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ABSTRACT

Bug reproduction is critically important for diagnosing a
production-run failure. Unfortunately, reproducing a concurrency
bug on multi-processors (e.g., multi-core) is challenging. Previous
techniques either incur large overhead or require new non-trivial
hardware extensions.

This paper proposes a novel technique called PRES (probabilis-

tic replay via execution sketching) to help reproduce concurrency
bugs on multi-processors. It relaxes the past (perhaps idealistic) ob-
jective of “reproducing the bug on the first replay attempt” to signif-
icantly lower production-run recording overhead. This is achieved
by (1) recording only partial execution information (referred to as
“sketches”) during the production run, and (2) relying on an in-
telligent replayer during diagnosis time (when performance is less
critical) to systematically explore the unrecorded non-deterministic
space and reproduce the bug. With only partial information, our
replayer may require more than one coordinated replay run to re-
produce a bug. However, after a bug is reproduced once, PRES can
reproduce it every time.

We implemented PRES along with five different execution
sketching mechanisms. We evaluated them with 11 representative
applications, including 4 servers, 3 desktop/client applications, and
4 scientific/graphics applications, with 13 real world concurrency
bugs of different types, including atomicity violations, order vio-
lations and deadlocks. PRES (with synchronization or system call
sketching) significantly lowered the production-run recording over-
head of previous approaches (by up to 4416 times), while still re-
producing most tested bugs in fewer than 10 replay attempts. More-
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over, PRES scaled well with the number of processors; PRES’s
feedback generation from unsuccessful replays is critical in bug re-
production.
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1. INTRODUCTION

1.1 Motivation: The Challenge
Concurrency bugs, such as atomicity violations and deadlocks,

are some of the most difficult bugs to detect and diagnose due
to their non-deterministic nature. Different from sequential bugs
whose manifestations usually depend only on inputs and execution
environments, concurrency bugs depend also on the interleaving of
threads and other timing-related events [3, 16, 21, 26, 30, 39, 41].
Although a concurrency bug may occur less frequently than a se-
quential one, it can cause serious damage such as data corruption
and hangs, or even catastrophes, such as the Northeast Electrical
Blackout [31]. Furthermore, the transition to multi-core processors
and the pervasiveness of concurrent programming exacerbate the
probability of concurrency bugs in production runs.

In improving the quality of concurrent programs, one of the
biggest obstacles faced by developers is to reproduce concurrency
bugs. A recent study [16] has shown that the time it takes for a
concurrency bug to be fixed depends on how quickly programmers
can reproduce it for diagnosis.

Deterministic replay has long been proposed for bug repro-
duction. The typical approach to support deterministic replay is
re-execution, because almost all instructions and states can be
reproduced as long as all possible factors (referred to as non-
determinism) that affect the program’s execution can be replayed
in the same way. One such factor is inputs, including those from
keyboards, networks, files, etc. These can be recorded and supplied



S1:   if ( buf_index + len < BUFFSIZE)

S2:       memcpy(buf[buf_index], log, len);

S3: buf_index+=len;

    Thread 1                  Thread 2

( a ) Execution under non-bug triggering interleaving ( b ) Execution under bug-triggering interleaving

S1:   if ( buf_index + len < BUFFSIZE)

S2:       memcpy(buf[buf_index], log, len);
S3: buf_index+=len;

    Thread 1                  Thread 2

Wrong buffer content or

buffer overflow & server crash 

Figure 1: An example simplified from a real Apache concurrency bug. Repeating the bug needs a special input and a special

interleaving, which execute S3 between S1 and S2.

during replay [12,32,35]. Another factor is the return values of cer-
tain system calls (e.g. gettimeofday). This source can be handled
like inputs [12, 32, 35].

The most problematic source of non-determinism comes from
timing variations caused by hardware, such as cache state, mem-
ory refresh-scrubbing, and timing variations on buses and de-
vices [23,29,39]. Therefore, even when re-executing the same code
with the same input on the same machine, the exact time of execu-
tion of an instruction or a segment of code could vary from one run
to another. Timing variations usually affect only performance, not
logic execution and states. However, there are a few exceptions.
For example, timing variations can affect when a thread is sched-
uled out, or when a thread receives a signal or callback function. To
handle these sources of non-determinism, a typical way is to record
them with “logic time” instead of physical time. For example, the
system can use the number of executed instructions to remember
when a thread is scheduled out or when a signal is delivered. Logic
time can then be used during replay [12, 32, 35].

Following the above high-level ideas, many systems have been
built to provide deterministic replay for uni-processor execution.
Examples of such systems include the Time-Travel Machine [12],
FlashBack [32], VMware [35], R2 [10], and others [2, 5, 20, 37],
just to name a few (refer to Section 8 for a detailed discussion).

Unfortunately, on multi-processors (SMPs and multi-cores), be-
sides thread scheduling, signals and asynchronous events, tim-
ing variations exert another major influence on a program’s
execution—how threads concurrently interleave with each other
(in addition to those caused by thread scheduling). With multi-
ple threads executing simultaneously on different processors, their
interleaving can vary from one run to another. Of course, if threads
are independent from each other, there is no problem. However, in
almost all multi-threaded applications, threads interact with each
other via synchronizations and shared memory. Therefore, differ-
ent interleavings can lead to different variable values and conse-
quently different execution paths as shown in the example below.
This makes deterministic replay on multi-processor machines ex-
tremely challenging [8, 13, 23, 29, 35, 39], which is why VMware
presently supports only uni-processor deterministic replay [35].

Figure 1 shows a real-world bug from the Apache Server. In
this example, programmers forgot to protect the pair of accesses
to buf_index, namely {S1, S2}, into the same atomic region.
As a result, Apache crashes when S3 is executed between S1 and
S2. This bug is difficult to reproduce, because its manifestation
requires not only a special input, but also a special interleaving
(i.e., S3 executed between S1 and S2) that rarely occurs during
in-house stress testing [26]. In fact, it takes about 22 hours (tens
of thousands of iterations) of executions with the bug-triggering
input on an 8-core to get reproduced [26]. To diagnose a bug,
programmers usually need to reproduce it multiple times to analyze
the root cause. If it takes almost one whole day to reproduce the
bug one time, the diagnostic process will be excruciating.

1.2 State of the Art
To address the above challenge, several approaches have been

proposed for providing deterministic replay for multi-processors.
The main idea is to record almost every inter-thread interaction
such as synchronization and shared memory communication, in ad-
dition to those data necessary for uni-processor replay.

Based on the implementation of the above idea, prior work can
be grouped into two categories:

(1) Hardware-assisted approaches: Since recording every inter-
thread interaction (especially the global order of shared memory
accesses) can incur a high overhead, recent work such as Flight
Data Recorder [39] and BugNet [23] have proposed new hardware
extensions to record such information efficiently. To reduce hard-
ware complexity, various optimizations have been suggested re-
cently, including Strata [21], RTR [41], DMP [6], DeLorean [18],
Rerun [11], Capo [19], etc. However, they still require significant
hardware modifications, none of which exists today.

(2) Software-only approaches: InstantReplay [14] was one of
the first software solutions for deterministic replay on multi-
processors. Recently, Strata also has a software-only implementa-
tion [22]. Almost all of these state-of-the-art software solutions im-
pose more than 10X–100X production-run overhead, making them
impractical [6]. The overhead comes mainly from capturing the
global orders of shared memory accesses.

To address the overhead problem, SMP-Revirt [8] recently made
very clever use of page protection (instead of instrumenting ev-
ery shared memory access) to capture shared memory interactions
among threads. Due to the page-level granularity, this method
works well for applications with coarse-grained data sharing, such
as some regular matrix applications. Unfortunately, for applica-
tions that have much finer-grained data sharing and more false shar-
ing (such as server applications), this method still imposes 10X or
more overhead on 2 or 4 processors [8]. Furthermore, it also has a
scalability issue. For example, as reported in the paper [8], FMM’s
relative overhead increases from 50% to 636% when the number of
processors increases from 2 to 4. This is a result of increased false
sharing and page contention [1,9], just like in page-based software
distributed shared memory systems [15].

In another recent work, Kendo [25], applies deterministic exe-
cution to multi-processors for applications that are perfectly syn-
chronized using locks. For applications that do not satisfy this con-
straint, including the SPLASH-2 benchmarks selected and evalu-
ated by the authors, programmers need to modify the code before
utilizing the tool. This significantly limits its usefulness in practice
(especially for legacy code) because many concurrency bugs occur
exactly because programmers fail to synchronize correctly.

In this paper, we focus on software-only solutions, because hard-
ware modification always comes with a high cost of fabrication and
increased hardware complexity.



1.3 Our Observation and Main Idea
One interesting (and perhaps controversial) observation we made

is that all of the above work attempts to reproduce the bug on the
first replay run. As a result, it comes with a prohibitively high cost
(10–100X slowdown) on the production run, which is too expensive
to be practical.

Compared to a programmers’ in-house diagnosis, a production
run is much more performance critical because end-users do not
want to suffer from developers’ bad programming. In addition,
since most production runs are bug-free, we do not want to pe-
nalize them for bugs that have not happened yet. Therefore, it is
important to reduce the production run overhead, even if it comes
with slightly increased bug-reproduction time during diagnosis.

This motivation leads to the following questions:

Do we have to reproduce a bug on the first replay at-

tempt? Will programmers be happy if the bug can be

reproduced within 5–50 replay attempts (especially if

it comes with the benefit of significantly lower record-

ing overhead during production runs)?

To answer these questions, let us look at how developers repro-
duce a concurrency bug now. Since not much execution order-
ing/interleaving information is available from production runs, de-
velopers simply rerun the program over and over again in the hope
that the same concurrency bug will eventually manifest. Unfortu-
nately, in many cases the chance for its reproduction is slim [26].
Many concurrency bugs are not reproduced even after thousands of
replays (shown in our experimental results).

In other words, in practice, programmers do not aim to reproduce
a bug on the first replay attempt. Therefore, a natural question is:
is there anything in between the “reproducing it after thousands of
reruns” reality and the “reproducing it on the first replay” goal that
existing research ideas are shooting for? Particularly, are there any
methods that can reproduce bugs on multiprocessors with only a
few (e.g., < 50) replay attempts while adding only small (e.g., <
50%) recording overhead during production run? This is exactly
the main objective of this paper, as depicted in Figure 2.

If a method can significantly lower the production-run recording
overhead, programmers will probably be willing to tolerate a few
extra replay attempts during diagnosis to reproduce an occurred
bug, especially when these replay attempts can be automated.

Moreover, the above trade-off becomes even more appealing if
this method can guarantee that, once a bug is reproduced success-
fully (perhaps after several unsuccessful replay attempts), it can
then be reliably reproduced in every subsequent replay. This is im-
portant to programmers, who usually need to replay a bug many
times to identify the root cause.

Additionally, as long as the occurred bug can be reproduced, it
is less important for programmers to reproduce it in the exact same
way every time. In other words, even if some of the intermediate,

unrelated execution paths differ slightly, it is acceptable, as long as

the occurred bug can be reproduced. In practice, to shorten the di-
agnosis time, programmers even try to find the minimum triggering
conditions needed to reproduce the bug more easily [34].

For convenience of explanation, we refer to the possibility of
reproducing a bug in one replay as “reproduction probability.”

1.4 Our Contributions
Based on the observation above, this paper proposes a novel

idea called PRES (probabilistic replay via execution sketch-

ing) to help reproducing concurrency bugs on multi-processors.
It relaxes the previous (perhaps idealistic) objective of “reproduc-
ing the bug on the first replay attempt” for the purpose of lower-

Anything Here?
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> 1000

1

Ideal Case

Figure 2: Our objective: exploring the space between existing

software-only research ideas and common practice.

ing production-run recording overhead1 . PRES accomplishes the
goal by (1) recording only partial execution information during
the production run; and (2) using an intelligent partial-information
based replayer that systematically explores the unrecorded non-
deterministic space via multiple coordinated replay attempts to re-
construct the complete information necessary for bug reproduction.
After a bug is reproduced successfully once after several replay at-

tempts, PRES can then reproduce it with 100% probability on every

subsequent replay for diagnostic purposes.

Specifically, PRES combines three novel techniques:

(1) Sketch recording during production run. Unlike full
recording (i.e., recording every inter-thread interaction), sketch

recording records only important events to minimize the record-
ing overhead. Even though it may not provide enough information

to replay the program in the exact same way as the production run,

it does keep the replay close to the production run, as shown in our

experimental results.
This is similar to a “sketch”—an artist frequently draws a sketch

first, before putting in details; or to the fairy tale of Hansel and Gre-

tel, who leave pebbles or breadcrumbs along the path (at important
locations) in order to find their way back home.

In our work, we have explored five different methods of sketch
recording2, including (1) SYNC (recording synchronization global
orders), (2) SYS (recording the global orders of synchronization
and system calls), (3) FUNC (recording function call global or-
ders), (4) BB (recording basic block global orders), and (5) BB-N
(recording every N-th basic block global order). These methods
trade reproduction probability for lowered recording overhead at
different levels. For comparison with the proposed sketching meth-
ods, we also implement another scheme, referred to as RW, which
records the global orders of shared accesses to the same memory lo-
cation. RW represents the previous software-only multi-processor
deterministic replay systems [5, 22].

(2) Partial-Information based Replay (PI-Replay). Unlike tra-
ditional replayers that have complete information, our replayer (re-
ferred to as PI-Replayer) has only partial information (i.e., execu-
tion sketches) from a production run. Therefore, our replayer needs
to reconstruct the unrecorded non-deterministic information. It
does this by automatically, intelligently, and systematically explor-

1Even though we motivate the problem from diagnosing produc-
tion run failures, PRES can also be used to reproduce concurrency
bugs occurred during testing.
2In every method, we always record all inputs, signals, thread
schedules, and return values from certain system calls such as
gettimeofday(), etc., which are necessary for replay even on uni-
processors [12, 32].
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Figure 3: The bug reproducing process of PRES. Bold lines indicate executed paths; gray lines are unexecuted branches.

ing the unrecorded space via multiple replay attempts, and leverag-
ing both sketches and feedback from unsuccessful replays (replays
that do not reproduce the bug) to finish the “drawing” and repro-
duce the occurred bug.

(3) Feedback generation from previous replay attempts. Un-
like traditional replayers that do not record during replay, PRES
records all non-deterministic events during replay for feedback
generation. Doing so has three benefits: (1) Information recorded
from unsuccessful replays can be leveraged to guide subsequent re-
plays to be “smarter.” (2) Once a bug is successfully reproduced,
the information recorded during this successful replay allows re-
liable reproduction of the bug at every subsequent replay for the
programmers’ diagnosis. (3) Execution information from unsuc-
cessful replays provides programmers with clues regarding the bug
triggering conditions (e.g., why the bug is not triggered under cer-
tain global orders?).

Figure 3 shows the steps of PRES:

(1) During the production run, PRES records only important events
in an execution “sketch,” which is then provided to programmers in
case of a failure. Similar to all previous work on deterministic re-
play, we assume that privacy is not an issue, because either the pro-
duction run and the diagnosis are both done by the same company
(e.g., Google), or there is special agreement or techniques (e.g., [4])
arranged between the customer and vendors.

(2) During the reproduction phase, PRES automatically repeats
multiple replay attempts until a bug is reproduced. It also recon-
structs the complete information necessary for the next phase. Af-
ter each unsuccessful replay, feedback is provided for subsequent
replay attempts.

(3) During the diagnosis phase, PRES leverages the complete exe-
cution information from the reproduction phase and reproduces the
bug with 100% probability during each replay.

To improve efficiency in searching the unrecorded non-
deterministic space, PI-Replayer exploits the following ideas dur-
ing a reproduction phase:

• Leveraging execution sketches from production runs to

shrink the search space: The order of many non-
deterministic events (e.g., benign races) can be inferred from
execution sketches; therefore there is no need to explore al-
ternative orders during a reproduction phase. This filtering
process allows us to shrink the unrecorded non-deterministic
space in our exploration by up to 500,000 times.

• Aiming for bug reproduction instead of execution path/states

reproduction: As we discussed briefly, diagnosing a bug does
not require reproducing the exact same execution path and
states as in the original execution. Therefore, our objective
is to reproduce the bug, not the path/states. This relaxation
reduces the number of replay attempts for successful bug re-
production by 1.6-5 times, as our experimental results show.

Although a successful replay may not be exactly the same as
the original execution, it is at least similar. This is because
our PI-Replayer leverages execution sketches to monitor ev-
ery replay attempt, and aborts those which are off-sketch
(i.e., producing a different sketch from the one generated
by the original execution). Our experimental results show
that each time a bug is successfully reproduced, the execu-
tion path is only 0.11-0.19% different from the original.

• Searching space from location closest to failure: When
a replay fails, instead of searching the unrecorded non-
deterministic space randomly or from the beginning of the
execution, PI-replayer starts from the location closest to the
failure. Our experimental results show that this approach re-
duces the number of replay attempts by up to 6.5 times.

We have implemented PRES using the binary instrumentation
tool Pin [17]. We evaluated PRES on 8-core machines with
11 applications of various types including 4 servers (MySQL,
Apache, OpenLDAP, Cherokee), 3 desktop applications (Mozilla,
PBZip2, Transmission), and 4 scientific/graphics applications from
SPLASH-2 [38] (Barnes, Radiosity, FMM, LU). We used 13 rep-
resentative real-world concurrency bugs of different types: atomic-
ity violations, order violations, and deadlocks; data races and non
data-races; single and multiple variables. We obtained the follow-
ing results:

• PRES, with SYNC and SYS sketching schemes, imposed
low ( < 20%) recording overhead on most evaluated ap-
plications, and could successfully reproduce 12 out of 13
tested bugs, most within 10 replay runs. The FUNC and BB-
N sketching schemes could reproduce all tested bugs with
slightly higher overhead.

• The above low-overhead but coarse-grained recording
schemes were capable of reproducing concurrency bugs on
multi-processors because our intelligent PI-Replayer could
leverage feedback generated from unsuccessful replays. This
technique significantly reduced the number of replay at-
tempts needed for bug reproduction. Without feedback,

SYNC and SYS could only reproduce 4 of 13 bugs within

1000 attempts (the maximum limit of replay attempts in

our experiments).

• PRES was scalable across multiple processors. Specifically,
SYNC’s and SYS’s overheads remained small across differ-
ent configurations (2, 4, and 8-cores).

• Compared to atomicity or order violation bugs, deadlocks
usually required less production-run information to repro-
duce. SYNC sketch reproduced three evaluated deadlocks on
the first replay attempt, while adding only small (7%, 15%,
and 33%) overhead during the production run.
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Figure 4: The components and process flow of PRES system

2. BACKGROUND

The starting point of a deterministic replay In order to faithfully
reproduce a bug, a replay either starts from the beginning of the
program (if the execution is short) or a previous checkpoint. The
checkpointing technique has been thoroughly studied and widely
used in previous work [8,12,32,34], which shows that the overhead
(both space and time) of checkpointing is negligible or very small,
especially with infrequent checkpoint.

Our PRES system supports the both ways: replaying either from
the beginning of a program, or from a previous checkpoint. The
details of checkpointing systems can be referred to in previous
work [8, 12, 32, 34].

Source of non-determinism Replay for bug reproduction usu-
ally needs to reproduce non-deterministic events to ensure that the
re-execution is the same as the original execution. Some non-
deterministic events are common to both uni-processor and multi-
processor machines. These include I/Os, thread scheduling, system
call return values (e.g., timers), signals, etc. Although non-trivial,
these events can be handled with less than 10% overhead as demon-
strated by previous studies on uni-processor replay [12,32]. Due to
space limitation, the rest of this paper does not explain further on
how to handle these events, although our implementation deals with
all of them.

Multi-processor machines have two extra sources of non-
determinism. The first is the order of concurrent accesses (with
at least one write) to the same location by different threads that
execute simultaneously on different processors. For example, as
shown in Figure 1, there is a data race on buf_index. Concur-
rent execution of the two threads can generate different values of
buf_index, depending on how these statements are interleaved.
Since all threads are executing concurrently on different processors,
simply recording thread schedule is not enough for deterministic
replay. While many races are bugs (that is probably why program-
mers need deterministic replay to reproduce them for diagnosis),
some are benign and intended for various reasons [24, 40].

The second source is synchronizations (e.g., locks). If two con-
current threads on different processors are competing for the same
lock, who gets the lock first is non-deterministic. Therefore, to en-
sure deterministic replay, it is necessary to record the order of lock
acquisitions so that the same order can be enforced during replay.
Synchronizations implemented via shared variables (e.g., flags) can
be taken care of by handling the first source.

Previous work on deterministic replay for multi-processor
records almost all these sources of non-determinism, including in-
terleaving of conflicting shared memory accesses, which can add a
significant overhead because it has to monitor and log almost every
shared memory access.

3. PRES OVERVIEW

3.1 PRES Architecture and Process
As illustrated in Figure 3 in Introduction and Figure 4 above,

our PRES framework includes several modules for dealing with the
following three phases: (1) Phase 1—Production Run: A sketch
recorder records only important events to provide partial execution
information for possible off-line replay in case of a failure. (2)

Phase 2—Bug Reproduction: Four modules (Partial Information-
based (PI) Replayer, replay-recorder, monitor, and feedback gen-
erator) are used to systematically explore the unrecorded non-
deterministic space and reproduce the bug. They also provide the
complete non-deterministic information for the next phase needed
to reliably reproduce the occurred bug with 100% probability. (3)

Phase 3—Bug Diagnosis: A deterministic replayer uses the com-
plete information from phase 2 to reproduce the occurred bug reli-
ably for diagnosis. The following discussion briefly describes the
modules unique to PRES.

Sketch recorders only record important events. Therefore, there
could be many design choices. In order to effectively explore the
design space, we consider two factors: (1) recording overhead; (2)
usefulness for replay in case of failures. Section 4 will present five
different methods of execution sketching.

The partial Information-based Replayer (PI-Replayer) is
used in the bug reproduction phase. During each replay, at every
non-deterministic point such as synchronizations and shared mem-
ory accesses, it consults two information sources: (1) execution
sketches collected from the production run and (2) feedback from
the previous unsuccessful replay attempts. If information is pro-
vided by the former, PI-Replayer passively follows the production-
run outcome. If it is provided by the latter, PI-Replayer will decide
on an alternative choice for exploration. If no information is avail-
able, it is free to execute in any way. See more details in Section 5.

The replay recorder is a heavy-weight recorder that logs de-
tailed information of each replay. This is similar to full-information
recorders in previous work [5, 22]. The only difference is that our
recording is used only during the off-line bug reproduction phase
which is not performance critical, instead of during the produc-
tion run. It provides three benefits as discussed in the Introduction,
namely, (1) feedback to help subsequent replays to succeed; (2)
complete information for a diagnosis phase to do a 100% deter-
ministic replay; and (3) clues to programmers regarding the nature
and triggering conditions of the occurred bug.

The monitor tracks a replay execution and stops a replay attempt
when (1) the replay-run sketch deviates from the execution sketch
recorded in the production run, and is therefore highly unlikely to
reproduce the bug; or (2) the bug is successfully reproduced. This
module is used to improve the efficiency of probabilistic replay:
the earlier it stops a hopeless replay and moves on to a new try, the



quicker a production run bug can be reproduced. More details are
in Section 5.

The feedback generator analyzes the logs of previous unsuc-
cessful replays and gathers feedback for future replays or program-
mers’ diagnosis. In general, it tries to identify reasons why the
bug is not reproduced. This information will be provided to the
PI-Replayer to make alternative choices for subsequent replay at-
tempts. Details are in Section 5.

3.2 Information Leveraged by PRES
PRES leverages three types of information: (1) inter-thread

global order from the production run, (2) intra-thread local infor-
mation from the production run, and (3) feedback from previous
unsuccessful replays. The first type is used to synchronize threads
to repeat the production-run interleaving. Both the first and the sec-
ond are used by the monitor to check if a replay is still on the right
track. The third is generated during replay and is used to reproduce
non-deterministic events not recorded during the production run.

4. SKETCH-RECORDERS
The general function of our sketch recorders is to systematically

select important operations in the program and record the global
execution order of them (Figure 5 (a)). We refer to these impor-
tant operations as recording points, unselected operations as non-

recording points, and the execution between two recording points
as a chunk (Figure 5 (b)).

Our sketching schemes record the total order of recording points,
which sets up a partial order among chunks. Specifically, the execu-
tion order between accesses that reside in non-overlapping chunks
(e.g., I1 and I3 in Figure 5 (b)) is implicitly recorded through
recording points. On the other hand, the order between accesses
that reside in overlapping chunks (e.g., I2 and I3 in Figure 5 (b)) is
not recorded. Therefore, in contrast with traditional deterministic
replay systems [5, 22], this unrecorded non-deterministic informa-
tion needs to be intelligently reconstructed by our PI-Replayer for
bug reproduction.

Intuitively, the fewer the recording points, the lower the record-
ing overhead during the production run, but more replay attempts
may be required to reproduce a bug.

A running example: Figure 6 (a) shows an example that we will
use through out this paper. This code snippet is simplified from a
SPLASH-2 macro bug. If executed correctly, thread 1 should print
out a result assigned by the myid–0 thread. Unfortunately, cer-
tain interleaving, as demonstrated by the arrows in the figure, can
cause a wrong output. Specifically, when the child thread (thread 2)

get_lock ( lock-i )

Record <thread-id, 

               global_counter++, 

               instruction-i>;

Execute instruction-i

release_lock ( lock-i )

I1

I2
I3

Thread 1  Thread 2

Recording points

c

h

u

n

k

s

Unrecorded points

(a) (b)

Figure 5: (a) Recording algorithm; (b) Recording points and

chunks. lock-i is a lock variable. It was used to protect the

global counter for the sake of obtaining global order among

recording points from different threads. To reduce lock con-

tention, we used a hashed lock for lock-i whenever applicable.

acquires the lock first, it obtains myid–0 and is in charge of filling
the final result. Due to lack of synchronization, the parent thread
(thread 1) mistakenly reads the shared variable result and prints
it out before thread 2 updates it. We will use this example to show
how different recorders would do the “sketches.”

Below we present five sketching methods that trade reproduction
probability for recording overhead at different levels, and two basic
schemes (Base and RW) that represent two extremes of the trade-
off for comparison.

(1) Baseline recorder (Base). Our baseline recorder only records
inputs, signals, thread scheduling and other data necessary for de-
terministic replay on uni-processors [12,32]. It does not record any
global order of events from different threads beyond those implied
by thread schedules and asynchronous events.

(2) Synchronization recorder (SYNC). In addition to the in-
formation recorded in Base, this scheme records the global or-
der of every synchronization operation. Specifically, instrumen-
tation is put at the return of each lock/unlock operation (e.g.,
pthread_mutex_lock), conditional wait operation, or other
synchronization primitive (note that application-specific synchro-
nizations implemented via shared variables are not recorded). As
shown in Figure 6 (b), in this example, only the order among the
four lock/unlock operations is recorded.

(3) System call global order recorder (SYS). In addition to syn-
chronization global order, this scheme also records the global order

of all system calls. Specifically, additional recording points are set
right after the return of every system call. Thread id, the value of a
global order counter, and the name of the invoked system call will
be recorded in the log. As shown in Figure 6 (c), in this example,
one more recording point is added upon those selected by SYNC.

(4) Function global order recorder (FUNC). 3 This scheme
records the global order of every function call (entry points or re-
turn points). At each recording point, thread-id, global counter, and
the name of the function are recorded. To further reduce overhead,
we prune those functions that never access shared variables and
therefore contain no non-deterministic events. Figure 6 (d) shows
the recording points selected by FUNC.

(5) Basic-block global order recorder (BB) This scheme selects
recording points at finer granularity, i,e., every basic block (a code
block that does not contain any form of jump instructions). Right
before the first instruction of each basic block is executed, a global
counter, thread id, and the program-counter of that instruction are
recorded. BB will inevitably introduce more overhead than the
above four schemes. In our prototype, we used program analy-
sis to avoid recording those basic blocks that only accessed private
variables. Figure 6 (e) demonstrates BB sketching.

(6) The N-th basic block global order recorder (BB-N) This
scheme optimizes BB by selecting every N-th basic block for
recording. The purpose of this method is to explore the spectrum
of trading reproduction probability for lower overhead.

(7) Shared reads and writes (RW) This scheme is the same as
previous software-only multi-processor deterministic replay sys-
tems [5, 22], recording the global order of accesses to the same
shared variables from different threads. Each shared variable has
its own order of accesses. There is no need for a global order of all
shared accesses. We can apply some transitive-reduction optimiza-
tions [39]. However, they can only help reduce the log sizes, not

3While the names of SYS, SYNC and FUNC may be easily con-
fused with the R2 idea, they are very different, as discussed later in
Section 8.



   int gid = 0;
   /* create child thread */
  
   worker ( ) {

     ...

     lock ( L );
     myid = gid;

     gid = myid+1;

     unlock (L);
     …

     /* work */

     ...

    

   } 

   tmp = result;   
   printf (“%d\n�, tmp);

   worker ( ) {

     …
     lock ( L );

     myid = gid;

     gid = myid+1;
     unlock (L);

     …

     /* work */

     ...

     if ( myid == 0 ) {
        result = data;

     }

   }

  

Thread 1

(parent thread)

Thread 2

(child thread)

   worker ( ) {

     

     lock ( L );
   

     

     ...

   }

   tmp = result;  

   printf (“%d\n , tmp);

   worker ( ) {

     

     lock ( L );
   

     ...

     if ( myid == 0 ) {

        result = data;
     }

   }

  

Thread 1

(parent thread)

Thread 2

(child thread)

   worker ( ) {

     

     lock ( L );
     

     

     ...

   }

   tmp = results;  

   printf (“%d\n�, tmp);

   worker ( ) {

     

     lock ( L );
     

     ...

     if ( myid == 0 ) {

        result = data;
     }

   }

  

Thread 1

(parent thread)

Thread 2

(child thread)

Thread 1

(parent thread)
Thread 2

(child thread)

(b) SYNC Sketch (c) SYS Sketch

(a) Production run interleaving 

Wrong 
output

Thread 1

(parent thread)
Thread 2

(child thread)

(f) RW 

   worker ( ) {

     

     lock ( L );
    

     ...

   } 

   tmp = results;  

   printf (“%d\n , tmp);

   worker ( ) {

     

     lock ( L );

     

     
     ...

     if ( myid == 0 ) {

        result = data;
     }

   } 

  

Thread 1

(parent thread)

Thread 2

(child thread)

(d) FUNC Sketch

An example of failure-triggering interleaving 

(simplified from a real  SPLASH2 macro bug).

 

The printf in Thread 1 is supposed to print 

out the result generated by Thread 2.

In above buggy interleaving, printf is done 

before result is correctly assigned, and 

therefore outputs a wrong result.

     myid = gid;

     gid = myid+1;

    unlock(L);
    

     myid = gid;

     gid = myid+1;

    unlock(L);
    

     myid = gid;

     gid = myid+1;

    unlock(L);
    

     myid = gid;

     gid = myid+1;

    unlock(L);
    

     myid = gid;

     gid = myid+1;

    unlock(L);
    

     myid = gid;

     gid = myid+1;

    unlock(L);
    

   worker ( ) {

     

     lock ( L );
     

     ...

   }

  tmp = results;  

   worker ( ) {

     

     lock ( L );
     

     
     ...

     if ( myid == 0 ) {

        result = data;

     }

   } 
  

     myid = gid;

    unlock(L);

    

     gid = myid+1;

    

     myid = gid;

    unlock(L);

    

     gid = myid+1;

    

  printf (“%d\n�, tmp);

   worker ( ) {

     

     lock ( L );
     

     ...

   }

  tmp = results;  

   worker ( ) {

     

     lock ( L );
     

     
     ...

     if ( myid == 0 ) {

        result = data;

     }

   } 
  

     myid = gid;

    
     gid = myid+1;

    

     myid = gid;

    

  printf (“%d\n�, tmp);

unlock(L);

    

     gid = myid+1;

    
unlock(L);

    

(e) BB Sketch

Figure 6: Sketch recording examples. The production run interleaving that caused failure is shown in (a). The gid and result are

shared variables; The myid is local. Underlined code in figure (b–f) shows the recording points under different sketches. With each

sketch subsuming previous ones, more and more recording points are taken from SYNC to RW.

the recording time overhead, since almost every shared access still
needs to be instrumented.

Subsuming relationships Except for BB-N, between any two
consecutive methods presented above, there is a subsuming rela-
tionship. For example, anything recorded by SYNC would also
be recorded by SYS. Similarly, anything from SYS would also be
recorded by FUNC. As every function entry or return starts a new
basic block, BB subsumes FUNC. Since we only record the orders
of basic blocks with at least one shared access, RW also subsumes
BB. Such subsuming relationships give us the opportunity to ex-
amine the trade-offs between recording overhead and reproduction
probability in an incremental spectrum of execution sketches.

Other possible sketching schemes It is certainly conceivable to
add other methods, such as every N-th function, the combination
of FUNC and BB-N, etc. As a starting point for demonstrating our
main idea, we focus on these five methods. We hope that our idea
will inspire others to explore more effective methods.

5. PARTIAL INFORMATION-BASED

REPLAYER

5.1 Basic PI-Replayer

PI-Replayer periodically consults the execution sketch generated
during the production run to maintain the correct execution order
among recording points. Specifically, right before a thread executes
a recording point, PI-Replayer checks the sketch to make sure that
all prior recording points from other threads have been executed.

For operations that are not recorded in the sketch, PI-Replayer
is free to execute them in any way. In the next subsection, we will
describe how feedback is leveraged from previous unsuccessful re-
plays to guide the execution of such operations.

The Monitor module keeps a close eye on each replay for the
following two purposes.

(1) Detecting off-sketch executions This task is accomplished
by comparing replay run events against execution sketches for in-
consistencies. For example, with SYNC sketch, if an extra synchro-
nization is performed that does not match the sketch, the replay is
considered off-sketch.

(2) Detecting bug reproduction To detect whether a
production-run failure has been successfully reproduced, the PRES
Monitor requires information from programmers regarding the fail-
ure symptoms. For crash failures, it is straightforward, as PRES can
catch exceptions. For incorrect results, it is more complicated. Pro-
grammers need to provide conditions just like conditional break-
points to examine outputs for anomalies. To detect whether a dead-
lock bug is successfully reproduced, the monitor uses a periodic
timer to check for progress. To be conservative, it does not claim
a deadlock situation the first time it detects a lack of progress. It
waits for a few rounds to see if the program is still stuck in a sim-
ilar state. PRES can also leverage testing oracles that are usually
available from regression testing to detect failures, and employ bug
detection tools [30, 40] during replay to detect potential bugs in
addition to visible failures. Programmers can also use PRES inter-
actively to learn whether a replay has been successful or not.

Note that our monitor does not need to check failure conditions
at every instruction. It only needs to perform such a check at every



visible event, such as exceptions, timer signals, and outputs. There-
fore, overhead is not an issue, especially since the monitor operates
off-line during a bug reproduction phase, instead of during produc-
tion runs.

5.2 Improve PI-Replayer with Feedback

5.2.1 The cause of unsuccessful replays

Even all sketching schemes other than RW also record almost
all non-deterministic events except for the global order of some
shared memory accesses. Therefore, the only possible cause for an
unsuccessful replay is un-recorded data races. For example, Fig-
ure 7 shows an unsuccessful replay with FUNC sketch. Since the
execution order between S2 in thread-2 and S1 in thread-1 is not
recorded by FUNC, a replay can execute these two instructions in
any order. However, if S2 is executed before S1, the bug will not
be reproduced.

Therefore, the goal of our feedback generator is to identify race
pairs (such as S1 and S2 above) that are responsible for unsuccess-
ful replay attempts, so that subsequent replays can enforce a correct
order between them.

Note that feedback generation is critical to bug reproduction, be-
cause most bug-triggering execution orders among race instructions
have very low probability of occurring without external perturba-
tion, as indicated by [26]. Therefore, if we do not leverage feed-
back, relying only on random re-execution, it will be very difficult
to reproduce concurrency bugs with partial information. This will
be further validated in our experimental results (Section 7.2).

Moreover, feedback from unsuccessful replays provides useful
clues for understanding the bug triggering conditions for occurred
bugs. In the example above, PRES could inform programmers that
if S2 executes before S1, the bug will not manifest. This informa-
tion would help the programmers narrow down the possible causes
of the bug.

5.2.2 Replay-time recording for feedback generation

In order to generate feedback, we need to record every non-
deterministic event during replay. Since replay is conducted as off-
line post-mortem analysis by programmers, it is less performance
critical. Therefore, during each replay, we use the RW recording s
cheme to record the global order of accesses to each shared vari-
able. The overhead for each replay does not increase much over
previous deterministic replay schemes [14], since they also need
to instrument shared accesses to enforce the recorded global or-
ders. Moreover, the replay-time recording can be made incremen-
tally since it only needs to record the order of memory accesses in
those new execution paths that previous replays did not encounter.

Replay

timeline

   worker ( ) {

       ...

 } // end of worker

 S1: tmp = results;

   printf (“ %d\n”, tmp);

   worker ( ) {

     …

if ( myid == 0 ) {

     S2: result = data;

     }

} // end of worker

Thread 1

(parent thread)

Thread 2

(child thread)
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guarantee 

the bug 
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Figure 7: An example of unsuccessful replay. The production run

interleaving of this example is shown in Figure 6 (a). The arrow shows

the production-run sketch recorded by FUNC.

5.2.3 Generating and leveraging feedback

Our PI-Replayer conducts a repeated and automated process,
i.e., replaying, generating feedback, using feedback, and replaying
again. Specifically, after an unsuccessful replay run, the following
steps are conducted:

Step 1: Identifying races. The feedback generator first identifies
all dynamic race instruction pairs in the previous unsuccessful re-
play using an existing race detection algorithm (happens-before al-
gorithm [7,27]). Specifically, our trace analyzer processes the trace
of an unsuccessful replay (generated by the replay recorder) and
calculates the vector-timestamp (based on lock-operations, thread-
creation/join, and barrier operations) for each memory access. It
then identifies conflicting instructions whose vector-timestamps are
not ordered.

Step 2: Filtering order-determined races. Not every race pair
is a suspect for causing the unsuccessful replay. Some race pairs’
production-run execution orders are already recorded or implied by
the production-run sketch. In other words, we know the exact or-
ders that they should follow, and our replayer always guarantees
the correct order in every replay. Therefore, they are definitely in-
nocent. We filter them and add remaining race pairs into our sus-
pect set. Specifically, the order of a pair of instructions is implied
by the sketch if (1) they are both recording points; or (2) their cor-
responding chunks are completely ordered in the sketch (e.g., I1

and I3 in Figure 5 are ordered; I2 and I3 are not). After the prun-
ing, the remaining race pairs are identified and added to the suspect
set. In Section 7, we will show the effect of this filtering process in
different sketching schemes.

Step 3: Selecting suspect. From the suspect set, PI-Replayer
follows certain policies (described in Section 5.2.4) to flip the exe-
cution order of one pair in the next replay.

Step 4: Starting next replay PI-Replayer executes next replays
deterministically until the suspect racing pair is reached (a de-
terministic execution is feasible because every non-deterministic
event in the previous replay was recorded). At this point, PI-
replayer controls the program to execute the two race instructions
in the opposite order from the last run. Once the execution order
of this race pair is flipped, the rest of the replay is the same as the
default replayer.

The above steps may be repeated many times until the bug is
reproduced. The mistakes made by early replays will be corrected,
and PI-Replay will gradually get closer to bug reproduction. Since
there are a limited number of execution paths and therefore a finite
number of races, repeating the above process will eventually find a
correct interleaving and successfully reproduce the bug.

5.2.4 Challenging design issues

How to select a suspect race pair for the next replay? Although
the main idea of selecting and flipping races is straightforward,
in practice it is non-trivial for three reasons. (1) For each replay,
more than one race pairs could be identified as suspect. Which one
should we select to flip first? (2) If the next replay run still fails,
new suspect race pairs could be generated. How shall we priori-
tize them along with the old ones? (3) It is possible that more than
one race pair’s execution order needs to be flipped in order to cor-
rect an unsuccessful replay. How shall we explore these different
combinations?

To address these challenges, PI-Replayer uses a divide and con-
cur strategy. First, it uses a depth-first policy to decide which his-
toric, unsuccessful replay to revise for the next replay. Second,
from the selected historic replay, PI-Replayer follows a close-to-

failure-first principle to choose a suspect (unfiltered) race to flip in
the next replay.
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Figure 8: Coordinated replay runs

To implement the above strategy, PI-Replayer uses two stacks,
one called ReplayStack which records historic replays that are still
worth exploring, and the other called RaceStack which records data
races to be flipped in future replays. When a replay fails, PI-
Replayer checks whether this replay has made more progress (i.e.,
executing more sketching points) than the previous historic replay,
and if it has revealed any new suspect races. If so, this replay is
pushed into ReplayStack, and newly revealed races are pushed into
RaceStack according to their order of occurrence (i.e., the most re-
cently encountered race is inserted last). PI-Replayer also records
the association between this replay and the newly inserted races.

For the next replay, PI-Replayer follows the first replay on the
top of ReplayStack, and flips the race on the top of RaceStack.
When PI-Replayer has explored all races associated with (i.e.,
newly revealed by) a replay (note that it is not all races encoun-

tered during a replay), this replay is popped out of ReplayStack
since it does not provide any unique information for exploration.

Figure 8 shows a simple example of how PI-Replayer explores
the unrecorded non-deterministic space based on the above strat-
egy. In Section 7, we will show the quantitative benefit of the above
search strategy over alternative ones.

How to guarantee the suspect is always recorded? In order to
record both instructions of a suspect race pair, we should not abort
an unsuccessful replay too early. In our experiments, we observed
a few cases where an off-sketch deviation was detected before the
second instruction of the suspect race pair was executed. To han-
dle this problem, when an off-sketch is detected in one thread, PI-
Replayer does not stop the other threads until they reach the end of
their current chunks (i.e., the next recording point). We have theo-
retical proof that this strategy will address the problem. We omit it
due to space limitations.

Transitive-reduction optimization For more efficient replay, PI-
Replayer also uses transitive reduction (similar to that in FDR [39])
to avoid picking the race pairs whose execution-order flipping can
be automatically achieved by flipping some other race pairs.

6. EVALUATION METHODOLOGY
We implement PRES (including all five sketching methods) us-

ing Intel’s dynamic instrumentation tool, Pin [17], for recording
and also for replay4. The bug reproduction phase is entirely au-
tomated. The experiments are conducted on an 8-core Intel Xeon
machines (2.33GHz, 4GB of memory) and Linux version 2.6.9.

Evaluated replay schemes Our experiments evaluate and compare
PRES sketching schemes and three other replay systems including
Base, Pin, and RW, as illustrated in Table 1. We use Pin to show
the overhead introduced by Pin (without any instrumentation).

4Our overhead results would be better with static instrumentation
tools, but due to the unavailability of static tools that work for
multi-threaded server applications, we chose Pin and paid the un-
necessary overhead of “dynamic” instrumentation.

PRES schemes

SYNC record/replay synchronization (lock) order
SYS record/replay the global order of all system calls

FUNC record/replay the global order of every function

BB-2 record/replay the global order of every other basic
block

BB-5 record/replay the global order of every five basic
block

BB record/replay the global order of every basic block

Schemes Representing Previous Techniques

Base Baseline: no global order recording

Pin Simply conduct BASE upon the PIN instrumentation
framework (base component of all PRES and RW
schemes).

RW record/replay all shared memory accesses

Table 1: Evaluated PRES schemes

Application Size (LOC) Application description

Apache 1.9M Web server

Cherokee 88K Web server

MySQL 1.9M Database server

OpenLDAP 0.3M Directory Access Server

Mozilla 3.4M Web browser suite

PBZip2 2.0K Parallel BZip2 file compressor

Transmission 86.4K BitTorrent client

Barnes 3.0K Barnes N-Body algorithm (SPLASH-2)
FMM 4.9K FFT N-Body algorithm (SPLASH-2)

LU 1.0K LU matrix multiplication (SPLASH-2)

Radiosity 24.5K Graphics rendering (SPLASH-2)

Table 2: Evaluated applications

Bug Type ID Bug description

Apache#1 Non-deterministic log-file corruption
Single Cherokee Non-deterministic buffer corruption

Atomicity variable MySQL#1 Non-deterministic DB log disorder
Violation Mozilla#1 Wrong results of java-script execution
Bugs PBZip2 Random crash in file decompression

Multi-
Mozilla#2

Unsynchronized accesses to array
variable and array-flag causes crash

Deadlock OpenLDAP Contention on two locks causes hang
Apache#2 Circular wait for a lock and a queue
MySQL#2 Wrong order of two locks causes hang

Barnes
Problems in platform-dependent

Order macro (introduced by external
Violation LU macro providers) cause various wrong
Bugs Radiosity outputs on execution statistics

Transmi A shared variable is read before
-ssion it is properly assigned

Table 3: Evaluated real world concurrency bugs

Evaluated applications and real-world concurrency bugs We
use 11 representative multi-thread open-source applications (shown
in Table 2), including 4 widely used servers (Apache, Cherokee,
MySQL, and OpenLDAP), 3 desktop/client applications (Mozilla,



Applications Pin SYNC SYS FUNC BB-5 BB-2 BB RW

Server Applications (throughput degradation)

Apache 4.23% 7.05% 10.91% 15.55% 18.18% 19.70% 36.32% 53.24%
MySQL 13.48% 15.48% 15.87% 18.06% 32.59% 37.16% 43.93% 75.35%

Cherokee 7.04% 7.24% 7.39% 7.87% 7.88% 8.06% 8.99% 28.45%

OpenLDAP 19.35% 33.03% 33.58% 38.29% 48.01% 52.64% 59.55% 76.20%

Desktop Applications (overhead)

Mozilla 32.55% 59.58% 60.63% 83.89% 598.01% 858.86% 1213.90% 3093.59%

PBZip2 17.46% 18.00% 18.07% 18.43% 595.43% 1066.64% 1977.96% 27009.79%

Transmission 5.9% 14.50% 21.33% 32.75% 30.34% 33.98% 41.92% 71.80%

Scientific Applications (overhead)

Barnes 2.53% 6.50% 6.83% 427.76% 424.27% 1122.343% 2351.02% 28702.26%

Radiosity 16.01% 16.11% 16.19% 779.05% 480.35% 1181.73% 2425.53% 27209.67 %
FMM 8.87% 17.50% 17.50% 47.75% 659.41% 1366.94% 2697.55% 31736.43 %

LU 9.23% 11.01% 12.06% 86.75% 668.80% 1315.89% 2633.13% 31018.02 %

Table 4: Recording overhead of each sketching scheme over bare application execution (without Pin or PRES) on an 8-core. For

servers, the overheads are measured as the percentage reduction in throughput using publicly available performance benchmarks.

For desktop and scientific applications, overheads are measured as the percentage increment in elapsed time. The “Pin” column

shows Pin’s overhead without PRES.

Application Bug Id. Bug Type Base SYNC SYS FUNC BB-5 BB-2 BB RW

Server
Applications

Apache#1 atomicity NO 96th 28th 7th 8th 7th 1st 1st
Apache#2 deadlock NO 1st 1st 1st 1st 1st 1st 1st
MySQL#1 atomicity NO 3rd 3rd 2nd 3rd 2nd 1st 1st
MySQL#2 deadlock NO 1st 1st 1st 1st 1st 1st 1st
Cherokee atomicity NO 33th 27th 24th 25th 8th 7th 1st

OpenLDAP deadlock NO 1st 1st 1st 1st 1st 1st 1st

Desktop
Applications

Mozilla#1 atomicity NO 1st 1st 1st 1st 1st 1st 1st
Mozilla#2 multi-var NO 3rd 3rd 3rd 4th 4th 3rd 1st
PBZip2 atomicity NO 3rd 3rd 2nd 4th 3rd 3rd 1st

Transmission order NO 2nd 2nd 2nd 2nd 2nd 2nd 1st

Scientific
Applications

Barnes order NO 10th 10th 1st 74th 19th 1st 1st
Radiosity order NO NO NO 152th 5th 1st 1st 1st

LU order NO 2nd 2nd 1st 2nd 2nd 1st 1st

Table 5: The number of replays to reproduce the bug during the reproduction phase. NO means that the bug was not successfully

reproduced within 1000 tries—the maximum limit set in our experiments. “Base” means only recording those events that are neces-

sary for deterministic replay on a uni-processor. Note that after a bug is successfully reproduced in this phase, it can be reproduced

on every replay during the diagnostic phase with PRES.

PBZip2, and Transmission), and 4 graphics/scientific applica-
tions from SPLASH-2 [38]. These applications cover both I/O-
bounded (e.g., Apache, Cherokee, MySQL, OpenLDAP) and
CPU-bounded (e.g., SPLASH-2) applications; as well as both
lock-synchronization (e.g., all server applications) and barrier-
synchronization applications (e.g., LU).

In our experiments, we evaluate how different replay schemes
can help reproduce 13 real-world concurrency bugs (Table 3) of
different types in the 11 applications. All of the bugs have caused
production-run failures that were reported by real-world users. In
addition, these 13 failures have covered most major types of con-
currency bugs (as reported by a recent characteristic study [16]):
atomicity violations (both single-variable and multi-variable ones),
order violations, and deadlock bugs. Some of the atomicity vio-
lation and order violation bugs are data race bugs. We follow the
same categorization as by Lu et al. [16].

7. EXPERIMENTAL RESULTS

7.1 Overall Results
Table 4 shows the overhead for various sketching schemes. Ta-

ble 5 shows the number of replays needed to reproduce those real
world bugs during a bug reproduction phase. More details about the
recording overhead and log sizes will be presented in Section 7.7.

Overall, SYS, SYNC and FUNC are all reasonably good. For
performance-critical applications, SYS and SYNC should be the
way to go since they have small overheads (6-60% overhead
for non-server applications, 7–33% throughput degradation for
servers) and can reproduce 12 out of the 13 evaluated bugs within
mostly fewer than 10 replay attempts. Comparing to RW (which is
similar to previous approaches), the performance improvement is
huge: 3–4416 times overhead reduction for non-servers and up to
3 times higher throughput for servers.

For applications that are less sensitive to overhead, FUNC and
BB-5 might be better alternatives since they can reproduce all 13
tested bugs with mostly fewer than 5 replay attempts. Of course,
their better capability in bug reproduction comes with the cost of in-
creased overhead: they have decent performance for server (8–48%
throughput degradation), but relatively high overhead (48–779%)
(although still much smaller than previous work) for CPU-intensive
SPLASH-2 benchmarks. FUNC has moderate overheads (18–84%)
for desktop applications.

Above results indicate that PRES is quite feasible and can
present multiple choices to developers based on their application
need. Note that the good bug reproduction results of low-overhead,

but coarse-grained, sketching schemes such as SYS and SYNC are

all due to our intelligent PI-Replayer that can leverage partial in-

formation from production runs and systematically explore the un-

recorded non-deterministic space in an intelligent way (leveraging



feedback from unsuccessful ones). For example, among the 12 bugs
that SYNC and SYS reproduced, only 4 of them can be reproduced
at their first attempts. All the other 8 bugs need more than one re-
play, relying on several rounds of feedback analysis to reproduce.
Later in Section 7.2, we will compare the bug reproduction with
and without feedback to further demonstrate the benefit.

BB-2 has better bug reproduction results in most cases but un-
fortunately incurs larger overheads than FUNC and BB-5. Interest-
ingly, it is less efficient in reproducing a few bugs such as Barnes
than FUNC and SYS. The reason is that its more detailed sketch in-
formation has caused the PRES monitor to detect more off-sketch
replays and perform some unnecessary replay abort. Although a
replay path may be different from production run (for example, it
may take a few more iterations of waiting in a “while(flag)” loop),
the bug could still be successfully reproduced if we continue the re-
play. Such case does not happen with BB because it contains more
information to guide the execution to stick to the right path.

As Base records only uni-processor-related non-determinism, it
cannot reproduce any tested bugs with 1000 tries, which matches
previous results on concurrency testing [26] and also the real-
ity faced by programmers. On the other hand, with all non-
deterministic information, RW can reproduce all bugs at the first
try, but its overhead is too large to bear (on average, 212X for non-
servers, and up to 76.2% server throughput degradation).

Different types of applications have different characteristics
(CPU bound vs I/O bound), and different data sharing and synchro-
nization patterns. Therefore, the trade-offs of various sketching
schemes are also different. For server applications, FUNC seems
to present the best trade-offs. It only has 20% average through-
put degradation, and can successfully reproduce the five evaluated
server bugs within 1–24 replay attempts.

For desktop and scientific applications, SYNC provides the best
trade-offs. Especially, those applications have less CPU idle time
than server applications so that they have relatively higher record-
ing overhead with the fine-grained sketching schemes like FUNC,
BB-N, and BB. Moreover, as we said above, detailed sketch infor-
mation may cause unnecessary replay abort especially at their cus-
tomized synchronizations. Generally, the more threads are involved
in a certain race condition (e.g., a customized barrier), the more re-
play attempts are required with fine-grained sketching schemes.

Different types of concurrency bugs may have different require-
ment on the amount of information needed for reproduction. Our
results show that deadlocks are easier to reproduce than atomicity
violation and order-violation bugs since the former in many cases
are only related to synchronizations whereas the latter are usually
related to shared memory accesses. SYNC reproduces 3 evaluated
deadlocks on the 1st replay while adding only small (7%, 15%, and
33%) overhead during production runs. Of course, for deadlock
that involves shared memory accesses in addition to synchroniza-
tion operations, it may take multiple replay attempts for SYNC or
SYS to reproduce.

7.2 The Effect of Feedback Generation
Our feedback mechanism has greatly improved the efficiency

of bug reproduction and enabled the effectiveness of all PRES
schemes, especially those coarse-grained ones such as SYNC and
SYS. Table 6 uses three applications (Apache, PBZip2 and Barnes)
as examples and compares the bug reproduction process between
with and without feedback. As we can see, after a first unsuccess-
ful replay attempt, without feedback, no scheme, except BB-2 for

Apache, can reproduce these three bugs within 1000 tries. In

other words, without feedback, they are not much better than

Applications SYNC SYS FUNC BB-5 BB-2 BB

Apache#1
w/ 96th 28th 7th 8th 7th 1st

w/o NO NO NO NO 754th 1st

PBZip2
w/ 3rd 3rd 2nd 4th 3rd 3rd

w/o NO NO NO NO NO NO

Barnes
w/ 10th 10th 1st 74th 19th 1st

w/o NO NO 1st NO NO 1st

Table 6: Benefit of feedback generation in bug reproduction

— a comparison on # of replays needed to reproduce bugs.

NO means that the bug was not successfully reproduced within

1000 tries.

Bug Id. Base SYNC SYS FUNC BB-5 BB-2 BB

Apache#1 54390 1072 274 33 25 25 6

Apache#2 33176 190 97 12 11 8 3

MySQL#1 39983 2 2 2 2 1 0

Cherokee 133 86 58 16 36 7 3

Mozilla#1 36258 317 310 14 72 60 42
Mozilla#2 1067074 4 4 2 3 3 2

PBZip2 667 326 318 1 6 4 4

Transmission 255 240 172 6 6 6 4

Table 7: Effects of race filtering using sketch information. This

table shows the number of dynamic benign data races to be ex-

plored with different sketch schemes. Base shows the number

of dynamic benign races in the original execution. With dif-

ferent sketching schemes, PI-Replayer filters out those races

whose orders at the original execution are determined by the

global order of sketching points (e.g., function entry points).

Base (reasons explained in Section 5.2.1). With feedback, these
bugs can be reproduced mostly within 10 tries. Similar results have
also been observed for all other bugs and applications. These re-
sults demonstrate the significant benefit of feedback generation.

7.3 The Effect of Race Filtering
When a replay fails, the feedback generator identifies dynamic

data races in the unsuccessful replay, and picks one race pair to
flip for the next replay. Since the execution order of some race
pairs are already recorded or implied by the production-run sketch,
PRES filters such order-determined races.

Table 7 shows the benefit of such filtering process. First, be-
fore any filtering (as shown with Base), applications can encounter
many dynamic benign races during execution. Fortunately, since
PRES records the global order of sketch points and thereby can de-
termine the order for the significant number of such benign races,
especially with fine-grained sketching schemes such as FUNC, BB-
N, and BB. For example, with FUNC, only 1-33 benign races
are left after filtering. Benefiting from this, the unrecorded non-
deterministic space that PRES explores is significantly reduced to
be practical.

7.4 Bug vs. Execution Reproduction
The PRES targets for bug reproduction instead of execution-path

reproduction. However, since PRES strictly follows the sketch in-
formation from the production run, a successful bug-reproduction
replay is still very similar to the original execution. As shown in
Table 8, even with SYNC, a coarse-grained sketching scheme, the
execution path of a successful bug-reproduction replay is only 0.11-
0.19% different from those of the original execution.

We also modify PI-Replayer to claim success only after the exe-
cution path is reproduced. This is accomplished by recording only
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Figure 9: Scalability of PRES

Applications SYNC SYS FUNC BB-5 BB-2

Mozilla#2 0.11% 0.11% 0% 0% 0%

PBZip2 0.19% 0.19% 0% 0% 0%

Table 8: Percentage execution path difference between a suc-

cessful bug-reproduction replay and the original execution.

The execution path difference between two runs is calculated

by using the editing distance between the basic-block traces of

these two runs. A percentage is computed using the difference

over the length of the basic block trace of the original execution.

Applications SYNC SYS FUNC BB-5 BB-2 BB

Mozilla#2
BR 3rd 3rd 3rd 4th 4th 3rd
ER 16th 16th 4th 4rd 4th 3th

PBZip2
BR 3rd 3rd 2nd 4th 3rd 3rd
ER 5th 5th 2nd 4th 5th 3rd

Table 9: The number of replays for bug reproduction (BR) vs.

those for execution reproduction (ER)

local basic block traces from each thread during the original execu-
tion (with only slightly increased overhead since no synchroniza-
tion is need to obtain global order). Then these traces are used to
detect/abort off-path replay attempts.

Table 9 shows the number of replays required for each sketch-
ing scheme to reproduce the exact same execution as the original
execution. While FUNC and BB do not require many additional
replay attempts to reproduce the exact same execution path, SYS
and SYNC require 1.6-5 times more attempts than when targeting
for bug reproduction.

7.5 Scalability

We compare the overheads of various sketching schemes over
different number of processors, 2, 4 and 8-cores in Figure 9. One
factor would increase the relative overheads with the number of
processors: more lock contention in obtaining the global order of
recording points. On the other hand, the parallelization of log file
writes (one log file per thread) can help reduce the relative over-
heads. For FMM and Radiosity, the first factor dominates, so the
relative overheads all increase with the number of processors. As
MySQL is more I/O bounded, the first factor has less effect on
the performance, and therefore the relative overheads remain sta-
ble across all three configurations.

The relative overheads with SYNC, SYS, and FUNC are small
across all three configurations. For example, in the case of FMM,

Applications SYNC SYS FUNC BB-5 BB-2 BB

Apache#1
CFF 96th 28th 7th 8th 7th 1st
CBF 499th 116th 14th 10th 10th 1st

Mozilla#2
CFF 3rd 3rd 3rd 4th 4th 3rd
CBF 5th 5th 3rd 3rd 4th 4th

PBZip2
CFF 3rd 3rd 2nd 4th 3rd 3rd
CBF 17th 17th 13th 7th 8th 3rd

Table 10: A comparison between our Close-to-failure-

first(CFF) ranking scheme and an alternative one, Close-to-

beginning-first(CBF), for suspect selection

SYNC and SYS impose only 5.2% and 10.6% on 4-cores (in con-
trast to 636% overhead by SMP-Revirt [8]), respectively. In Ra-
diosity, SYNC and SYS add 6.2% and 11.8% overhead on 2-cores
(in contrast to 770% overhead by SMP-Revirt [8]).

7.6 The Effect of Suspect Selection Scheme
Our feedback mechanism explores the suspect data race set

based on close-to-failure-first scheme. The table 10 compares our
suspect selection scheme with an alternative one, referred as close-
to-beginning-first. With the scheme, PRES picks the data race clos-
est to the beginning of a program first. Note that it still uses depth-
first-search, which means that during a replay by flipping a certain
data race R, if more suspect races are observed on the new explored
path, PRES picks one of them (based on close-to-beginning-first)
for the next replay while still preserving the flipped order of R.

Since the coarse-grained schemes such as SYNC and SYS tend
to have more unfiltered data races on a new explored path than
other sketching schemes, the benefit of the close-to-failure-first
scheme is more visible. From our observations, a bug has relatively
short propagation period to a manifestation point, and therefore our
close-to-beginning-first is better than the alternative.

7.7 Production-run Performance Details
The number of recording points The overhead differences
among different schemes can be explained by their different record-
ing granularity. In Table 11, SYNC and SYS conduct coarse-
grained sketching, and their recording frequencies are much less in-
tensive than other schemes. Consequently, they have smaller over-
head than others.
Production-run log size In Table 11, SYNC and SYS have the
smallest log sizes. Compared to hardware-based recording ap-
proaches, log size is much less critical in PRES because logs can
be easily written to disks in software (in background). With the in-



Application SYNC SYS FUNC BB-5 BB-2 BB RW

Apache #RP(thousand/req) 1.03 1.71 190.10 128.52 317.17 768.92 2076.38
Log size(KB/req) 2.00 3.34 371.30 251.01 619.47 1501.81 8110.88

MySQL #RP(thousand/req) 0.65 0.65 27.00 52.21 129.54 258.83 861.50
Log size(KB/req) 1.27 1.27 52.73 101.97 253.00 505.65 3365.22

Cherokee #RP(thousand/req) 0.12 0.12 0.68 0.42 0.77 1.31 2.62
Log size(KB/req) 0.95 0.95 5.42 3.32 6.17 10.44 41.85

OpenLDAP #RP(thousand/req) 64.79 64.79 1784.64 2157.55 3764.65 6880.73 14838.75
Log size(KB/req) 126.50 126.50 3485.63 4214.00 7352.86 13439.00 57963.86

Table 11: The number of recording points (#RP) and compressed log sizes. We use servers as examples. Other applications have

similar results. We use KB/req instead of KB/s to measure log size so that the comparison is fair (since different schemes add different

amounts of overhead).

Application SYNC SYS FUNC BB-5 BB-2 BB RW

MySQL#1
replays 3rd 3rd 2nd 3rd 2nd 1st 1st
time(s) 7.65 7.65 4.39 6.05 4.51 1.24 0.84

PBZip2
replays 3rd 3rd 2nd 4th 3rd 3rd 1st
time(s) 73.25 74.47 23.48 37.56 71.52 78.66 7.14

Table 12: Bug reproduction time. Fine-grained sketching schemes take much longer to reproduce a bug, especially compared to RW,

which represents previous software-only solutions. However, RW’s good performance in bug reproduction comes with the prohibitive

cost of high recording overhead during production runs, which is much more performance-critical.

creasing disk capacity and good sequential disk write performance,
large log files are not a major concern as long as they are not ter-
abytes per second. In addition, old log entries can be truncated
especially with the support of checkpoint [36].

7.8 Bug Reproduction Time

In Table 12, we compare the bug reproduction time of each PRES
scheme. As expected, fine-grained sketching schemes take much
longer (up to 11 times) than RW, representing state-of-the-art soft-
ware solutions for deterministic replay on multi-processors. PRES’
bug reproduction time is affected by two factors: (1) the number
of replay runs needed to reproduce the bug, and (2) the average
length of each failed replay, since instrumentation and analysis are
added to guide and monitor each replay. Therefore, the fewer the
number of replay attempts or the faster PRES can abort an unsuc-
cessful replay, the faster the bug reproduction time. For example,
even though BB-5 needed more replay runs than BB-2 and BB in
order to reproduce the bug in PBZip2, it takes less time because
BB-2 and BB has more instrumentation overhead during each re-
play as they need to monitor every (or every other) basic block.
Even though SYNC takes only 3 replays to reproduce the bug, its
overheads are 9-10 times of RW’s because it incurs more instru-
mentation and analysis overhead during each replay.

8. RELATED WORK
Most related work was discussed in Section 1, but here we focus

on some that was not discussed in detail.

R2 [10] proposes an innovative method that replays an applica-
tion by (1) recording the results of functions selected by program-
mers during production run, and (2) returning the results during
replay from the log rather than executing the functions. The level
of the selected functions plays an important role in overhead, be-
cause the lower the level is, the more information there is that needs
to be recorded. In contrast, the higher the level is, the less detail
there is that can be replayed for root-cause analysis, since those se-
lected functions are not executed at all (i.e., their execution is “fast-
forwarded”). The latter case may reproduce some failure symptoms
without reproducing the bug, if the buggy code is “fast-forwarded”
during replay [10].

The trade-off above is especially an issue for concurrency bugs
on multi-processor machines, as acknowledged by the authors as
a limitation of R2 (Section 7 in [10]). Concurrency bugs require
detailed non-deterministic information (e.g., interleaving of shared
memory accesses) to reproduce. Due to the overhead concern, R2
does not record such information. As a result, it is challenging
for R2 to reproduce concurrency bugs. In contrast, reproducing
concurrency bugs on multi-processors is our main objective.

Although our sketching schemes (especially FUNC and SYS)
may sound similar to R2 [10], they are in fact very different:
(1) Our sketches are used merely as guidelines by our PI-Replay
for systematically exploring and reconstructing all missing fine-

grained, non-deterministic information to reproduce the occurred
bug at instruction-level granularity (the same as in previous de-
terministic replay work); whereas R2 replays only at a selected
function granularity and skips the details below that level. (2) Our
sketching schemes are used to record the global order of operations
executed concurrently on multi-processors, not the return results or
any side-effects. (3) Unlike R2, our sketching schemes are system-
atic, requiring no annotations from programmers. However, we can
also use the information provided by R2 as a sketch to give to our
PI-Replayer. Therefore, our PRES is complementary to R2.

The high level idea of PRES was also proposed by Stone
in 1988 [33]. But it tries to demonstrate the idea by doing
a customized (hard-coded) implementation for only one micro-
benchmark, a shared queue, which is easy to analyze. In con-
trast, PRES provides a general framework that is not application-
specific. In addition, that work passively uses whatever informa-
tion available at production runs, whereas PRES actively records
sketches during production runs and evaluates the trade-offs of var-
ious sketching schemes.

CHESS [20] is a novel approach that was recently proposed for
exposing concurrency bugs. By systematically exploring the in-
terleaving space, CHESS can expose some unknown concurrency
bugs during testing. It works completely off-line at the developers’
site. CHESS and PRES’s replayer do share some similarities in that
they both need to navigate a non-deterministic execution space, but
CHESS has a very different objective from PRES. CHESS tries
to find unexplored interleavings to test, while PRES uses execu-
tion sketches as guidelines and feedback from failed replays to get
closer to reproducing a target concurrency bug. Since their ob-



jectives are different, their design, architecture, and issues are also
different from each other in many apparent ways. It is the same
when comparing PRES with other concurrency testing tools such
as CTrigger [26].

Previous synchronization recording work Several systems [5,
20, 25, 28] have been proposed for recording and replaying the
global order of synchronization operations. The SYNC scheme
was inspired by these models, yet it is very different from them.
First, the previous systems can help only uni-processor replay [5,
20, 28], or at best can replay only perfectly synchronized pro-
grams on multi-processors [25] (discussed in detail in Section 1.2).
PRES, however, can reproduce concurrency bugs of general multi-
threaded programs (without any modification) on multi-processors.
PRES achieves this because, once again, our sketches are only

high-level guidelines for our PI-Replayer, which uses them to re-

construct missing non-deterministic information and reproduce the

occurred concurrency bug on multi-processors. For the same rea-
son, unlike previous work [5, 20, 25, 28] , PRES does not require
full knowledge of all synchronization operations, including even
those defined by individual applications.

9. CONCLUSIONS AND FUTURE WORK
This paper has addressed one of the major challenges faced by

the current multi-core era—-how to reproduce concurrency bugs on
multi-processors. PRES trades replay-time efficiency slightly for
significantly lower production-run recording overhead. Our evalu-
ation using 11 real-world applications and 13 real world concur-
rency bugs has shown that PRES is effective and scalable. For
example, SYNC and SYS reproduce all but one evaluated concur-
rency bug within a small number (most in < 10) of replay runs
while imposing reasonably small overhead. These low-overhead
but coarse-grained recording schemes are capable of reproduc-
ing concurrency bugs on multi-processors because our intelligent
partial-information replayer can leverage feedback from unsuccess-
ful replays to reconstruct the unrecorded non-deterministic infor-
mation necessary for bug reproduction.

All work has limitations, and ours is no exception. (1) Al-
though we wanted to evaluate more real world bugs, it is very time-
consuming to find appropriate inputs and conditions for triggering
a bug. We thought about injecting concurrency bugs into applica-
tions, but it is hard to guarantee their representativeness. (2) As
shown in our experiments, some sketching methods such as SYNC
and SYS still could not reproduce the bug for Radiosity after 1000
tries, which indicates the need to further enhance our PI-Replayer.
(3) While PRES’s overheads are significantly lower than those
of previous methods, they may still be considered high for some
performance-critical applications, so further optimizations will be
useful. We plan to start by replacing Pin with a static instrumen-
tation tool. We can also perform more aggressive code analysis to
reduce the number of recording points. (4) We also need to extend
PRES to support distributed applications. (5) It would be beneficial
to implement PRES inside a virtual machine like SMP-Revirt [8]
to make it easier to support replay on different physical machines.

While all our tested bugs can be successfully reproduced by
PRES in our experiments and also theoretically it is feasible
for PRES to exhaustively search the unrecorded non-determinism
space to find a bug-producing combination, it is conceivable that
in some cases it might be difficult for PRES to reproduce an oc-
curred bug within an acceptable time limit. In particular, it might
take a long time for PRES to produce a bug (1) that has a long
error-propagation time before leading to a detectable failure, or (2)
that requires multiple rare interleavings (i.e. race orders) to hap-

pen in certain ways to manifest. In case (1), PRES’s closest-to-
failure policy would take a long time to find the key race to flip. In
case (2), the probability to reproduce such combination is too low
unless some special corner-case based testing mechanism such as
Ctrigger [26] is used during replay to easily force those corner-case
interleavings (orders).

Finally, the five sketching mechanisms studied in this paper are
just a starting point. We plan to utilize other sketching schemes.
We also hope to inspire researchers to improve our schemes. Ad-
ditionally, our main idea of relaxing the objective of “reproducing
the bug on the first attempt” can be exploited by other approaches
to enlarge their design space and lower their overhead.
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