1, x1, p2, x2, . . .) into the corresponding

sequence

(probY� p1
fY < x1g, probY� p2

fY < x2g, . . .):

Let E be any Borel set in [0, 1]1. In forecasting task G prob9,

PPfCPIT(P1, X 1, P2, X2, . . .) 2 Eg � U(E),

U � (U [0, 1])1 being the uniform distribution in [0, 1]1.

(c) In forecasting task G prob,

PP(sup
i

Si(P1, X 1, . . . , Pi, X i) , c) > 1ÿ 1

c
, for c . 1,

provided that the functions Si satisfy Si > 0, S0 � 1 and (21).

Proof (outline). The proof of the central limit theorem (a) for forecasting task G bin can be
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found in Vovk (1993a, Theorem 5), which can be routinely extended to cover G mean&var.

Once again, the proof is a simple modi®cation of a standard proof (due to Lindeberg) from

conventional probability theory. Proof of (c) is trivial. For both (a) and (c), the proofs involve

explicit construction of winning strategies for Statistician.

In the case of (b) our construction is also in some sense explicit. Suppose that we have

E 2 (0, 1) and a set E � [0, 1]1 such that U(E) . 1ÿ E. Then there exists (Vovk 1993a,

Theorem 4) a sequence (Si) of functions Si: [0, 1]i ! [0, 1[, i � 0, 1, . . . , such that

S0 , E, lim inf i!1 Si(t1, . . . , ti) . 1 when (t1, t2, . . .) =2 E, and, for all i and (t1, . . . , ti) 2
[0, 1]i,

ET�U [0,1] Si�1(t1, . . . , ti, T ) � Si(t1, . . . , ti)

(the martingale property). Exhibiting such a martingale Si can be interpreted as a `̀ proof''

that U(E) . 1ÿ E. Theorem 2 (b) is `̀ constructive'' in the following sense: given a martingale

S `̀ proving'' that U(E) . 1ÿ E, one can easily ®nd Statistician's strategy in G prob9(E) which

witnesses that

PPfCPIT(P1, X 1, P2, X 2, . . .) 2 Eg > 1ÿ E: u

Remark. In the terminology of Shafer (1996) and Vovk (1993b), our `̀ prequential

probability'' is `̀ lower probability'', and the `̀ global probability'' of Vovk (1993a) is

`̀ upper probability'' (in our current framework, we can de®ne the upper probability of event

E as 1ÿ PP(Ec)). Lower probabilities are analogous to Shafer's (1976) belief functions.

Another language for introducing `̀ prequential probability'' is provided by Shafer's (1996)

martingale trees.

7.2.1. Connection with the conventional notion of probability

For discussing connections between prequential probability and the conventional notion of

probability, it is convenient to change slightly the de®nition of PP(E), adding the requirement

that Statistician's winning strategy should be measurable. Theorem 2 continues to hold under

this changed de®nition of PP (in the case of (b) and (c), provided that E and Si are

measurable).

Consider a distribution P for (X1, X 2, . . .) and Forecaster's measurable strategy S that

forms its forecasts in accordance with P. It is easy to see that

PP(E�) < P(E), (46)

for any Borel set E, E� standing for the event that (X 1, X2, . . .) 2 E and all Pi are selected

in accordance with S . Indeed, for any ®xed E. 0 satisfying PP(E�) . 1ÿ E, let (K i) be the

capital process of Statistician's measurable winning strategy starting from £E. Then (K i) is a

non-negative P supermartingale with K 0 � E. So (a) of the de®nition of Statistician winning

holds with P probability at most E (by Doob's inequality). Since event E is bound to happen

when (a) fails, P(E) > 1ÿ E.
This observation shows that Theorem 2 (a)±(c) imply their conventional counterparts

given in Section 4.
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Remark. We prefer not to impose the requirement of measurability on the players' strategies

because (i) on the theoretical side, this requirement is likely to complicate more advanced

parts of our theory needlessly and (ii) from the applied point of view, it is too weak (useful

strategies must be at least computable). (Of course, the assumption of measurability of

strategies is very useful when discussing the relation of our approach to the conventional

approach.) On the other hand, measurable (in some sense) events E play a special role in our

approach: Martin's (1975, 1990) theorem asserts that the games G E and G E(K 0) are

determined (in the sense that either Statistician or the team Forecaster and Nature has a

winning strategy) when E is pseudo-Borel (which is the same as Borel when the players only

can select their moves from a countable set).

8. Discussion

Satisfaction of the weak prequential principle is an appealing requirement to impose on an

assessment criterion for agreement between forecasts and outcomes, since it focuses on the

actual realized sequences, obviating the need to consider how these might have been

produced. Of itself, however, it is clearly not suf®cient. For example, the trivial criterion

which always asserts that Forecaster has been successful, or the equally vacuous criterion

which always asserts that Forecaster has failed, are perfectly acceptable from the point of

view of the weak prequential principle alone. Some further justi®cation for any proposed

criterion is required. Such justi®cation might be supplied by appealing to stochastic

properties of the criterion, e.g. almost sure behaviour or an approximate signi®cance level,

which apply under the assumption that Forecaster is successful.

This last assumption can be formalized in various ways. In Section 4 we regarded it as

asserting that Forecaster calculates his forecasts using the `̀ true'' distribution P from which

Nature generates the outcomes. Since, however, we do not want the unknown true distribution

to be relevant to the de®nition of `̀ success'', we introduced the strong prequential principle,

requiring that dependence of the relevant stochastic properties on P be (exactly or

asymptotically) absent. We saw that many appealing criteria respect both principles.

In Section 6 we described an alternative, completely prequential game-theoretic

framework, as the basis of a new approach to probability. The weak prequential principle

is automatically satis®ed; there is no way to use anything beyond the forecasts actually made

by Forecaster (there is nothing more; we make no assumptions on the way the forecasts are

generated). In Section 7 we reinterpreted in this setting the assumption that Forecaster is

`̀ successful'' and showed how this could be used to explain why, in the more standard

approach, many results turn out to be independent of the underlying distribution, thus

validating a wide variety of assessment criteria as satisfying both prequential principles.

It might be argued that our approach to probability via prequential games is merely using

another language to express already well-known results. There is some truth in this, but it is

a language which is particularly well suited to bring out aspects which are often under-

emphasized, namely (a) the minimum speci®cation of the problem necessary for the

required results and (b) the universal applicability of the results, irrespective of the assumed

underlying probability distribution.
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Most important, the prequential results are available and have essentially the same

intuitive interpretation, even when we do not wish to assume the existence of an underlying

distribution. For example, we can justify assessing a weather forecaster's probability of

precipitation forecasts against the calibration criterion (5), in the knowledge that Statistician

has a strategy such that, if (5) fails, he will be able to discredit Forecaster by making a

fortune from him. This entirely non-probabilistic argument stands on its own merits.

Another technical point, not taken up here, is the possibility of re®ning the idea of a

`̀ null event'' and distinguishing between different categories of null event, in terms of the

rate at which Statistician's fortune can grow when the event happens. This does not appear

possible within the conventional approach. (Some work in this direction has been done

within the algorithmic approach to probability theory (see, for example, Loveland (1969),

Schnorr (1970, 1971a,b) and Vovk (1987)).)

An interesting feature of the prequential framework is that it is based, not on measure

theory, but on the theory of perfect-information games. In it, the usual task of proving

something about averages is replaced by the task of constructing strategies which are

guaranteed to achieve some goal. We hope that we have succeeded in convincing the reader

that this approach is intuitive and fruitful, and that it could be valuable to develop a more

general theory of prequential games such as those considered in Section 6 (in this paper we

have not even given a fully general de®nition of a prequential game).

Appendix 1: Hill's criteria

In this appendix we present an interesting family of agreement criteria introduced by Hill

(1982). We consider the probability forecasting game for continuous outcomes (with or

without the restriction X i 2 [ÿ1, 1]). Let B be some subset of R1. We denote by P (B) the

set of all sequences (P1, P2, . . .) of probability forecasts such that the product distribution

P1 3 P2 3 . . . gives probability 1 to B. Let B̂ denote the set of pairs (f , x) of sequences of

moves by Forecaster and Nature respectively such that

f 2 P (B)) x 2 B,

i.e. either x 2 B or f =2 P (B).

We might consider, as a possible agreement criterion between Forecaster and Nature, the

requirement that (f , x) 2 B̂. We may term this Hill's B criterion. Note that, by de®nition,

this will be satis®ed with probability 1 whenever Nature generates her outcomes from a

product distribution, and Forecaster constructs his forecasts from the same distribution.

For any joint distribution P, consider the event

B(P) :� ``f(P1, P2, . . .), (X1, X 2, . . .)g 2 B̂'',

where the outcomes X 1, X 2, . . . and the forecasts P1, P2, . . . are generated from P (see (35)).

Then Hill's B criterion will respect the strong prequential principle if, for any probability

distribution P over R1, B(P) is P-almost certain. As remarked above, this is satis®ed for all

product measures P.
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As shown by Hill (1982), for a wide class of sets B, Hill's B criterion satis®es the strong

prequential principle; namely Hill shows that it is satis®ed for

B � (x1, x2, . . .) 2 R1:
X1
i�1

xi converges

( )
,

B � lim inf
n!1 f(x1, x2, . . .) 2 R1: xn 2 Ang,

B � lim sup
n!1

f(x1, x2, . . .) 2 R1: xn 2 Ang,

where A1, A2, . . . is a sequence of Borel sets in R. Therefore, the following counter-example

(Hill 1982) is of interest.

Theorem 3. Hill's B criterion violates the strong prequential principle when

B � (x1, x2, . . .): lim sup
n!1

Xn

i�1

xi

�
n ln ln

n

2

� �� �1=2
" #

� 1

( )
:

Proof. De®ne ð(�) to be the discrete uniform distribution over f0, 1g, and ð(ÿ) that over

fÿ1, 0g. Let Xi � Si ÿ Siÿ1, where the (Si) are independently drawn from ð(�). The

distribution, M say, of the sequence (P1, P2, . . .) of one-step-ahead forecasts is such that the

terms are independent, with Pi � ð(�) or ð(ÿ), each with probability 1
2
. Our goal is to prove

that event B(P) is not almost certain. Since clearly (X 1, X2, . . .) 2 B is always false, we are

only required to prove that (P1, P2, . . .) 2 P (B) with positive probability. In fact, the

following stronger property holds.

Lemma 1. Let (P1, P2, . . .) have joint distribution M. Then

(P1, P2, . . .) 2 P (B)

almost surely.

Proof. Consider the following stochastic scenario: ®rst a sequence (P1, P2, . . .) is generated

from M, and then a sequence of outcomes (X 1, X2, . . .) is generated from the product

distribution P1 3 P2 3 . . . in R1. It is clear that X 1, X 2, . . . are independent random

variables taking values ÿ1, 0, 1 with probabilities 1
4
, 1

2
, 1

4
, respectively. Therefore, by the usual

law of the iterated logarithm (see (29) above),

lim sup
n!1

Xn

i�1

X i

�
n ln ln

n

2

� �� �1=2
" #

� 1

almost surely, and so this equality holds almost surely under M-almost all product

distributions P1 3 P2 3 . . . . u
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Appendix 2: Doob's convergence theorem

A proof of a prequential assertion can often be obtained by modifying some of the usually

many proofs of its conventional counterpart. Examination of the proofs of the classical

versions of the assertions in Section 4 shows that most of them rely on `̀ martingale

methods'', and martingales are associated with games and gambling (Ville 1939; Doob 1953)

(see also Stout (1974) or Shiryayev (1984)). It is thus often possible to extract a `̀ game-

theoretic core'' from such a proof, which is then seen to be a proof of some assertion about a

perfect-information game, and thus directly relevant to the prequential result.

In this appendix we shall `̀ translate'' the usual proof of Doob's convergence theorem for

non-negative martingales; for simplicity, we shall only consider forecasting task G mean. Our

aim here is to demonstrate, on a very simple example, how one can use the mathematical

machine of the conventional theory of martingales in the game-theoretic framework of this

paper. We shall also explain the main ideas used to prove the strong law of large numbers.

The sample space of forecasting task G mean is the set [ÿ1, 1]1 of all possible sequences

(m1, x1, m2, x2, . . .) of Forecaster's and Nature's moves. A random variable is a real-valued

function on the sample space, and an adapted stochastic process is a sequence (î0, î1, . . .)
of random variables such that îi(m1, x1, m2, x2, . . .) is determined by (m1, x1, . . . , mi, xi)

alone, for all i. We say that an adapted stochastic process (î0, î1, . . .) is a farthingale if it

is the capital process of some strategy for Statistician in G mean; in other words, if there

exists Statistician's strategy S in G mean(î0) that ensures the following: for every i > 1 and

every possible sequence (m1, x1, m2, x2, . . .) of Forecaster's and Nature's moves,

Statistician's capital K i at stage i is exactly îi(m1, x1, m2, x2, . . .). A substantive event

is any subset of the sample space. A substantive event E is null (and its complement Ec is

full) if there exists a non-negative farthingale (î0, î1, . . .) with î0 � 1 such that

lim
i!1

îi(m1, x1, m2, x2, . . .) � 1, 8(m1, x1, m2, x2, . . .) 2 E

(cf. Vovk (1993a, Section 3)). This de®nition is equivalent to that given in Section 7.1. Now

we can state a prequential counterpart of Doob's convergence theorem for non-negative

martingales.

Lemma 2. Every non-negative farthingale is convergent on a full event.

Proof. Let (î0, î1, . . .) be a non-negative farthingale; we are required to construct a non-

negative farthingale (ç0, ç1, . . .) with ç0 � 1 such that çi !1 (i!1) whenever îi does

not converge. Without loss of generality we assume that î0 � 1. Let (î0, î1, . . .) be the

capital process of Statistician's strategy S . For every non-empty interval (a, b) with positive

rational end points, let S (a,b) be the following strategy. De®ne ô0 � 0 and, for j � 1, 2, . . . ,

ó j � minfi . ô jÿ1: îi . bg, ô j � minfi . ó j: îi , ag;
the move recommended by S (a,b) is

H
(a,b)
i � Hi, if ô jÿ1 , i < ó j for some j,

0, otherwise,

�
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where Hi is the move recommended by S . The capital process î(a,b)
i of S (a,b) in G mean(1) is

a non-negative farthingale that tends to in®nity when

lim inf
i!1

îi , a, lim sup
i!1

îi . b:

Therefore, the capital process of Statistician's strategy

X1
k�1

2ÿkS (a k ,bk ) (47)

(where ((a1, b1), (a2, b2), . . .) is some enumeration of all non-empty intervals with positive

rational end-points) tends to in®nity when îi is divergent. (Series (47) converges because the

move H
(a,b)
i recommended by S (a,b) never exceeds in absolute value the move Hi

recommended by S .) u

Having proved an analogue of Doob's martingale convergence theorem, it is easy to prove

the strong law of large numbers for G mean (Theorem 1(a)). We shall brie¯y describe the

main steps of one of many possible proofs (for details see, for example, Vovk (1996,

Section 5) or Shiryayev (1984, Section VII.5)); another proof will be given in Appendix 3.

An adapted stochastic process (î0, î1, . . .) is increasing if î0 � 0 and î0 < î1 < . . . : If

an adapted stochastic process (îi) can be represented as a farthingale minus an increasing

adapted stochastic process, we say that (îi) is a superfarthingale. (In other words, a

superfarthingale is a farthingale in the game G mean9 whose only difference from G mean is

that Statistician is allowed to throw away money.)

It is obvious that in the above de®nition of a null event we can replace `̀ farthingale'' by

`̀ superfarthingale'' and that Lemma 2 can be strengthened to the following.

Lemma 3. Every non-negative superfarthingale is convergent on a full event.

(A proof of Lemma 3 can be obtained by a simple modi®cation of the proof of Lemma 2;

also, Lemma 3 can be easily deduced from the statement of Lemma 2.)

A predictable stochastic process is a sequence (î0, î1, î2, . . .) of random variables

such that îi(m1, x1, m2, x2, . . .) is determined by (m1, x1, . . . , miÿ1, xiÿ1, mi) alone (so the

predictable stochastic processes constitute a subclass of the adapted stochastic processes).

An adapted stochastic process (îi) is a semifarthingale if it can be represented as the sum

of a superfarthingale and an increasing predictable stochastic process (and any such

increasing predictable stochastic process is called a supercompensator of (îi)). It is not

dif®cult to strengthen Lemma 3 as follows.

Lemma 4. If (îi) is a non-negative semifarthingale and (ái) is its supercompensator, then the

event

á1,1) îi is convergent

is full.
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(As usual, we let `̀ A) B'' stand for the event `̀ (not A) or B''.) Lemma 4 immediately

implies the following lemma.

Lemma 5. If (îi) is a farthingale and (î2
i ) is a semifarthingale with supercompensator (ái),

then

á1,1) îi is convergent

is a full event.

Proof. It suf®ces to apply Lemma 4 to the non-negative semifarthingales (î2
i ) and f(îi � 1)2g

with the same supercompensator (ái) and note that îi � 1
2
f(îi � 1)2 ÿ î2

i ÿ 1g. u

Now it is easy to obtain Theorem 1 (a); applying Lemma 5 to the farthingale

în :�
Xn

i�1

X i ÿ Mi

i

and noticing that (î2
n) is a semifarthingale with supercompensator án �

Pn
i�1(2=i)2 (so that

á1,1 everywhere), we obtain that it is a full event that în converges; it remains to apply

Kronecker's lemma (see, for example, Stout (1974, Lemma 3.2.3)). u

It is natural to try to apply the idea of this proof to the `̀ one-sided'' Theorem 1 (c).

However, this idea does not work in the `̀ one-sided'' case. For the game G mean� , where

Statistician is only allowed to buy a non-negative amount of E tickets, (î2
n) is no longer a

semifarthingale with supercompensator
Pn

i�1(2=i)2. (Also, it is not clear whether there

exists any `̀ one-sided'' variant of Kronecker's lemma.) A very strong form of Theorem 1 (c)

will be proved in Appendix 3.

With very minor changes, the method of proof given above also proves the following

assertion (analogous to Kolmogorov's strong law of large numbers): in forecasting task

G mean&var9, whose difference from G mean&var is that Xi and Mi are now allowed to be

chosen from the whole of R, it is a full event thatX1
i�1

Di

i2
,1) lim

n!1
1

n

Xn

i�1

(Xi ÿ Mi) � 0:

Appendix 3: Law of the iterated logarithm

In this appendix we shall prove the `̀ upper half'' of the prequential law of the iterated

logarithm: in forecasting task G mean&var, it is a full event that

lim sup
n!1

Xn

i�1

(Xi ÿ Mi)

�
2
Xn

i�1

Di

 !
ln ln

Xn

i�1

Di

 !( )1=2

< 1 or
X1
i�1

Di ,1: (48)

Our proof will follow Ville (1939, Section V.3). (In the case of two-valued X i, this result has
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been proved by Minozzo (1996, Section 5.6); for an `̀ algorithmic'' variant of Ville's proof,

see Vovk (1988).) This proof is very natural, although this fact may be obscured by technical

details. In this appendix we ®rst give a formal proof with little explanation, then we explain

the simple ideas behind the proof. It may be helpful to read the formal proof and the informal

explanation in parallel.

Formal proof. Fix temporarily some (small) ä. 0. For every k 2 (0, 1
2
), Statistician has a

strategy S (k) in game G mean&var(1) such that, for all i, Statistician's capital K (k)
i satis®es

K (k)
0 � 1 and

K (k)
i�1 �K (k)

i

1� k(X i ÿ Mi)� (1� ä)k2(X i ÿ Mi)
2=2

1� (1� ä)k2 Di=2
(49)

when he is using that strategy. Indeed, (49) is equivalent to

K (k)
i�1 �K (k)

i �
K (k)

i

1� (1� ä)k2 Di=2
k(X i ÿ Mi)� (1� ä)

k2

2
f(X i ÿ Mi)

2 ÿ Dig
� �

;

so S (k) recommends buying

K (k)
i k

1� (1� ä)k2 Di=2
(50)

E tickets and

K (k)
i (1� ä)k2=2

1� (1� ä)k2 Di=2
(51)

var tickets at every stage i. Note that (49) is always positive. Put

k(k) � f2(ln k)(1� ä)ÿkg1=2, (52)

S �
X1
k�K

kÿ1ÿäS (k(k)), (53)

where K is chosen so that k(k) 2 (0, 1
2
) for k > K (we shall impose additional requirements

on K below). Let K i . 0 be the capital process corresponding to S , with initial capital

K 0 �
P1

k�K kÿ1ÿä (so we have K i �
P1

k�K kÿ1ÿäK (k(k))
i for all i). We know that the event

supi K i ,1 is full, which implies that

sup
i

K (k(k))
i � O(k1�ä) (54)

is also full.

Consider a sequence of moves such that both (54) and
P1

i�1di � 1 hold. For such a

sequence, and n large enough, we take

k � k(n) � log1�ä
Xn

i�1

di

$ %
(55)
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and obtain

ln K (k(n))
n < (1� ä) ln k(n)� O(1) < (1� ä) ln ln

Xn

i�1

di � O(1),

where k(n) � k(k(n)). By (49), we further obtain

ln
Yn

i�1

1� k(n)(xi ÿ mi)� (1� ä)k2(n)(xi ÿ mi)
2=2

1� (1� ä)k2(n)di=2
< (1� ä) ln ln

Xn

i�1

di � O(1),

i.e.Xn

i�1

ln 1� k(n)(xi ÿ mi)� (1� ä)
k2(n)

2
(xi ÿ mi)

2

� �
<
Xn

i�1

ln 1� (1� ä)
k2(n)

2
di

� �

� (1� ä) ln ln
Xn

i�1

di � O(1):

(56)

For t small enough in absolute value we have

ln 1� t � (1� ä)
t2

2

� �
> t;

so (56) implies that (remember that k(n)! 0 as n!1)

k(n)
Xn

i�1

(xi ÿ mi) <
Xn

i�1

ln 1� (1� ä)
k2(n)

2
di

� �
� (1� ä) ln ln

Xn

i�1

di � O(1):

Since always ln(1� t) < t, we further obtainXn

i�1

(xi ÿ mi) < (1� ä)
k(n)

2

Xn

i�1

di � 1� ä

k(n)
ln ln

Xn

i�1

di � O
1

k(n)

� �
: (57)

For n large enough,

1

1� ä
2 ln ln

Xn

i�1

di

 !�Xn

i�1

di

( )1=2

< k(n) < (1� ä) 2 ln ln
Xn

i�1

di

 !�Xn

i�1

di

( )1=2

,

(58)

which gives

Xn

i�1

(xi ÿ mi) < (1� ä)2 2
Xn

i�1

di ln ln
Xn

i�1

di

 !1=2

� O
Xn

i�1

di

�
ln ln

Xn

i�1

di

 !( )1=2
24 35:

(59)

Therefore, for any ä. 0 we have exhibited (see (49) and (53)) Statistician's strategy

S � S (ä) which, starting from initial capital K 0 �K 0(ä), will make an in®nite gain

unless the event
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Xn

i�1

(X i ÿ Mi) < (1� ä)2 2
Xn

i�1

Di ln ln
Xn

i�1

Di

 !1=2

� O
Xn

i�1

Di

�
ln ln

Xn

i�1

Di

 !( )1=2
24 35

or
X1
i�1

Di ,1

(cf. (59)) happens. Taking

S �
X1
j�1

2ÿ jS
1

j

� �
, (60)

we obtain a strategy which, starting from

K 0 �
X1
j�1

2ÿ jK 0

1

j

� �
, (61)

will make an in®nite gain unless event (48) happens. It follows that (48) is full.

In order to make the above proof watertight we have to check that the various in®nite

mixtures appearing in it are convergent. First we prove that (61) is ®nite. This is easy:X1
j�1

2ÿ jK 0

1

j

� �
�
X1
j�1

2ÿ j
X1

k�K(1= j)

kÿ1ÿ1= j <
X1
j�1

2ÿ j � 1,

provided that K(1= j) are so large thatX1
k�K(1= j)

kÿ1ÿ1= j < 1, 8 j:

It remains to prove the convergence of series (53) and (60). Our task is facilitated by the

fact that every strategy considered recommends buying non-negative amounts of E tickets

and var tickets. It suf®ces to prove that the resulting strategy S recommends buying ®nite

number of E tickets and var tickets at every stage.

First we note that ä 2 (0, 1], k 2 (0, 1
2
) and (49) imply that

sup
k,ä

K (k(k,ä))
i ,1, 8i:

(Now we explicitly indicate ä in our notation for k � f2(ln k)(1� ä)ÿkg1=2:) Since S (k(k,ä))

recommends buying (50) E tickets and (51) var tickets, it is enough to prove thatX1
j�1

2ÿ j
X1

k�K(1= j)

kÿ1ÿ1= jk k,
1

j

� �
,1 (62)

and X1
j�1

2ÿ j
X1

k�K(1= j)

kÿ1ÿ1= jk2 k,
1

j

� �
,1:
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The second inequality follows from the ®rst; so all we are required to prove is (62). Since the

inner series is convergent, we can ensure thatX1
k�K(1= j)

kÿ1ÿ1= jk k,
1

j

� �
< 1, 8 j,

taking K large enough. The proof is complete. u

Informal explanation. Requirement (49) is about the same as

K (k)
i�1 �K (k)

i exp k(X i ÿ Mi)ÿ k2 Di

2

� �
(k and ä are small). Therefore, the adapted stochastic process

în �
Yn

i�1

exp k(Xi ÿ Mi)ÿ k2 Di

2

� �
� exp k

Xn

i�1

(X i ÿ Mi)ÿ k2

2

Xn

i�1

Di

 !
(63)

is nearly a farthingale. Suppose for some large n we have

Xn

i�1

(xi ÿ mi) � 2
Xn

i�1

di

 !
ln ln

Xn

i�1

di

 !( )1=2

(this is the maximal value allowed by the law of the iterated logarithm). If we knew
Pn

i�1di

in advance, we could use one of the `̀ near farthingales'' (63) to earn a lot of money. It is easy

to see that the optimal value of k would be

k �
Xn

i�1

(xi ÿ mi)

�Xn

i�1

di

� 2 ln ln
Xn

i�1

di

 !�Xn

i�1

di

( )1=2

(cf. (58)). It would be even suf®cient to know
Pn

i�1di approximately (with a small relative

error); therefore, (52) with k de®ned by (55) is a natural expression for k. The problem is that

even k is unknown in advance; the solution is to take the mixture of the `̀ farthingales''

corresponding to different k with weights w(k) shrinking (as k !1) as slowly as possible;

we took w(k) � kÿ1ÿä (see (53)).

In the above argument the value

k � 2 ln ln
Xn

i�1

di

 !�Xn

i�1

di

( )1=2

was obtained from the statement of the law of the iterated logarithm. A less ad hoc way to

obtain it is to minimize the sum of the ®rst two addends in the right-hand side of (57) with

respect to k. u
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Extensions.

(i) We ®rst show how the above proof implies Theorem 1 (c). Without loss of generality

we can assume that at every stage i of game G 99% Statistician can buy non-negative

amounts of E tickets and var tickets; an E ticket pays £I(X i =2 [Li, Ui]) and costs £0.01 and

a var ticket pays £fI(X i =2 [Li, Ui])ÿ 0:01g2 and costs £0.0099. (The E tickets are exactly

the `̀ primary'' tickets of game G 99%, and the pay-off

fI(X i =2 [Li, Ui])ÿ 0:01g2 ÿ 0:0099 � 0:98fI(Xi =2 [Li, Ui])ÿ 0:01g

of a var ticket can be simulated as the pay-off of a `̀ portfolio'' consisting of 0.98 E tickets.)

Noting that the above strategy for Statistician requires buying non-negative amounts of E

tickets and var tickets (see (50) and (51)), we can see (cf. (48)) that

lim sup
n!1

Xn

i�1

fI(X i =2 [Li, Ui])ÿ 0:01g=f2(0:0099n) ln ln ng1=2

 !
< 1,

which is equivalent to

lim inf
n!1

Xn

i�1

fI(X i 2 [Li, Ui])ÿ 0:99g=(n ln ln n)1=2

 !
> ÿ(0:0198)1=2:

This inequality is much stronger than (34) (and it is easy to see that the constant (0.0198)1=2

cannot be improved).

(ii) Finally, we shall deduce Theorem 1 (a) from our proof of the law of the iterated

logarithm. Without loss of generality we can assume that at every stage i of the game

G mean Statistician is allowed to buy any non-negative amount of var tickets (paying

£(X i ÿ Mi)
2) for £4 each (indeed, a var ticket will bring (Xi ÿ Mi)

2 < 4 to Statistician; so

it never hurts Forecaster to sell them for £4). Recalling that (51) is never negative, we

deduce (cf. (48)) that the event

lim sup
n!1

Xn

i�1

(X i ÿ Mi)

�
(8n ln ln n)1=2

 !
< 1

is full, which implies that the event

lim sup
n!1

����Xn

i�1

(X i ÿ Mi)

�����(8n ln ln n)1=2

 !
< 1

is full. This is much stronger than the assertion that (31) is full. (Note, however, that this

approach to the strong law of large numbers strongly relies on the assumption that the X i

have uniformly bounded support; this assumption can be weakened, but still this approach

cannot be used to prove the extension to arbitrary real-valued quantities described at the end

of Appendix 2.)
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