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Abstract—We study the computational complexity of existential
Presburger arithmetic with (possibly nested occurrences of) a
Kleene-star operator. In addition to being a natural extension
of Presburger arithmetic, our investigation is motivated by two
other decision problems.

The first problem is the rational subset membership problem
in graph groups. A graph group is an infinite group specified
by a finite undirected graph. While a characterisation of graph
groups with a decidable rational subset membership problem
was given by Lohrey and Steinberg [J. Algebra, 320(2) (2008)],
it has been an open problem (i) whether the decidable fragment
has elementary complexity and (ii) what is the complexity for
each fixed graph group. The second problem is the reachability
problem for integer vector addition systems with states and
nested zero tests.

We prove that the satisfiability problem for existential Pres-
burger arithmetic with stars is NEXP-complete and that all three
problems are polynomially inter-reducible. Moreover, we consider
for each problem a variant with a fixed parameter: We fix the star-
height in the logic, the group for the membership problem, and
the number of distinct zero-tests in the integer vector addition
systems. We establish NP-completeness of all problems with fixed
parameters.

In particular, this enables us to obtain a complete description
of the complexity landscape of the rational subset membership
problem for fixed graph groups: If the graph is a clique, the
problem is NL-complete. If the graph is a disjoint union of cliques,
it is P-complete. If it is a transitive forest (and not a union of
cliques), the problem is NP-complete. Otherwise, the problem is
undecidable.

I. INTRODUCTION

Presburger arithmetic is the first-order theory of the nat-

ural numbers with addition and order. Shown decidable by

Presburger in 1929 [48], Presburger arithmetic has become

a standard tool for showing decidability and complexity

results in many areas of computer science such as automata

theory, database theory, formal verification and knowledge

representation; see also [27].

In many domains, both in theory and practice, the existential

fragment of Presburger arithmetic is of particular interest

for a variety of reasons. With an NP-complete satisfiability

problem [8], this fragment is computationally rather light-

weight. Furthermore, highly-optimised decision procedures

for existential Presburger arithmetic have been developed and

integrated into SMT-solvers such as CVC4 [2] and Z3 [13],

which in practice enables solving a variety of problems via a

reduction into existential Presburger arithmetic. Finally, existen-

tial Presburger arithmetic is expressively-complete: A seminal

result due to Ginsburg and Spanier [23] established that the sets

of integer vectors definable in Presburger arithmetic coincide

with the semi-linear sets, which arise as higher-dimensional

generalisations of ultimately periodic sets. Since arbitrary semi-

linear sets are definable in existential Presburger arithmetic,

additional quantifiers do not lead to more expressiveness and

only contribute succinctness.

Besides Presburger arithmetic, another classical represen-

tation for these sets is available in rational expressions over

vectors [20], which consist of vectors, unions, (Minkowski)

sums, and Kleene stars. Since each of these representations

suits certain applications, it is not only natural, but also useful

to consider representations that accommodate both rational

expressions and existential Presburger arithmetic.

This is one of the reasons why we investigate the com-

putational complexity of ∃PA∗, the existential fragment of

Presburger arithmetic enriched with a Kleene-star operator

(subsequently star operator for brevity). Since existential

Presburger arithmetic readily expresses (Minkowski) sums and

unions, this encompasses the expressiveness of rational expres-

sions. Given a formula φ(x), the star operator additionally

allows for formulas of the form φ∗(x) such that φ∗(v) holds

if there are v1, . . . ,vk ∈ N
d such that v = v1 + · · ·+ vk and

φ(vi) holds for all 1 ≤ i ≤ k. Of course, the star-operator

may occur in φ(x) itself; we refer to the maximum number of

nested star operators occurring in a formula φ as the star-height

of φ. Thus, existential Presburger arithmetic is the fragment

of ∃PA∗ of star-height 0. The fragment of ∃PA∗ of star-height

one was studied by Piskac and Kunčak [46]. They showed

NP-completeness of the satisfiability problem, and furthermore

natural applications of ∃PA∗ to reasoning about multi-sets with

cardinality constraints and a class of integer vector addition

systems with states with semi-linear transition updates. One

of our contributions is to show that ∃PA∗ is NEXP-complete

in general, and NP-complete for any arbitrary but fixed star-

height. While being an interesting result in its own right, our

main motivation for studying ∃PA∗ emerges from two other

problems, the computational complexity of the rational subset

membership problem in graph groups and of reachability in

integer vector addition systems with nested zero tests.



Rational subsets of graph groups

Graph groups (also known as right-angled Artin groups or

free partially commutative groups) are infinite groups that are

specified by an undirected simple graph. Here, each vertex

represents a generator and an edge dictates that a pair of

generators commute. This class of groups has received growing

attention in the last decades, from computer science as well

as from mathematics. In computer science, this is due to their

close connection to Mazurkiewicz traces [17, 18, 19] and

their prominent role in a general framework for infinite-state

systems [9, 12, 56, 57, 58]. In mathematics, graph groups are

currently an area of intense investigation because of their rich

subgroup structure [53]: The class of virtually special groups,

i.e. finite extensions of subgroups of graph groups, recently

turned out to encompass an abundant array of groups, namely

Coxeter groups [29], one-relator groups with torsion [54],

fully residually free groups [54], and fundamental groups of

hyperbolic 3-manifolds [33].

In a tradition initiated by Dehn [14] to consider groups

together with their decision problems, there has been substantial

interest in algorithmic questions for graph groups, such as the

word problem [15, 55], solving equations [17, 18, 43], and

membership in subgroups [36, 37] and submonoids [36, 41].

A decision problem that been attracting attention in the last

decades is the membership problem for rational subsets, i.e.

those accepted by a finite automaton (e.g. [36, 41, 42] and

[40] for a survey). This is because they naturally generalise

subgroups and submonoids, and have been an important tool

for solving equations [16] and other problems [3].

An important contribution in this context is a result of Lohrey

and Steinberg [41]. It characterises those graphs for which the

corresponding graph group has a decidable rational subset

membership problem. However, the procedure they provide has

non-elementary complexity and it has remained open until now

whether there is an elementary one. The precise complexity

has been open both in the case (i) where the graph (from the

decidable class) is part of the input and (ii) for each fixed

group. We denote problem (ii) as RatMP
tf .

As we show, this problem is polynomially inter-reducible

with satisfiability of ∃PA∗. Therefore, our results imply that the

problem is NEXP-complete if the graph (and hence group) is

part of the input. Moreover, the NP upper bound for fixed star

height leads to a complete description of the complexity for

each fixed graph group: If the graph is a clique, the problem

is NL-complete. If the graph is a disjoint union of at least

two cliques, then it is P-complete. If the graph is a transitive

forest (and not a disjoint union of cliques), the problem is

NP-complete. In all other cases, Lohrey and Steinberg have

established undecidability.

Integer VASS with nested zero tests

Vector addition systems with states (VASS), equivalently

known as Petri nets, are a fundamental model of computation. A

VASS comprises a finite-state controller with a finite number of

counters ranging over the non-negative integers. When taking

a transition, counters can be incremented and decremented

provided that resulting counter values are all non-negative.

VASS find a plethora of applications, primarily for modelling

and reasoning about concurrent systems, but also, for example,

in formal language theory, logic, process calculi, see e.g. [51,

Sec. 5]. While control-state reachability as well as configuration

reachability are decidable for VASS, additionally allowing

for testing counters for zero along transitions renders both

problems undecidable [44]. A decidable extension of VASS

with zero tests has been given by Reinhardt [50]. He showed

that reachability in VASS extended with nested zero tests (also

called hierarchical zero tests) is decidable. Nested zero tests

constraint arbitrary zero tests such that the k-th counter can

only be tested for zero if at the same time the first up to the

(k − 1)-th counters are tested for zero. An alternative proof of

Reinhardt’s result has been given by Bonnet [7].

Leaving aside decidability issues, one major obstacle in the

automated analysis of VASS is the high computational complex-

ity of decidable decision problems: control-state reachability

is EXPSPACE-complete [39, 49], and a non-elementary lower

bound for the configuration-reachability problem has recently

been established [11]. To the best of the authors’ knowledge,

no dedicated complexity results have been given for VASS with

nested zero tests. For overcoming those high computational

costs, relaxations of VASS and their extensions have been

investigated with the goal of finding computationally more

tractable models that can be used to over-approximate reacha-

bility sets of VASS and their extensions, for intance allowing

counters to range over the integers, the resulting model being

commonly known as integer VASS (Z-VASS) [28] or blind

counter automata [25]. Configuration and a fortiori control-state

reachability for Z-VASS are only NP-complete [28]. Z-VASS

and related relaxations have successfully been used to enable

the scalable analysis of concurrent programs, see e.g. [1, 5, 22].

Furthermore, integer over-approximations of VASS extended

with, for instance, affine transformations [6], and ordered and

unordered data [30, 31] have also been studied.

A further contribution of this paper is to show that

configuration reachability in Z-VASS extended with nested

zero tests (Z-VASSnz) is inter-reducible with satisfiability

in ∃PA∗. As a consequence, we obtain NEXP-completeness

of configuration reachability in Z-VASSnz. Furthermore, our

reduction preserves fixed-parameter properties, enabling us

to show that configuration reachability is NP-complete when

fixing the number of distinct zero-tests.

Main technical tools

We briefly comment on the main ideas and tools that our

results rely on. For the NEXP and NP upper bounds for ∃PA∗,

just as in [46], we rely on a Carathéodory-type theorem [21] for

decomposing semi-linear sets into semi-linear sets whose sets

of period vectors have polynomial cardinality. We additionally

exploit that this decomposition, together with results on the

descriptional complexity of Boolean operations on semi-linear

sets [10], also enables us to witness that a linear set is contained

in the solutions of φ∗(x) by providing only a polynomial

number of linear sets contained in the solutions of φ(x) as a
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certificate. For the NEXP lower bound, we reduce the succinct

circuit satisfiability problem to satisfiability of ∃PA∗. To this

end, we show that one can define 22
n

in an ∃PA∗ formula

of size polynomial in n. Moreover, we express a universal

quantifier ranging over [1, 2n]. This allows us to guess an

evaluation of the succinct circuit as a number in [1, 22
n

] and

express consistency with the gates using the quantifier.

In the translation of RatMP
tf to ∃PA∗, we avoid the non-

elementary blow up as follows. The procedure of Lohrey and

Steinberg [41] builds semi-linear sets by alternating two opera-

tions: (i) intersections and (ii) building context-free grammars

(out of semi-linear representations) and taking their Parikh

image. Since Parikh images of context-free grammars may

require exponential semi-linear representations [38], this results

in non-elementary complexity. Here, we adapt a construction by

Verma, Seidl, and Schwentick [52], which builds an existential

Presburger formula for a given context-free grammar. Our

modification uses the Kleene star to accommodate grammars

that have infinite (but semi-linear) sets of productions. For the

remaining reductions, we use ad-hoc constructions.

II. PRELIMINARIES

A. General notation

We denote by ‖·‖ the ℓ∞-norm. Given an m × n integer

matrix A, as usual ‖A‖1,∞ = max1≤i≤m

∑n
j=1|aij |. Through-

out the paper, we interchangeably treat finite sets of vectors

Q ⊆ Z
n as matrices (e.g. by lexicographically ordering the

elements of Q), and vice versa.

B. Semi-linear sets

Let b ∈ N
n be a base vectors and P = {p1, . . . ,pk} ⊆

N
n be a finite set of period vectors. The linear set L(b, P )

generated by b and P is defined as

L(b, P ) = b+

{
k∑

i=1

λi · pi : λi ∈ N, 1 ≤ i ≤ k

}
.

A semi-linear set is a finite union of linear sets. Given a

linear set N = L(b, P ), we denote by ‖N‖ = max{‖b‖, ‖p‖ :
p ∈ P}. For a semi-linear set M =

⋃
i∈I Ni, we denote by

‖M‖ = max{‖Ni‖ : i ∈ I}. Given v ∈ N
n and a semi-linear

set M , deciding whether v ∈M is NP-complete [32].

For a linear set N = L(b, P ) ⊆ N
n, we can a priori only

derive |P | ≤ (‖N‖ + 1)n as a bound on the cardinality of

P . The following paraphrased result due to Eisenbrand and

Shmonin shows that N is equivalent to a semi-linear set in

which the cardinality of all sets of period vectors is small.

Proposition II.1 (Thm. 1 in [21]). Let N = L(b, P ) ⊆ N
n

be a linear set. Then N =
⋃

i∈I L(b, Pi) such that Pi ⊆ P
and |Pi| ≤ 2n log(4n‖N‖) for all i ∈ I .

In particular, Proposition II.1 enables us to assume that sets

of period vectors of semi-linear sets have small cardinality.

Corollary II.2. Let M ⊆ N
n be a semi-linear set. Then M =

M ′ such that ‖M‖ = ‖M ′‖, M ′ =
⋃

i∈I L(bi, Pi) and |Pi| ≤
2n log(4n‖M‖) for all i ∈ I .

Given a system of linear Diophantine inequalities S : A ·x ≥
c for some m × n integer matrix A, denote by JSK = {u ∈
N

n : A · u ≥ c} the set of solutions of S. We will use the

following bound on the semi-linear representation of the set

of solutions of S , which follows from [47] and [10].

Proposition II.3. Let S : A · x ≥ c be a system of linear

Diophantine inequalities. Then M = JSK =
⋃

i∈I L(bi, P ),
‖M‖ ≤ (n · ‖A‖+ ‖c‖+ 2)m+n, and A · bi ≥ c for all i ∈ I
and A · p ≥ 0 for all p ∈ P .

Let M ⊆ N
d, the Kleene-star of M is defined as

M∗ :=
⋃

k≥0

{
k∑

i=1

vi : vi ∈M

}
.

Here, the empty sum denotes 0. For linear sets, we often write

L∗(b, P ) instead of (L(b, P ))∗.

C. Presburger arithmetic with stars

Let x,y be tuples of first-order variables, and let z = (x,y)
be an n-tuple consisting of the first-order variables of x and y.

A formula of existential Presburger arithmetic of star height 0
is of the form

φ(x) = ∃y : ψ(z), (1)

where ψ(z) is a (possibly nested) conjunction and disjunction

of linear Diophantine inequalities of the form a · z ≥ c for

a⊺ ∈ Z
n and c ∈ Z. A formula of existential Presburger

arithmetic of star height k + 1 is of the form of Eq. (1) and

additionally allows for atomic formulas ϑ∗(z) of star height

at most k. Existential Presburger arithmetic with stars (∃PA∗
)

is the set of all formulas of existential Presburger arithmetic

of star height k for any k ≥ 0.

The semantics JφK of an ∃PA∗ formula is given in terms of

of subsets of Nd by structural induction. By Proposition II.3,

Ja · z ≥ cK is a semi-linear set, for the remaining cases we

define

• Jφ(z) ∧ ψ(z)K = Jφ(z)K ∩ Jψ(z)K
• Jφ(z) ∨ ψ(z)K = Jφ(z)K ∪ Jψ(z)K
• Jϑ∗(z)K = Jϑ(z)K∗

• J∃y : ψ(z)K = πxJψ(z)K, where πx denotes the projec-

tion onto the variables x.

It is not difficult to see, and will more formally be discussed

in Section IV, that the sets definable in ∃PA∗ are semi-linear

sets. A formula φ(x) is satisfiable if JφK 6= ∅. (Thus, if φ has

no free variables, then satisfiability means JφK = {∅}).

Remark II.4. We do not allow negation in our formulas

in order to avoid complementing semi-linear sets. Atomic

formulas of the form a · z ≥ c can, however, be negated since

¬(a · z ≥ c) ≡ a · z ≤ c− 1.

The length |φ| of a ∃PA∗ formula φ is defined as the number

of symbols required to write down φ, and ‖φ‖ denotes the

absolute value of the largest constant occurring in φ. Without

loss of generality we assume unary encoding of numbers, and

that |φ| ≥ 2 for any φ.
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D. Rational subsets of graph groups

A graph is a pair (A, I), where A is an alphabet and I ⊆
P2(A). Here, Pk(S) denotes the set of k-element subsets of

a set S. We will also use terminology from Mazurkiewicz

traces [19], where I is called an independence relation. For

an alphabet A, let A−1 = {a−1 : a ∈ A} be the alphabet of

formal inverses of A and A±1 = A ∪A−1. The graph group

defined by (A, I), denoted G(A, I), is the group presented by

〈a ∈ A : ab = ba ({a, b} ∈ I)〉. We will work with a definition

of G(A, I) as a monoid as follows. For u, v ∈ (A±1)∗, let

u → v if there are words x, y ∈ (A±1)∗ and a pair (r, s) ∈
{(ab, ba) : {a, b} ∈ I)} ∪ {(aa−1, ε), (a−1a, ε) : a ∈ A}
such that u = xry and v = xsy. Then, let ≡A,I be the

symmetric, reflexive, transitive closure of →. We can then

define G(A, I) = (A∪A−1)∗/ ≡A,I . In other words, G(A, I)
consists of ≡A,I congruence classes [w] for w ∈ (A±1)∗ that

are multiplied by way of [u][v] = [uv]. Let |A| = n. Observe

that if (A, I) is a clique, i.e. I = P2(A), then G(A, I) ∼= Z
n. If

I = ∅, then G(A, I) is called the free group (over n generators)

and is also denoted Fn.

For a subset B ⊆ A, let IB = I∩P2(B) and πB : (A±1)∗ →
(B±1)∗ be the morphism with πB(b) = πB(b

−1) = b for

b ∈ B and πB(a) = πB(a
−1) = ε for a /∈ B. Then u ≡A,I v

implies πB(u) ≡B,IB πB(v), so that πB induces a morphism

G(A, I) → G(B, IB), [u] 7→ [πB(u)], also denoted πB .

Let G be a group. An automaton over G is a tuple A =
(Q,E, q0, qf ), where Q is a finite set of states, E ⊆ Q×G×Q
is a finite set of edges, and q0, qf ∈ Q are its initial and final

state, respectively. A configuration of A is a pair (p, g) ∈
Q × G and we write (p, g) →A (p′, g′) if there is an edge

(p, h, p′) ∈ E with g′ = gh. Such an automaton describes a

subset of G, namely L(A) = {g ∈ G : (q0, 1) →∗
A (qf , g)},

where →∗
A denotes the reflexive transitive closure of →A. The

subsets of G of the form L(A) are called rational subsets.

In algorithms over automata over groups, one usually

considers finitely generated (short f.g.) groups, i.e. ones with a

finite subset Σ ⊆ G so that every element of G can be written

as a product of members of Σ. In that case, the elements of G,

and hence edge inscriptions, can be encoded by words over

Σ. Since we will work with graph groups, we always assume

that automata over G(A, I) are represented with the generating

set A±1 (neither decidability nor complexity of the problems

considered here depend on the chosen generating set). The

rational subset membership problem for G is the following

problem: Given an automaton A over G and an element g ∈ G,

decide whether g ∈ L(A).

An important concept in the context of rational subsets of

graph groups is that of transitive forests. By a forest, we mean

a cycle-free graph where every connected component has a

distinguished root vertex. A graph (A, I) is a transitive forest

if it can be obtained from a forest by adding an edge between

any two nodes that lie on a path between a root and a leaf.

The rational subset membership problem for graph groups has

been studied by Lohrey and Steinberg [41], who obtained a

complete characterisation of those graph groups where the

problem is decidable.

Theorem II.5 ([41]). Let (A, I) be a graph. The rational

subset membership problem is decidable for G(A, I) if and

only if (A, I) is a transitive forest.

E. Integer VASS with nested zero-tests

A d-dimensional Z-VASS with k nested zero-tests (Z-VASSnzk
for short) is a tuple V = (Q,Z,E), where Q is a finite set

of states, Z ⊆ [0, d] is its set of zero tests with |Z| = k, and

E ⊆ Q× [−1, 1]d ×Z ×Q is its set of edges. A configuration

is a pair (q,v) ∈ Q×Z
d. We write (q,v) →V (q′,v′) if there

is an edge (q,u, ℓ, q′) such that (i) v′ = v+u and (ii) vi = 0
for every i ∈ [0, ℓ], where v = (v1, . . . , vd).

Note that a Z-VASSnzk can have more than k counters.

However, there are at most k elements ℓ of [0, d] for which

we can check whether all counters 1, . . . , ℓ are zero. Moreover,

these tests can be performed arbitrarily often during a run. A

Z-VASSnz is a Z-VASSnzk for some k ≥ 0.

III. RESULTS

In this section, we present the main results of this work. Let

us begin with the decision problems we study. The first is the

satisfiability problem for ∃PA∗:

Given An ∃PA∗ formula φ.

Question Does φ have a satisfying assignment, i.e. is JφK 6= ∅?

Slightly abusing notation, we denote this problem also as ∃PA∗.

If we restrict the input to ∃PA∗ formulas of star-height k, then

we denote the problem by ∃PA∗
k.

The second problem concerns rational subsets of graph

groups. For the fixed-parameter version, we introduce the

branching number of transitive forests. Note that every non-

empty transitive forest is either (i) a disjoint union of connected

transitive forests, or (ii) has a universal vertex, i.e. a vertex that

is adjacent to all other vertices (take the root of the underlying

tree). This induces a successive decomposition of the transitive

forest into smaller transitive forests: For a disjoint union, take

the disjoint connected transitive forests. If there is a universal

vertex, remove that vertex to obtain a smaller transitive forest.

The decomposition is unique up to isomorphism: This is

obvious in the case of a disjoint union. In the case of several

universal vertices, note that all possible removals result in

isomorphic graphs. This allows us to define the branching

number β(A, I) of a transitive forest (A, I): If A = ∅, then

β(A, I) = 0. If (A, I) is a disjoint union of connected transitive

forests (A1, I1), . . . , (An, In), then β(A, I) = max{β(Ai, Ii) :
i ∈ [1, n]} + (n − 1). If (A, I) has a universal vertex u and

removing u leaves (A′, I ′), then β(A, I) = β(A′, I ′).
The rational subset membership problem for graph groups

defined by transitive forests, denoted RatMP
tf , is the following:

Given A transitive forest (A, I), an automaton A over G(A, I),
and a word w ∈ (A±1)∗.

Question Does [w] ∈ L(A) hold?

If we restrict the input to transitive forests (A, I) with

β(A, I) ≤ k, then the problem is denoted RatMP
tf

k .
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Finally, the reachability problem for Z-VASS
nz is the

following:

Given A Z-VASSnz A and configurations (q,v), (r,w).
Question Does (q,v) →∗

A (r, w) hold?

If the input is restricted to Z-VASSnz with k nested zero-tests,

we write Z-VASSnzk . The following is our first main result.

Theorem III.1. The problem ∃PA∗
is NEXP-complete and for

every fixed k ∈ N, ∃PA∗
k is NP-complete.

We will prove Theorem III.1 in Section IV. Our second main

result is that the problems ∃PA∗, RatMP
tf and Z-VASSnz are

polynomial-time inter-reducible.

Theorem III.2. The three problems ∃PA∗
, RatMP

tf
and

Z-VASS
nz

are polynomially inter-reducible. Moreover, for each

fixed k ∈ N, the reductions translate among ∃PA∗
k, RatMP

tf

k ,

and Z-VASS
nz

k .

Theorem III.2 will be shown in Sections V to VII. As obvious

consequences, we have:

Corollary III.3. RatMP
tf

and Z-VASS
nz

are NEXP-complete.

RatMP
tf

k and Z-VASS
nz

k are NP-complete for every k ∈ N.

In particular, this implies that if we restrict the input of

RatMP
tf to a fixed transitive forest (A, I), then the problem

is always in NP. With this piece of the puzzle, we can show:

Theorem III.4. Let (A, I) be a graph. Then the rational subset

membership problem for G(A, I) is

1) NL-complete if (A, I) is a clique,

2) P-complete if (A, I) is a disjoint union of at least two

cliques,

3) NP-complete if (A, I) is a transitive forest and not a

disjoint union of cliques, and

4) undecidable if (A, I) is not a transitive forest.

IV. THE COMPLEXITY OF EXISTENTIAL PRESBURGER

ARITHMETIC WITH STARS

This section proves NEXP-completeness of ∃PA∗ respec-

tively NP-completeness of ∃PA∗
k for k ≥ 0. We first establish

some technical results on semi-linear sets before we provide

a bound on the descriptional complexity of the semi-linear

representation of the set of solutions of an ∃PA∗ formula φ.

This bound then gives rise to a decision procedure with the

desired upper bounds. We close this section by establishing a

matching NEXP lower bound for ∃PA∗.

A. Properties of the Kleene star on semi-linear sets

As a preparatory step, we analyse the effects on the

descriptional complexity of the application of the Kleene star

on semi-linear sets. The facts derived below are paraphrased

or indirectly stated in [46]; for that reason we only state the

results and defer all proofs to the appendix.

The following identities hold for any finite P,Q ⊆ N
d:

L∗(0, P ) + L∗(0, Q) = L∗(0, P ∪Q)

= L(0, P ∪Q) = L(0, P ) + L(0, Q)
(2)

Based on those identities, one can show that semi-linear sets

are closed under the star operator.

Lemma IV.1. Let M =
⋃

j∈J L(cj , Qj) be a semi-linear set.

Then M∗ =
⋃

K⊆J L(bK , PK), where

bK :=
∑

k∈K

ck CK :=
⋃

k∈K

{ck}

QK :=
⋃

k∈K

Qk PK := CK ∪QK .

For our purposes, this lemma is too weak: there is no bound

on the cardinality of the PK , and the magnitude of bK depends

on |J |, which may be doubly-exponential in ‖M‖. Building

upon Lemma IV.1, we can derive the following lemma whose

statement and proof are adapted from [46, Thm. 2].

Lemma IV.2. Let M =
⋃

j∈J L(cj , Qj) ⊆ N
n be a

semi-linear set, and let c = 2n log(4n‖M‖). Then M∗ =⋃
i∈I L(bi, Pi) such that for every i ∈ I ,

• bi =
∑

k∈K ck for some K ⊆ J with |K| ≤ c,
• Pi ⊆

⋃
j∈J{cj} ∪

⋃
k∈K Qk with |Pi| ≤ c, and

• ‖M∗‖ ≤ c · ‖M‖.

B. Properties of intersections of linear sets

We also need a bound on the descriptional complexity of

intersecting k linear sets, which are provided by the following

lemma. Its proof is analogous to the proof of Theorem 6 in [10]

and deferred to the appendix.

Lemma IV.3. Let Mj = L(cj , Qj) ⊆ N
n such that ‖Mj‖ ≤

s and |Qj | ≤ m, 1 ≤ j ≤ k. Then L :=
⋂

1≤j≤kMj =⋃
i∈I L(bi, P ) such that

• ‖L‖ ≤ (k ·m · s+ 1)O(k·n)

• for every bi and 1 ≤ j ≤ k there is some d ≥ 0 such

that bi = cj +Qj · d, and

• for every 1 ≤ j ≤ k there is some non-negative matrix R
such that P = Qj ·R.

C. Bounds on the semi-linear representation of ∃PA∗
solutions

We are now fully prepared to give an estimation on the

descriptional complexity of the semi-linear representation of

the set of solutions of an ∃PA∗ formula. To this end, we first

prove a technical lemma that establishes bounds for conjunctive

∃PA∗ formulas in which the maximum constants of the semi-

linear representation of the top-level φi formulas is bounded.

Lemma IV.4. Let φ(x) = ∃y :
∧

1≤i≤j φi(x,y) ∧∧
j<i≤k φ

∗
i (x,y) be an ∃PA∗

formula, L = JφK and Mi =
JφiK such that ‖Mi‖ ≤ s for all 1 ≤ i ≤ k. Then

‖L‖ ≤ sO(|φ|3).

Proof. We first estimate ‖M∗
i ‖ for j < i ≤ k. By Lemma IV.2,

we have ‖M∗
i ‖ ≤ c · s with c ≤ 2|φ| log(4|φ|s) ≤ O(|φ|2 · s).

Hence ‖M∗
i ‖ ≤ O(|φ|2 · s2). Likewise, we use Corol-

lary II.2 to derive that the cardinality of the period vectors

in the semi-linear representation of ‖M∗
i ‖ is bounded by
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Algorithm 1 Decision procedure for ∃PA∗

1: procedure VERIFY(L(b, P ), φ)

2: if φ = a · x ≥ c then

3: check a · b ≥ c and a · p ≥ 0 for all p ∈ P
4: else if φ = ψ∗(x) then

5: guess Li(ci, Qi), i ∈ [m] and K ⊆ [m]
6: VERIFY(Li(ci, Qi), ψ) for all 1 ≤ i ≤ m
7: check b =

∑
k∈K ck

8: check P ⊆
⋃

1≤i≤m{ci} ∪
⋃

k∈K Qk

9: else

10: guess top-level subformulas φi(x), i ∈ [m] of φ
11: making φ propositionally true

12: guess L1(c1, Q1), . . . , Lm(cm, Qm)
13: VERIFY(Li(ci, Qi), φi) for all 1 ≤ i ≤ m
14: check b = ci +Qi · di some di for all i ∈ [m]
15: check P = Qi ·Ri for some Ri for all i ∈ [m]

2|φ| log(4|φ|3s2) ≤ O(|φ|2 · s). Lemma IV.3 implies that for

M :=
⋂

1≤i≤j Mi ∩
⋂

j<i≤kM
∗
i , we have

‖M‖ ≤ (|φ| ·O(|φ|2 · s) ·O(|φ|2 · s2))O(|φ|2) ≤ sO(|φ|3).

The statement follows since ‖L‖ = ‖M‖.

As an immediate consequence, we have:

Proposition IV.5. For any ∃PA∗
formula φ of star-height k

and L = JφK, we have ‖L‖ ≤ ‖φ‖|φ|
O(k)

.

Proof. We show the statement by induction on k. The statement

follows for k = 0 from Proposition II.3. For the induction step,

apply Lemma IV.4.

D. A decision procedure for ∃PA∗

We now derive one of the main results of this paper:

Proposition IV.6. ∃PA∗
is in NEXP, and ∃PA∗

k is in NP for

any k ≥ 0.

From Proposition II.3, we know that the constants in the

semi-linear representation of the set of solutions of an ∃PA∗

formula φ(x) are doubly-exponentially bounded for arbitrary

star height, and singly-exponentially bounded for fixed star

height. However, checking satisfiability of φ is not possible

by merely guessing some small v ∈ JφK. While we can easily

verify whether a · v ≥ c, for subformulas of the form ψ∗(x)
of φ there is no obvious way to check whether v ∈ JψK∗.

Instead, the non-deterministic procedure VERIFY (Algo-

rithm 1) proceeds as follows: On input L(b, P ) and φ, VERIFY

recursively determines whether L(b, P ) ⊆ JφK. The recursion is

on the star height of φ. In the base case, φ is a linear inequality

a · x ≥ c and according to Proposition II.3, it is sufficient in

Line 3 to check whether a · b ≥ c and a ·p ≥ 0 for all p ∈ P .

In the recursion step, if φ = ψ∗(x), the algorithm guesses m
linear sets Li = L(ci, Qi) in Line 5. The magnitude of each Li

can be bounded according to Proposition IV.5, and every |Qi|
can also be bounded according to Corollary II.2. The algorithm

then verifies in Line 6 whether Li ⊆ JψK for every 1 ≤ i ≤ m.

If that is the case the algorithm determines L(b, P ) ⊆ Jψ∗K
according to Lemma IV.2 via the previously guessed Li. Finally,

if φ is a Boolean combination of subformulas of strictly smaller

star height, VERIFY guesses subformulas φi that make φ true

when viewing φ as a formula of propositional logic. Those φi
could be some ψ∗ or a linear inequality. As in the previous

step, in Line 12 the algorithm attempts to guess linear sets

Li such that Li ⊆ JφiK, and subsequently checks in Lines 14

and 15 whether L(b, P ) ⊆
⋂

1≤i≤m Li via Lemma IV.3.

In order to decide whether φ of star height k is satisfiable,

we guess some L such that ‖L‖ ≤ ‖φ‖|φ|
O(k)

and invoke

VERIFY(L, φ). The depth of the recursion tree of VERIFY

is bounded by O(k), and due to Corollary II.2 and Proposi-

tion IV.5 in every call VERIFY guesses at most |φ|O(k) linear

sets of magnitude at most ‖φ‖|φ|
O(k)

. Consequently, VERIFY

is an NEXP procedure for arbitrary star height, and an NP

procedure for fixed star height.

E. Lower bound

Here, we show the NEXP lower bound for the satisfiability

problem of ∃PA∗ via a reduction from succinct circuit satisfia-

bility (SC-SAT), which is known to be NEXP-complete [45].

Before we discuss the reduction, we illustrate a key idea by

showing that ∃PA∗ formulas may require solutions of doubly

exponential magnitude. Suppose φ is a Presburger formula that

defines a single number, i.e., φ(x) is satisfied for exactly one

x ∈ N. Consider the formula

φ′ ≡ ∃y, y′, z, z′ :
(
φ(x) ∧ y + z = 1 ∧ y′ + z′ = x ∧

(y = 1 → y′ = x)∧ (z = 1 → z′ = x)
)∗

∧ y = 1∧ z = y′.

The formula under the star has two satisfying assignments: x
always has the same value and either (y, y′, z, z′) = (1, x, 0, 0)
or (y, y′, z, z′) = (0, 0, 1, x). Since a satisfying assignment of

φ′ has to be a sum of such satisfying assignments, imposing

y = 1 means the first case occurred exactly once, thus y′ = x.

Moreover, z = y′ means the second case occurred exactly

y′ = x times, hence z′ = x2. Further, φ′ only adds constant (i.e.

independent of φ) length to φ. Thus, repeating this construction

n times, starting with φ ≡ (x = 2), leads to an ∃PA∗ formula

of size linear in n that has 22
n

as its only solution.

In order to encode an instance of SC-SAT, we will

implement a universal quantifier in ∃PA∗, stating that a certain

assertion φ(x, i) holds for all i. To this end, we will sum

up assignments related to φ, but then we need finer control

over which assignments occurred how many times. Moreover,

this has to be achieved via conditions on the sums. Here, the

following observation will be crucial.

Lemma IV.7. Let a0, . . . , am ∈ N and b0, . . . , bm ∈ {0, 1}
with

∑m
i=0 ai =

∑m
i=0 bi. Then

∑m
i=0 ai2

i =
∑m

i=0 bi2
i if and

only if ai = bi for every i ∈ [0,m].

Proof. Let X be a formal variable and consider the ring Z[X]
of polynomials over the variable X with integer coefficients.

In Z[X], consider the polynomials p(X) =
∑m

i=0 aiX
i and
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q(X) =
∑m

i=0 biX
i. We show that p(1) = q(1) and p(2) =

q(2) implies p(X) = q(X). If ai ≥ 2 for some i ∈ [0,m],
then we modify p0(X) := p(X) to obtain p1(X) = p0(X)−
2Xi+Xi+1. Then, p1 has non-negative coefficients and verifies

p1(2) = p0(2) and pr(1) = p0(1)−1 for every r. If we repeat

this process, the image at 1 strictly decreases in each step, so the

process must terminate, say after s steps. Then the polynomial

ps(x) has coefficients in {0, 1}. It satisfies ps(2) = p(2) and

ps(1) = p(1)− s. This implies ps(2) = p(2) = q(2) and since

binary representations are unique, this implies ps(X) = q(X).
However, that also means p(1) − s = ps(1) = q(1) = p(1),
hence s = 0 and thus q(X) = ps(X) = p(X).

Note that Lemma IV.7 does not hold without the assumption

b0, . . . , bm ∈ {0, 1}: Without it, the lemma would say that a

non-zero polynomial in Z[X] cannot have 1 and 2 as a root,

but (X − 1)(X − 2) is an obvious counter-example to that.

Let us now show how to encode SC-SAT by successively

defining predicates. Here, m,n, k are fixed parameters for each

formula, which will have size polynomial in m,n, k:

1) We start with some auxiliary predicates expressible in ∃PA.

In what follows, we will use y = 〈y0, . . . , yn−1〉 as a shorthand

for y0, . . . , yn−1 ∈ {0, 1} and y =
∑n−1

i=0 yi2
i. Note that

y =
∑n−1

i=0 yi2
i is easily expressed in an ∃PA formula of size

quadratic in n. Moreover, recall that there is an ∃PA formula µn

such that µn(u, v, w) states u, v < 2n and w = u ·v: The latter

is equivalent to u = 〈u0, . . . , un−1〉∧w =
∑n−1

i=0 ui·2
i·v. Here,

we can express multiplication with ui because ui ∈ {0, 1};

and with 2i using i-fold doubling.

2) Our first predicate in ∃PA∗ can define a power 2y if

y < 2n and y is given as bits y0, . . . , yn−1. Formally,

p̂own(x, y0, . . . , yn−1) means that y0, . . . , yn−1 ∈ {0, 1} and

x = 2
∑n−1

i=0 yi2
i

. We define the formula inductively. We can

express p̂ow1(x) just by x = 2. Once we have a formula for

n− 1, we define one for n:

y0 ∈ {0, 1} ∧ · · · ∧ yn−1 ∈ {0, 1}∧(
p̂own−1(x

′, y′1, . . . , y
′
n−1) ∧ z = 1 ∧ u+ v = 1

∧ ū+ v̄ = x′ ∧ (u = 1 → ū = x′) ∧ (v = 1 → v̄ = x′)
)∗

∧
n−1∧

i=1

y′i = yi · z ∧ u = 1 ∧ v = ū ∧ x = 2y0 · v̄.

Note that we can easily express y′i = yi · z and x = 2y0 · v̄
in Presburger arithmetic because yi ∈ {0, 1} for i ∈ [0, n− 1].
For the same reason, y′i = yi · z implies that in each satisfying

assignment of the formula under the star, we have y′i = yi
for each i ∈ [0, n − 1]. The remaining reasoning is similar

to our example for 22
n

. Instead of producing x2, we use

2
∑n−1

i=0 yi2
i

=
(
2
∑n−1

i=1 yi2
i−1
)2

· 2y0 .

3) Employing p̂own, we can now express powering by a

number that is not given in bits, but by a variable. The predicate

pown(x, y) below holds whenever y < 2n and x = 2y. Here,

we can just use y = 〈y0, . . . , yn−1〉 ∧ p̂own(x, y0, . . . , yn−1).

4) We now introduce a type of predicates that can be

instantiated using other ∃PA∗ formulas. It allows us to

sum up a sequence of 2n tuples, each of which satisfies

some given predicate. Moreover, the given predicate has

access to a loop variable i (which assumes the values

1, . . . , 2n) and to parameters y1, . . . , yk < 2n. Suppose

φ(i, x1, . . . , xm, y1, . . . , yk) is an ∃PA∗ formula. Then, the

predicate
∑

i<2n(x1, . . . , xm) : φ(i, x1, . . . , xm, y1, . . . , yk)

states that y1, . . . , yk < 2n and xj =
∑2n−1

i=0 ai,j for some

numbers ai,j such that φ(i, ai,1, . . . , ai,m, y1, . . . , yk) for

every i ∈ [0, 2n − 1]. The variables before the colon designate

which variables are to be added up (namely x1, . . . , xm)

and which are parameters that should be the same in every

summand (namely y1, . . . , yk).
(
φ(i, x1, . . . , xm, y

′
1, . . . , y

′
m)∧

∧

j∈[1,m]

y′j = 〈y′j,1, . . . , y
′
j,n〉 ∧ u = 1 ∧ v = 2i

)∗

∧

u = 2n ∧ v = 22
n

− 1 ∧
∧

j∈[1,m]

yj = 〈yj,1, . . . , yj,n〉

∧
∧

j∈[1,m],ℓ∈[1,n]

y′j,ℓ = yj,ℓ · u.

As in p̂own, we guarantee that in each satisfying assignment

under the star, we have y′j,ℓ = yj,ℓ, which in turn means

y′j = yj . This gives the formula under the star access to the

parameters yj . To see that i assumes each value in [0, 2n − 1]
exactly once, we use Lemma IV.7: Since we impose v =
22

n

− 1 and u = 2n outside the star and 22
n

− 1 =
∑2n−1

i=0 2i,
the lemma tells us that v has to assume each value 2j for

j ∈ [0, 2n − 1] exactly once. This implies the constraint on i.
5) Using the last step, we can access individual bits of large

numbers. bitn(x, y, z) states that x < 22
n

, y < 2n, z ∈ {0, 1},

and the y-th bit in the binary expansion of x is z:

y < 2n ∧ z ∈ {0, 1} ∧
∑

i<2n

x :
(
(x = 2i ∨ x = 0)∧

(
i = y → x = z · 2i

) )

Here, we say that x has to be a sum of powers of 2 such that

the y-th power has to occur if and only if z = 1.

6) Our next predicate multpown(x, y, z) says that x = 2y · z,

y < 2n, and z < 22
n

.
∑

i<22n

(x, z) :
(
((i < y → x = z = 0)∧

(i ≥ y → ∃b ∈ {0, 1} : x = b · 2i ∧ z = b · 2i−y
)

For x = b · 2i and z = b · 2i−y , we use the fact that b ∈ {0, 1}
and pow2n to define 2i and 2i−y .

7) Let us now express that the binary expansion of x < 22
m+n

has a one at precisely those positions that are divisible by 2n.

Hence, onesn,m(x) says that x =
∑2m−1

i=0 2i·2
n

.
∑

i<2m

(x, y) : (x = 2i·2
n

)
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In x = 2i·2
n

, we use the formula µn mentioned above and the

predicate pow2n.

8) We are now able to state that the bit representation of x
is a concatenation of 2m copies of the binary representation

y < 22
n

. Thus, repeatn,m(x, y) says that y < 22
n

and x =∑2m−1
i=0 y · 2i·2

n

.

∑

i<2m

(x, y) : (∃b ∈ {0, 1}, z < 22
m+n

: y = b · 2i

∧ onesn,m(z) ∧ x = b · 2i · z)

Note that each summand corresponds to one bit in the binary

representation of y. Since we sum up shifts of numbers

produced by onesn,m, that sum consists of 2m copies of that

representation. Note that we guarantee that the used bits are

the ones of y because the sum of the b · 2i has to be y outside

of the sum. We can define 2i ·z using multpown and then also

multiply by b because b ∈ {0, 1}.

9) We are finally ready to express a (restricted) universal

quantifier. Hence, we have again a predicate that is instantiated

by another predicate φ. By ∀n,mi : φ(x, i) we express that

x < 22
n

and for every i ∈ [0, 2m − 1], we have φ(x, i). We

can realise that as follows:

∃y :

σ︷ ︸︸ ︷∑

i<2m

y :
(
∃z < 22

n

: φ(z, i) ∧ y = 2i·2
n

· z
)

∧ repeatn,m(y, x).

Note that the sum formula σ expresses that the binary

representation of y is a concatenation of representations of

numbers x0, . . . , x2m−1 such that for each i ∈ [0, 2m − 1], we

have φ(xi, i) and xi < 22
n

. Using repeatn,m, we then make

sure that x0 = · · · = x2m−1 = x.

Let us now provide a suitable definition of SC-SAT. A

circuit (V, v0, C,N) consists of a finite set V of nodes, a

distinguished output node v0 ∈ V , and three sets of hyper-

edges: the conjunctive edges C ⊆ V × V × V and the the

negation edges N ⊆ V × V . Edges are also called gates.

We say that the circuit is satisfiable if there is an assignment

η : V → {0, 1} such that 1) η(v0) = 1 and 2) for every

(u, v, w) ∈ C, we have η(w) = min(η(u), η(v)) and 3) for

every (u, v) ∈ N , we have η(v) = 1− η(u).
A succinct circuit representation (n, α, ν) consists

of a number n (given in unary) and Boolean

formulas α(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) and

ν(x1, . . . , xn, y1, . . . , yn). The succinct circuit representation

(n, α, ν) describes the circuit C(n, α, ν) = (V, v0, C,N),
which is defined as follows. We have V = {0, 1}n,

v0 = (0, . . . , 0), and C = {(x, y, z) ∈ V ×V ×V : α(x, y, z)}
and N = {(x, y) ∈ V ×V : ν(x, y)}. Here, x, y, and z is short

for x1, . . . , xn and y1, . . . , yn, and z1, . . . , zn, respectively.

The problem succinct circuit satisfiability (SC-SAT) is

defined as follows:

Given A succinct circuit representation (n, α, ν).
Question Is the circuit C(n, α, ν) satisfiable?

We show that satisfiability of ∃PA∗ is NEXP-hard by reduc-

ing SC-SAT, which is NEXP-complete [45]. Suppose (n, α, ν)
is a given succinct circuit. First, we turn α and ν into formulas

ᾱ and ν̄ in ∃PA so that α(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn)
if and only if ᾱ(

∑n
i=1 xi ·2

i−1,
∑n

i=1 yi ·2
i−1,

∑n
i=1 zi ·2

i−1)
does not hold; analogously for ν̄. Then the following statement

is expressible in an ∃PA∗ formula of size polynomial in n:

∃x < 22
n

:

∀n,3ni :
(
∃u, v, w < 2n : i = u+ 2n · v + 22n · w (3)

∧ bitn(x, u, u
′) ∧ bitn(x, v, v

′) (4)

∧ bitn(x,w,w
′) (5)

∧ (ᾱ(u, v, w) ∨ w′ = min(u′, v′))
)

(6)

∧ ∀n,2ni :
(
∃u, v < 2n : i = u+ 2n · v (7)

∧ bitn(x, u, u
′) ∧ bitn(x, v, v

′) (8)

∧ (ν̄(u, v) ∨ v′ = 1− u′)
)

(9)

∧ bitn(x, 0, 1) (10)

Let us explain why it is equivalent to satisfiability of C(n, α, ν).
We encode the assignment of the 2n nodes in C(n, α, ν) in

the number x < 22
n

. In Eqs. (3) to (6), we express that

the assignment is consistent with all the conjunctive gates.

Note that we cannot directly use a formula of the form

∀n,ni1 : ∀
n,ni2 : ∀

n,ni3 : . . ., because we would need to use

the value of i1 (and i2) in the inner formula (but our quantifier

∀n,m allows only two free variables). Therefore, i ranges over

[0, 23n − 1] and is decomposed into u, v, w ∈ [0, 2n − 1] in

Eq. (3). In Eqs. (4) and (5), we extract the bits at the nodes

identified by u, v and w, and in Eq. (6), we require that if

there is a conjunctive gate with input nodes u,v and output

node w, then the node w carries the conjunction of nodes u
and v. In Eqs. (7) to (9), we do the same for the negation gates.

Finally, in Eq. (10), we state that the output node is indeed

assigned value 1.

V. TRANSLATING ∃PA∗
TO Z-VASSnz

We now give a polynomial-time reduction from the ∃PA∗

satisfiability problem to reachability in Z-VASSnz. In fact, we

prove a slightly stronger statement and show that sets of natural

numbers definable in ∃PA∗ are definable by Z-VASSnz. Given

M ⊆ N
d, we say that M is Z-VASS

nz
-definable if there is

a Z-VASSnz V in dimension m + d with designated control

states q, r such that v ∈M if and only if (q,0)
∗
−→ (r, (0,v)).

We moreover require that V only performs zero-tests on the

first m counters.

Proposition V.1. There is a polynomial-time reduction from

∃PA∗
to Z-VASS

nz
, i.e., for any ∃PA∗

formula φ, JφK is

definable by a Z-VASS
nz V . If φ has star height k then V has

k nested zero tests.

We prove Proposition V.1 by structural induction on φ. The

idea is inspired by the proof of the coNEXP lower bound

for the inclusion problem for Z-VASS [28, Lem. 12]. First,
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by renaming variables if necessary, we may with no loss of

generality assume that no existential quantifiers occur in φ.

For the induction base case, let φ ≡ a · x ≥ c
be a linear inequality such that a⊺ = (a1, . . . , ad) ∈
Z
d. For i ∈ [d], define ai = (ai, ei) ∈ Z

d+1,

where ei denotes the i-th unit vector in dimension d.

q r

a1

ai

(−c,0)

(−1,0)

Fig. 1. Z-VASSnz defining the
solutions of a linear inequality.

Consider the Z-VASSnz depicted

in Fig. 1. In state q, V has d self-

loops adding ai to the counters.

Thus V guesses values for x in the

last d counters and stores a · x in

the first counter. In order to verify

a · x ≥ c, V removes a value of

at least c from the first counter. It

follows that V defines JφK.

In order to deal with Boolean

connectives, we first provide a gadget in dimension 3d that

checks for i ∈ [d] whether the contents of the counters i and

d + i coincide, and at the same time copies the contents of

counter i to counter 2d + i. For i ∈ [d], let vi ∈ Z
3d be all

zero except for the i-th and (d+ i)-th components which both

equal −1, and the (2d+ i)-th component which equals 1. The

Z-VASSnz C depicted in Fig. 2 achieves the desiderata, i.e.,

(q, (x1,x2,0))
∗
−→ (r, (0,0,x)) if and only if x = x1 = x2.

q · · · r

v1

−v1

vd

−vd

Fig. 2. Gadget C used for handling conjunctions.

For a

conjunction

φ ≡ φ1 ∧ φ2,

let V1 and V2
be Z-VASSnz

with at most

k different

zero tests

defining Jφ1K
and Jφ2K,

respectively.

Let V̂1 = (Q1, Z1, E1) and V̂2 = (Q2, Z2, E2) be obtained

from V1 and V2 such that V̂1 is equivalent to V1, V̂2 is

equivalent to V2, Z1 = Z2, |Z1| = |Z2| = k, and counters not

tested for zero in V1 and V2 do not overlap in V̂1 and V̂2.

The Z-VASS V defining JφK now sequentially composes V̂1,

V̂2 and Ĉ. The correctness of the construction is easily seen.

Observe that a disjunction φ ≡ φ1 ∨ φ2 can be dealt with

analogously, by non-deterministically branching into V̂1 and

V̂2, and by adapting the gadget C appropriately. Note that the

construction ensures that any ∃PA∗ formula of star height

zero is definable by a Z-VASS.

Finally, we provide a construction for formulas of the form

φ∗. Let Vφ in dimension m + d define JφK, and let V̂φ be

equivalent to V working in dimension m+ 2d. Furthermore,

for i ∈ [d] let wi ∈ Z
m+2d be all zero except for the (m+i)-th

component which equals −1, and the (m+d+i)-th component

which equals 1. Then V depicted in Fig. 3 defines Jφ∗K. First, V
traverses V̂φ thereby pushing some v ∈ JφK onto the counters

[m + 1,m + d]. Next, V adds the contents of the counters

[m + 1,m + d] to the counters [m + d + 1,m + 2d], similar

to the gadget C above. When reaching r, V can repeat this

q V · · · r

••

••
w1

−w1

wd

−wd

zerom+d

Fig. 3. Z-VASS defining JφK∗, where JφK is defined by V .

process an arbitrary number of times (and also zero times as

required by the definition of the star operator).

Observe that this construction ensures that the Z-VASSnz

V = (Q,Z,E) defining an ∃PA∗ formula φ has |Z| = k if

and only if φ has star height k.

VI. TRANSLATING Z-VASSnz TO RatMP
tf

In this section, we show the following.

Proposition VI.1. There is a polynomial reduction from

Z-VASS
nz

to RatMP
tf

. Moreover, this reduction maps instances

from Z-VASS
nz

k to RatMP
tf

k .

We describe the construction, but defer the correctness proof

to Appendix B. Let V = (Q,Z,E) be a given d-dimensional

Z-VASS with k nested zero-tests and let (q,v), (q′,v′) be

configurations. We may assume that v = v′ = 0. To define

the graph group, let A = {a1, . . . , ad} ∪ {bi : i ∈ Z} and I =
{{ai, bj}, {ai, aj} ∈ P2(A) : i > j}. This is a transitive forest,

because with I ′ = {{aj+1, bj}, {aj+1, aj} : j ∈ [1, d − 1]},

the graph (A, I ′) is a forest that yields (A, I) (see Fig. 4).

Moreover, we have β(A, I) = k: If Z = {m1, . . . ,mk}, then

we can build (A, I) by m1 times adding a universal vertex, then

a disjoint union with bm1 , then m2 times adding a universal

vertex, etc. In the end, we have taken k disjoint unions.

The idea is that since the ai commute pairwise, they generate

a group isomorphic to Z
d, realises the counters. Since bmi

commutes with ami+1, . . . , ad but not with a1, . . . , ami
, each

generator bmi
serves to zero-test counters a1, . . . , ami

: It

cannot be moved past a non-zero product of them.

From V , we construct the automaton A over G(A, I) as

follows. It has states Q′ = Q∪{q0} and an edge (q0, bi, q0) for

each i ∈ [1, d] and one edge (q0, ε, q). Moreover, it has an edge

(p, b−1
ℓ au1

1 au2
2 · · · aud

d , p′) for each (p, (u1, . . . , ud), ℓ, p
′) ∈ E.

a1 a2 a3 a4 a5

b1 b3 b4 b5

Fig. 4. Independence alphabet used in the proof of Proposition VI.1 in the
case of d = 5 and Z = {1, 3, 4, 5}. Solid edges are those in I′, dotted edges
are those only in I .
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VII. TRANSLATING RatMP
tf

TO ∃PA∗

In this section, we show the following:

Proposition VII.1. There is a polynomial-time reduction from

RatMP
tf

to ∃PA∗
. Moreover, this reduction maps instances of

RatMP
tf

k to ∃PA∗
formulas with star-height ≤ k.

The central notion in our translation is that of valence

automata. What distinguishes them from automata over groups

is that they have an input alphabet. This turns out to be

convenient for our recursive algorithm.

Let G be a group. A valence automaton over G is a tuple

A = (Q,Σ, E), where Q is a finite set of states, Σ is an

alphabet, and E ⊆ Q×G×Σ∗ ×Q is a finite set of edges. A

configuration of A is a triple (q, g, w) ∈ Q×G×Σ∗. The step

relation is defined as follows. We have (q, g, w) →A (q′, g′, w′)
if there is an edge (q, h, u, q′) such that g′ = gh and w′ = wu.

This induces a language for each pair of states:

L(A, p, q) = {w ∈ Σ∗ : (p, 1, ε) →∗
A (q, 1, w)}.

The non-emptiness problem for a valence automaton asks,

given a valence automaton A and states p, q ∈ Q, whether

L(A, p, q) 6= ∅.

As observed in [36], one can reduce the rational subset

membership problem for G to the non-emptiness problem

of valence automata over G: Given an automaton A over G
and g ∈ G, one can easily construct an automaton Ag over

G with L(A′) = L(A)g−1. Then, 1 ∈ L(A′) if and only if

g ∈ L(A). Moreover, we can turn A′ into a valence automaton

A′′ by adding a label, say, the letter a to every edge. Then,

L(A′′, q0, qf ) 6= ∅ if and only if g ∈ L(A). We will therefore

reduce non-emptiness of valence automata to ∃PA∗.

Remark VII.2. Note that (unlike, e.g. [56]), we do not use

initial and final states in valence automata. This is because we

will construct an ∃PA∗ formula that describes the Parikh image

of a valence automaton for any choice of an initial and a final

state. This will allow us to recurse into fewer subinstances in

our translation.

Let Σ be an alphabet. The Parikh map Ψ: Σ∗ → N
Σ assigns

each word w ∈ Σ∗ the vector Ψ(w) with Ψ(w)(a) = |w|a,

where |w|a is the number of occurrences of a in w. The Parikh

image of a language L ⊆ Σ∗ is Ψ(L) = {Ψ(w) : w ∈ L},

hence Ψ(L) ⊆ N
Σ. We will also use a notion of Parikh images

of valence automata, which encodes the Parikh image for every

choice of initial and final state. For any two states p, q ∈ Q,

let △q
p be a fresh symbol and let ∆ = {△q

p : p, q ∈ Q}. The

Parikh image of A, denoted Ψ(A), is defined as
⋃

p,q∈Q △q
p +

Ψ(L(A, p, q). Hence, we have Ψ(A) ⊆ N
∆∪Σ. Our reduction

consists in the following.

Proposition VII.3. Given a transitive forest (A, I) and a

valence automaton A over G(A, I), one can construct in

polynomial time an ∃PA∗
formula Φ with JΦK = Ψ(A) and

star height at most β(A, I).

Note that if this is established, we can reduce non-emptiness

of valence automata over G(A, I) to ∃PA∗: Given a valence

automaton A over G(A, I), construct an ∃PA∗ formula Φ
with JΦK = Ψ(A). Then L(A, q0, qf ) 6= ∅ iff the formula

Φ ∧ △
qf
q0 > 0 is satisfiable. The remainder of this section

is devoted to proving Proposition VII.3. The construction is

recursive with respect to the decomposition of transitive forests

described in Section III. Hence, we need to treat three cases:

(A, I) has a universal vertex, (A, I) is a disjoint union, or

(A, I) is empty.

Clearly, we may assume that in A, every edge is of the form

(p, [a], x, q) with a ∈ A±1 ∪ {ε} and x ∈ Σ.

A. Universal vertex

We first consider the case that the independence alphabet

(A, I) has a universal vertex. Suppose there is u ∈ A such

that {u, a} ∈ I for every a ∈ A. Let A′ = A \ {u} and

I ′ = I∩P2(A
′). Then the morphism G(A, I) → G(A′, I ′)×Z,

[w] 7→ ([πA′(w)], [π{u}(w)]), is an isomorphism. This means

we may regard A as a valence automaton over G(A′, I ′)
with an additional integer counter. Therefore, we construct

a formula for Ψ(A) by first computing a formula for a valence

automaton over G(A′, I ′) and then imposing the condition that

the additional counter be zero at the end.

We construct the valence automaton A′ = (Q′,Σ′, E′) over

G(A′, I ′). We modify Σ slightly so as to encode the effect of

the additional counter: For each x ∈ Σ and e ∈ {−1, 0, 1}, let

xe be a fresh symbol. Recall that all edges in A are of the

form (p, [a], x, q) with a ∈ A±1 ∪ {ε} and x ∈ Σ. We obtain

A′ from A by replacing 1) each edge of the form (p, [ue], x, q),
e ∈ {−1, 1}, with the edge (p, 1, xe, q) and 2) each edge of the

form (p, [a], x, q), a ∈ A′±1∪{ε}, with the edge (p, [a], x0, q).
The alphabet Σ′ of course consists of the symbols xe that

occur in these edges. Then, A′ is indeed over G(A′, I ′).
Suppose Φ′ is a formula for Ψ(A′). Consider the formula

Φ ≡ ∃{xe ∈ Σ′ : x ∈ Σ} : Φ′ ∧
∑

x1∈Σ′

x1 =
∑

x−1∈Σ′

x−1

∧
∧

x∈Σ

x = x−1 + x0 + x1. (11)

Slightly abusing notation, if in the sum x−1 + x0 + x1, one

of the symbols is not in Σ′, then it is meant not to occur in

the sum. Then we clearly have JΦK = Ψ(A):

Step I. Suppose (A, I) has a universal vertex u ∈ A.

1) Construct A′ and recursively compute Φ′ for Ψ(A′).
2) Define Φ as in Eq. (11) and return Φ.

B. Disjoint union

We now treat the case that (A, I) is a disjoint union of

(A0, I0) and (A1, I1) (we do not assume that (A0, I0) and

(A1, I1) are connected).

Modified automata. In order to build the formula for A, we

apply our translation recursively to two automata A0 and A1

over (A0, I0) and (A1, I1), respectively. For each p, q ∈ Q,

let �
q
p be a fresh symbol and let � = {�q

p : p, q ∈ Q}.

The automaton Ai is obtained by removing in A all edges
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labelled with A1−i and then adding, for each p, q ∈ Q, an

edge (p, 1,�q
p, q). Hence, �∪Σ is the input alphabet for both.

Grammars. Let C be a language class. A C-grammar is a

tuple G = (N,T, P ), where N is a finite set of nonterminals,

T is a finite set of terminals, and P is a finite set of pairs

(B,L), where B ∈ N and L is from C. A pair (B,L) is also

denoted B → L. We write u ⇒G v if there is a pair (B,L)
and words x, y, w ∈ (N ∪ T )∗ such that u = xBy, v = xwy,

and w ∈ L. Whenever B → L ∈ P and w ∈ L, we say that

the pair B → w is a production of G. If G has finitely many

productions, we call it context-free.

The grammar GA is constructed as follows. It has Q = �

as its set of nonterminals and for every p, q ∈ Q, we have the

productions �
q
p → L(Ai, p, q) for i ∈ {0, 1}.

Proposition VII.4. For every p, q ∈ Q, we have L(GA,�
q
p) =

L(A, p, q).

Presburger formulas. Now that we have expressed the

languages of A in terms of grammars, we can build upon

methods for translating grammars into Presburger formulas.

The Parikh image of G is defined as Ψ(G) =
⋃

B∈N B̂ +

Ψ(L(G,B)). Note that Ψ(G) ⊆ N
N̄∪T . Our construction will

build an ∃PA∗ formula for Ψ(G) from an ∃PA∗ formula

describing the right-hand sides in G as follows. The production

Parikh image of G is defined as Ψ→(G) =
⋃

B→L∈P B̄+Ψ(L).

Hence, we have Ψ→(G) ⊆ N
N̄∪N∪T .

To build an ∃PA∗ formula for the Parikh image of G, we

extend a construction by Verma, Seidl, and Schwentick [52],

which yields an existential Presburger formula for a context-free

grammar. We recall the latter in a slightly adapted fashion.

Suppose G = (N,T, P ) is context-free with productions

B1 → w1, . . . , Bℓ → wℓ. For each symbol x ∈ N ∪ T , the

formula has a variable that counts how often that symbol is

produced during a derivation. For each B ∈ N , it also has a

variable B̄ counting how often B is consumed. It has variables

p1, . . . , pℓ that count how often each production is applied.

The variables B̂ for B ∈ N signal which nonterminal is used

as the start symbol. In the construction, we use two shorthands:

First, δB,C stands for 1 if B and C are the same variable (i.e.

not only carrying the same value) and 0 otherwise. Second,

we use a ternary operator to construct the term L?t1:t2, where

L is a literal and t1 and t2 are ordinary terms. The value of

this term is t1 if L is true and t2 otherwise.

The formula has three conjuncts, λ, κ, and χ. The conjunct

λ expresses that the number of times each nonterminal is

produced and consumed is consistent with the number of

applications of each production:

λ ≡ ∃p1, . . . , pℓ :
∧

B∈N

B̄ =
∑

i∈JB

pi

∧
∧

x∈N∪T

x =
∑

i∈[1,ℓ]

Ψ(wi)(x) · pi

∧
∧

B,C∈N

XB,C =
∑

i∈JB

Ψ(wi)(C) · pi. (12)

Here, we use JB = {i ∈ [1, ℓ] : Bi = B}. Moreover, for each

B,C ∈ N , λ stores in the variable XB,C whether there is a

production with B on the left-hand side and C on the right-hand

side. (XB,C even records the number of such occurrences.)

The formula κ selects exactly one of the nonterminals B as

the start symbol, i.e. sets B̂ = 1 and Ĉ = 0 for every C 6= B.

Moreover, it requires each nonterminal to be consumed (C̄) as

many times as it is produced (C). Except for the start symbol,

which is consumed once more:

κ ≡
∨

B∈N

∧

C∈N

Ĉ = δB,C ∧ C̄ = C + Ĉ

The formula χ states that every nonterminal is reachable from

the start symbol: In the directed graph (N ′, E), whose vertices

N ′ ⊆ N are the used nonterminals, and with an edge B → C
if XB,C > 0, every vertex is reachable from the start symbol.

To this end, we assign to every nonterminal B a distance dB so

that the start symbol has dB = 0 and every used nonterminal

B is directly reachable from some C with dB = dC + 1:

χ ≡ ∃{dB : B ∈ N} :
∧

B∈N

(
B̄ = 0 ∨ (B̂ = 1 ∧ dB = 0)

∨

(
B̂ = 0 ∧

∨

C∈N

XC,B > 0 ∧ dB = dC + 1

))
. (13)

The complete formula is then Φ ≡ ∃B,C∈NXB,C∃B∈NB : λ∧
κ ∧ χ. The conditions in λ, κ, χ are clearly necessary and

Verma, Seidl, and Schwentick [52] have shown sufficiency.

Theorem VII.5 ([52]). If G is context-free as above, then

Ψ(G) = JΦK.

The key observation in our reduction is that using the Kleene

star, we can modify Φ to build an ∃PA∗ formula when G is

not necessarily context-free, and in particular for Ψ(A). As a

first step, note that λ is equivalent to the following:

λ∗ ≡

( ∨

i∈[1,ℓ]


 ∧

j∈[1,ℓ]

B̄j = δi,j ∧
∧

x∈N∪T

x = Ψ(wi)(x)




∧
∧

B,C∈N

XB,C = (B̄ = 1) ? C : 0

)∗

. (14)

This is because each satisfying assignment of the formula under

the star assigns variables as λ would, if only one production

were applied. With the star, we generate all satisfying assign-

ments of λ. Hence, with Φ∗ ≡ ∃B,C∈NXB,C∃B∈NB : λ∗∧κ∧
χ, we also have JΦ∗K = Ψ(G). Since this formulation does not

require a separate variable per production, it can be modified

for infinite sets of productions. Suppose ϕ is a formula with

JϕK = Ψ→(G) and consider the formula

λϕ∗ ≡


ϕ ∧

∧

B,C∈N

XB,C = (B̄ = 1 ? C : 0)




∗

and let Φϕ ≡ ∃B,C∈NXB,C∃B∈NB : λϕ∗ ∧ κ ∧ χ. Now the

following is an easy consequence of Theorem VII.5.
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Proposition VII.6. If JϕK = Ψ→(G), then JΦϕK = Ψ(G).

Proof. Suppose µ ∈ JΦϕK. Then, finitely many satisfying

assignments of ϕ justify the satisfaction of Φϕ. These satisfying

assignments stem from finitely many productions in G. Hence,

if we build the formula Φ′
∗ for the context-free grammar G′

that consists of just these productions, then µ must satisfy Φ′
∗.

However, every derivation in G′ is in particular possible in G,

which means µ ∈ Ψ(G). For the converse, suppose µ ∈ Ψ(G).
Then µ stems from a derivation in G, which can only involve

a finite set of productions. Hence, µ ∈ Ψ(G′) for the context-

free grammar G′ that contains only these productions. If we

construct Φ′
∗ as above for G′, then we have µ ∈ JΦ′

∗K. However,

since then every satisfying assignment of the λ∗ conjunct in

Φ′
∗ also satisfies λϕ∗ , this implies µ ∈ JΦϕK.

We have thus built a formula for Ψ(GA) and hence Ψ(A).
If we have a formula Φi for Ψ(Ai), then renaming the free

variables △q
p into �̄

q
p yields formulas Φ̄i with JΦ̄0 ∨ Φ̄1K =

Ψ→(GA). By Proposition VII.6, we can proceed as follows:

Step II. Let (A, I) be a disjoint union of (A0, I0) and (A1, I1).

1) For i ∈ {0, 1}, compute Ai and recursively compute ∃PA∗

formula Φi for Ψ(Ai).
2) For i ∈ {0, 1}, obtain Φ̄i from Φi by renaming variables

△q
p to �

q
p and set ϕ ≡ Φ̄0 ∨ Φ̄1.

3) Obtain ΦA from Φϕ by renaming variables �̂
q
p to △q

p.

C. Empty graph

If (A, I) is the empty graph, then valence automata over

G(A, I) are just finite automata, for which we can build a

Presburger formula using known methods. We construct the

context-free grammar GA with a productions �
q
p → x�q

r for

each edge (p, x, 1, r) and �
p
p → ε for every p ∈ Q. Then, we

construct the formula Φ for GA as in Theorem VII.5.

Step III. Suppose (A, I) is empty.

1) Convert A into context-free grammar GA.

2) Compute Presburger formula for GA as in Theorem VII.5.

A detailed complexity analysis of Steps I to III can be

found in Appendix C-A. Since before invoking recursion, the

automata are expanded in their alphabets (Step I) or set of

edges (Step II), we have to show that these remain polynomial

during the linear-depth recursion. We argue that the number

n of states is never changed, the alphabet size is at most the

number of edges, and we add at most n2 edges in each step.

Hence, every automaton occurring in the algorithm has at most

|A| · n2 edges more than the initial one.

VIII. REMAINING COMPLEXITIES FOR RatMP
tf

In this section, we prove Theorem III.4. The following

Lemma is essentially due to Kambites, Silva, and Steinberg,

who stated a version about decidability.

Lemma VIII.1 ([36]). For f.g. groups G, the following prob-

lems are logspace inter-reducible: rational subset membership

for G and non-emptiness for valence automata over G.

We begin with the case that (A, I) is a clique. Then

G(A, I) ∼= Z
|A|. NL-hardness is trivially inherited from

reachability in directed graphs. For membership in NL, we

apply Lemma VIII.1 and observe that a valence automaton over

Z
k is a blind k-counter automaton, which can be transformed

into a 1-reversal-bounded (k+1)-counter automaton [34]. Since

k is fixed here, reachability is known to be in NL [26].

Now consider the case that (A, I) is a disjoint union of

(at least two) cliques. Since (A, I) is not a clique, it contains

two non-adjacent vertices. Thus, F2 is a subgroup of G(A, I).
Hence the following version of the Chomsky-Schützenberger

theorem [4, 35], together with Lemma VIII.1 tells us that

the P-hard problem of deciding non-emptiness for context-

free languages (CFL) [24] reduces to membership of rational

subsets of G(A, I).

Lemma VIII.2 ([4, 35]). Given a CFL L, one can construct

in logspace a valence automaton over F2 that accepts L.

For a P algorithm, it suffices to decide non-emptiness of a

valence automaton A over a disjoint union of cliques. Let k be

the size of the largest clique. Observe that Proposition VII.4

tells us that given A, we can construct a C-grammar grammar

for A, where C is the class of languages accepted by valence

automata over Z
k. As shown above, non-emptiness for C is

in NL. Due to closure under regular intersection, we can even

decide in NL whether a given language from C intersects a

given regular language. Under these conditions, one can decide

non-emptiness of C-grammars in polynomial time with a simple

saturation procedure as for context-free grammars [56, p. 25].

In light of Corollary III.3, the only remaining piece is NP-

hardness of RatMP
tf in case (A, I) is not a disjoint union

of cliques. Observe that the latter is equivalent to saying that

the adjacency relation is not transitive. In particular, (A, I)
contains the graph as an induced subgraph. This

means G(A, I) has F2 ×Z as a subgroup, so that it suffices to

show NP-hardness of rational subset membership for F2 × Z.

To this end, we reduce the subset sum problem to

non-emptiness of valence automata over F2 × Z. Given

x1, . . . , xn, y ∈ N in binary, one readily constructs a

context-free grammar for the language S = {ax1 , ε} ·
{ax2 , ε} · · · {axn , ε} · {by}. With Lemma VIII.2 we build a

valence automaton A over F2 accepting S. From that, one

easily obtains a valence automaton B over F2 × Z accepting

S′ = {w ∈ S : |w|a = |w|b}. Then the subset sum instance is

positive if and only if S′ 6= ∅. Thus, non-emptiness of valence

automata over F2 × Z is NP-hard.
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APPENDIX A

MISSING PROOFS FROM SECTION IV

Lemma IV.1. Let M =
⋃

j∈J L(cj , Qj) be a semi-linear set.

Then M∗ =
⋃

K⊆J L(bK , PK), where

bK :=
∑

k∈K

ck CK :=
⋃

k∈K

{ck}

QK :=
⋃

k∈K

Qk PK := CK ∪QK .

Proof. Let v ∈ M∗, by grouping and summing up vectors

according to the linear set they originate from, we can write

v = v1+· · ·+vk such that vi ∈ L∗(cji , Qji) for all 1 ≤ i ≤ k
and indices ji ∈ J . Observe that for a fixed i, we have

vi ∈ cji + L∗(0, {cji} ∪Qji) = cji + L(0, {cji} ∪Qji),

where the last equality follows from Eq. (2). Hence

v ∈
k∑

i=1

(cji + L(0, {cji} ∪Qji))

=

k∑

i=1

ci + L (0, CK ∪QK)

= L

(
k∑

i=1

cji , CK ∪QK

)

= L(bK , PK),

where K := {ji : 1 ≤ i ≤ k}.

Conversely, suppose v ∈ L(bK , PK) for some K =
{j1, . . . , jk}. Then there are λ1, . . . , λk > 0 and γ1, . . . ,γk ≥
0 such that

v =

k∑

i=1

(λi · cji +Qji · γi) ∈
k∑

i=1

λi·L(cji , Qji) ⊆M∗.

Lemma IV.2. Let M =
⋃

j∈J L(cj , Qj) ⊆ N
n be a

semi-linear set, and let c = 2n log(4n‖M‖). Then M∗ =⋃
i∈I L(bi, Pi) such that for every i ∈ I ,

• bi =
∑

k∈K ck for some K ⊆ J with |K| ≤ c,
• Pi ⊆

⋃
j∈J{cj} ∪

⋃
k∈K Qk with |Pi| ≤ c, and

• ‖M∗‖ ≤ c · ‖M‖.

Proof. By Lemma IV.1, we have M∗ =
⋃

K⊆J L(dK , RK)
such that dK =

∑
k∈K ck and RK = CK ∪QK , where CK =⋃

k∈K ck and QK =
⋃

k∈K . By Proposition II.1, for a fixed

K ⊆ J we have

L(dK , RK) =
⋃

h∈HK

L(dK , Sh)

such that Sh ⊆ QK and |Sh| ≤ c for all h ∈ HK . For h ∈ HK ,

let K(Sh) = {k ∈ K : Sh∩QK 6= ∅} and bh =
∑

k∈K(Sh)
ck.

We have dK ∈ L(bh, CK), and hence

L(dK , RK) ⊆
⋃

h∈HK

L(bh, Sh ∪ CK) ⊆M∗.

Applying Proposition II.1 once more to every Sh ∪ CK , the

statement follows.

Lemma IV.3. Let Mj = L(cj , Qj) ⊆ N
n such that ‖Mj‖ ≤

s and |Qj | ≤ m, 1 ≤ j ≤ k. Then L :=
⋂

1≤j≤kMj =⋃
i∈I L(bi, P ) such that

• ‖L‖ ≤ (k ·m · s+ 1)O(k·n)

• for every bi and 1 ≤ j ≤ k there is some d ≥ 0 such

that bi = cj +Qj · d, and

• for every 1 ≤ j ≤ k there is some non-negative matrix R
such that P = Qj ·R.

Proof. Consider the following system of linear Diophantine

equations S:

c1 +Q1 · λ1 = c2 +Q2 · λ2

c2 +Q2 · λ2 = c3 +Q3 · λ3

...

ck−1 +Qk−1 · λk−1 = ck +Qk · λk

The constraint matrix of S has k · n rows and at most k · n
columns, and ‖S‖ ≤ 2s. According to [10, Prop. 4], we have

JSK = L(E,S) such that ‖L(E,S)‖ ≤ ((k ·m + 3) · ‖S‖ +
1)k·n. For every 1 ≤ j ≤ k, let Dj and Rj be obtained

from the projection of E respectively S onto the components

corresponding to λj . Then as in the proof of [10, Thm. 6], for

any 1 ≤ j ≤ k we have

L = cj + {Qj · γ : γ ∈ L(Dj , Rj)

= L(cj +Qj ·Dj , Qj ·Rj).

A quick inspection reveals

‖Qj ·Rj‖ ≤ ‖cj +Qj ·Dj‖

≤ ‖cj‖+ms((km+ 3) · ‖S‖+ 1)kn

≤ (k ·m · s+ 1)O(k·n)
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APPENDIX B

MISSING PROOF FROM SECTION VI

Correctness proof for Proposition VI.1. We define the sub-

set Aℓ = {a1, . . . , aℓ}. Observe that since the [ai]
commute pairwise, we can regard the morphism πAℓ

as

πAℓ
: G(A, I) → Z

ℓ and shorten it to πℓ. We claim that for

words w ∈ {b1, . . . , bd}
∗ and yi ∈ {a±1

1 , . . . , a±1
d }∗, we have

[xy1b
−1
ℓ1
y2b

−1
ℓ2

· · · ynbℓn ] = 1 if and only if x = bℓn · · · bℓ1 ,

[y1 · · · yn+1] = 1 and πℓi(y1 · · · yi) = 0 for every i ∈ [1, n].
Note that the claim immediately implies that 1 ∈ L(A, q0, q

′)
if and only if (q, 0) →∗

V (q′, 0).
For the “if” direction, suppose x = bℓn · · · bℓ1 ,

[y1 · · · yn+1] = 1 and πℓi(y1 · · · yi) = 0 for every i ∈ [1, n].
We proceed by induction on n. If n = 0, then the claim is

trivial. Let n ≥ 1. Since the ai commute pairwise, we can

write [y1] = [zz′] with some z ∈ {a±1
1 , . . . , a±1

ℓ1
}∗ and z′ ∈

{a±1
ℓ1+1, . . . , a

±1
d }∗. Moreover, πℓ1(y1) = 0 implies [z] = 1.

Since bℓ1 commutes with all the generators aℓ1+1, . . . , ad, we

have

[xy1b
−1
ℓ1
y2b

−1
ℓ2

· · · ynb
−1
ℓn
yn+1]

=[xzz′b−1
ℓ1
y2b

−1
ℓ2

· · · ynb
−1
ℓn
yn+1]

=[xzb−1
ℓ1
z′y2b

−1
ℓ2

· · · ynb
−1
ℓn
yn+1]

=[bℓn · · · bℓ1zb
−1
ℓ1
z′y2b

−1
ℓ2

· · · ynb
−1
ℓn
yn+1]

=[bℓn · · · bℓ2z
′y2b

−1
ℓ2

· · · ynb
−1
ℓn
yn+1].

Note that [z] = 1 implies πℓi(z
′y2 · · · yi) =

πℓi(zz
′y2 · · · yi) = πℓi(y1 · · · yi) = 0 for every i ∈ [1, n].

Therefore, we may invoke induction to conclude

that [bℓn · · · bℓ2z
′y2b

−1
ℓ2

· · · ynb
−1
ℓn

] = 1 holds and thus

[xy1b
−1
ℓ1
y2b

−1
ℓ2

· · · ynb
−1
ℓn

] = 1.

For the “only if” direction, suppose the word w =
xy1b

−1
ℓ1
y2b

−1
ℓ2

· · · ynb
−1
ℓn

satisfies [w] = 1. We again proceed

by induction and notice that the claim holds vacuously for

n = 0. Now let n ≥ 1. First, observe that [w] = 1 implies

[xb−1
ℓ1
b−1
ℓ2

· · · b−1
ℓn

] = πB(w) = 1 and thus [x] = [bℓn · · · bℓ1 ].
Since the bi do not commute with each other, that means

x = bℓn · · · bℓ1 . We can find z ∈ {a±1
1 , . . . , a±1

ℓ1
}∗ and

z′ ∈ {a±1
ℓ1+1, . . . , a

±1
d }∗ such that [y1] = [zz′]. Toward a

contradiction, suppose [z] 6= 1. Then it is easy to see by

induction on the number of applied rewriting steps that any

word w′ ∈ (A±1)∗ with [w′] = [w] has an infix bℓ1yb
−1
ℓ1

with

πℓ1(y) = [z] 6= 0: We can certainly not apply any cancellation

rule for a bi; other cancellation rules might be applicable, but

preserve this property; and since bℓ1 does not commute with

a1, . . . , aℓ1 , commutation rules preserve this property as well.

Therefore, we would have [w] 6= 1. Thus, we have shown

[z] = 1.

Observe that

[w] = [bℓn · · · bℓ1zz
′b−1

ℓ1
y2b

−1
ℓ2

· · · ynb
−1
ℓn
yn+1]

= [bℓn · · · bℓ1zb
−1
ℓ1
z′y2b

−1
ℓ2

· · · ynb
−1
ℓn
yn+1]

= [bℓn · · · bℓ2z
′y2b

−1
ℓ2

· · · ynb
−1
ℓn
yn+1].

By induction, we may conclude that πℓi(z
′y2 · · · yi) = 1 for

every i ∈ [2, n+ 1] and [z′y2 · · · yn+1] = 1. Finally, observe

that since [z] = 1, we have πℓi(y1 · · · yi) = πℓi(zz
′y2 · · · yi) =

πℓi(z
′y2 · · · yi) = 0 and for i ∈ [1, n] and [y1 · · · yn+1] =

[zz′y2 · · · yn+1] = 1.

APPENDIX C

MISSING PROOFS FROM SECTION VII

In order to prove Proposition VII.4, we need a simple fact

about free products of groups. Since A = A0 ⊎ A1, we can

uniquely decompose each u ∈ (A±1)∗ into maximal factors

from (A±1
0 )+ ∪ (A±1

1 )+. In other words, we decompose u =
u1 · · ·un with n ≥ 0 such that ui ∈ (A±1

0 )+ ∪ (A±1
1 )+ for

i ∈ [1, n] and ui ∈ (A±1
s )+ if and only if ui+1 ∈ (A±1

1−s)
+ for

i ∈ [1, n− 1] and s ∈ {0, 1}. This is the block decomposition

of u.

Lemma C.1. Let u ∈ (A±1)∗ and let u = u1 · · ·un be its

block decomposition. If [u] = 1, then [ui] = 1 for some i.

Proof. Suppose [ui] 6= 1 for every i ∈ [1, n]. By induction on

the number of rewriting steps, it is easy to see that every word u′

with [u] = [u′] has a block decomposition u′ = u′1 · · ·u
′
m with

m = n and [u′i] = [ui] for every i ∈ [1, n]. For cancellation

rules, that is trivial. Moreover, commutation rules can only

rearrange symbols within each block (recall that we assumed

that there are no edges between A0 and A1). This implies that

u′ cannot be the empty word and hence [u] 6= 1.

Proposition VII.4. For every p, q ∈ Q, we have L(GA,�
q
p) =

L(A, p, q).

Proof. The following notation for runs in valence automata

will be convenient: If in a valence A, we have (p, 1, ε) →∗
A

(q, [u], v), then we write p
u|v
−−→ q.

We begin with the inclusion L(GA,�
q
p) ⊆ L(A, p, q). We

prove the inclusion by establishing the following claim: For ev-

ery v ∈ (N ∪Σ)∗ with �
q
p ⇒k v, we have v0�

q1
p1
v1 · · ·�

qn
pn
vn

for some n ≥ 0 and there are runs

p
u0|v0
−−−→ p1, q1

u1|v1
−−−→ p2, . . . ,

qn−1
un−1|vn−1
−−−−−−−→ pn, qn

un|vn
−−−−→ q (15)

in A such that [u0 · · ·un] = 1. The claim implies that for every

v ∈ L(GA,�
q
p), there is a run p

u|v
−−→ q with [u] = 1, which

means v ∈ L(A, p, q). We prove the claim by induction on k.

If k = 0, then v = �
q
p and the claim is trivial. Let k ≥ 1 and

�
q
p ⇒k−1 v′ ⇒ v. Then we can write v′ = v0�

q1
p1
v1 · · ·�

qn
pn
vn

for some n ≥ 0 and have runs as in Eq. (15). This means v is

obtained from v′ by replacing a nonterminal, say �
qi
pi

, by some

word v′′ ∈ L(Aj , pi, qi) for some j ∈ {0, 1}. By definition of

Aj , we have v′′ = v′′0�
q′1
p′

1
v′′1 · · ·�

q′m
p′

m
v′′m and runs

pi
u′′

0 |v
′′

0−−−−→ p′′1 , q
′′
1

u′′

1 |v
′′

1−−−−→ p′′2 , . . . ,

q′′m−1

u′′

m−1|v
′′

m−1
−−−−−−−→ p′′m, q

′′
m

u′′

m|v′′

m−−−−→ qi (16)

15



such that [u′′0 · · ·u
′′
m] = 1. By inserting the runs in Eq. (16)

into Eq. (15) between pi and qi, we obtain runs

p
u0|v0
−−−→ p1, q1

u1|v1
−−−→ p2, . . . , qi−2

ui−2|vi−2
−−−−−−→ pi−1,

qi−1
ui−1u

′′

0 |vi−1v
′′

0−−−−−−−−−−→ p′′1 , q
′′
1

u′′

1 |v
′′

1−−−−→ p′′2 , . . . ,

q′′m−1

u′′

m−1|v
′′

m−1
−−−−−−−→ p′′m, q

′′
m

u′′

mui|v
′′

mvi
−−−−−−−→ pi+1,

qi+1
ui+1|vi+1
−−−−−−→ pi+1, . . . ,

qn−1
un−1|vn−1
−−−−−−−→ pn, qn

un|vn
−−−−→ q. (17)

Since

v = v0�
q1
p1
v1 · · ·�

qi−1
pi−1

vi−1

(
v′′0�

q′′1
p′′

1
v′′1 · · ·�

q′′m
p′′

m
v′′m

)

vi�
qi+1
pi+1

· · · vn−1�
qn
pn
vn, (18)

this proves the claim for v.

Let us now prove the inclusion L(A, p, q) ⊆ L(GA,�
q
p). We

claim that for every sequence of runs as in Eq. (15) in A with

[u0 · · ·un] = 1, we have �
q
p ⇒∗ v0�

q1
p1
v1 · · ·�

qn
pn
vn. Note that

this establishes the inclusion: For each v ∈ L(A, p, q), there is

a run p
u|v
−−→ q with [u] = 1. Thus, the claim implies �

q
p ⇒∗ v,

which means v ∈ L(GA,�
q
p) because v ∈ Σ∗.

We proceed by induction on the number of blocks in u =
u0 · · ·un. According to Lemma C.1, the block decomposition

of the word u0 · · ·un contains some block w with [w] = 1.

Now w can occur within a single factor ui or span several

factors. We only consider the latter case, the former can be

treated analogously.

Hence, we can find indices i < j and a decomposition ui =
u′iu

′′
i and uj = u′ju

′′
j such that w = u′′i ui+1 · · ·uj−1u

′
j . Since

A reads at most one generator from A±1 in each edge, this

decomposition induces a decomposition of the runs qi
ui|vi
−−−→

pi+1 and qj
uj |vj
−−−→ pj+1 into

qi
u′

i|v
′

i−−−→ p′
u′′

i |v
′′

i−−−−→ pi+1 and qj
u′

j |v
′

j

−−−→ q′
u′′

j |v
′′

j

−−−−→ pj+1.

Consider the sequence of runs that is obtained from

Eq. (15) by replacing qi
ui|vi
−−−→ pi+1 by qi

u′

i|v
′

i−−−→ p′ and

replacing qj
uj |vj

−−−→ pj+1 by q′
u′′

j |v
′′

j

−−−−→ pj+1. Then the word

u0 · · ·ui−1u
′
iu

′′
j uj+1 · · ·un has one fewer block than u0 · · ·un.

Hence, by induction, the word

v′ = v0�
q1
p1
v1 · · ·�

qi−1
pi−1

vi−1�
qi
pi
v′i�

q′

p′v
′′
j �

qj+1
pj+1

vj+1 · · ·�
qn
pn
vn

verifies �
q
p ⇒∗ v′. On the other hand, since w was chosen

to be a block, we have u′′i ui+1 · · ·uj−1u
′
j = w ∈ (A±1

s )+ for

some s ∈ {0, 1} and therefore runs

p′
u′′

i |v
′′

i−−−−→As
pi+1, qi+1

ui+1|vi+1
−−−−−−→As

pi+2, . . . ,

qj−1
uj−1|vj−1
−−−−−−→As

pj , qj
u′

j |v
′

j

−−−→As
q′ (19)

in As. By construction of As, this means we have v′′ =
v′′i �

qi+1
pi+1vi+1 · · ·�

qj−1
pj−1vj−1�

qj
pjv

′
j ∈ L(As, p

′, q′). Therefore,

replacing the occurrence of �
q′

p′ in v′ by v′′ yields v, hence

�
q
p ⇒∗ v′ ⇒ v.

A. Analysis

We now analyze our translation described in Steps I to III.

On one hand, we show that the translation maps RatMP
tf

k to

formulas of star-height ≤ k. On the other hand, we show that

it runs in polynomial time.

Concerning the star-height, suppose we are given a transitive

forest (A, I) with β(A, I) = k. Notice that our recursive

algorithm introduces a star only in step Step II: Compared

to the formulas of the automata A0 and A1, it raises the star

height by one. According to the definition of the branching

number, this directly implies that the resulting ∃PA∗ formula

has star-height k.

Let us now show that the construction runs in polynomial

time. It is clear from the construction that computing the

formulas takes time linear in the size of the formulas. Hence,

it suffices to show that they are polynomial in size. Let ΦA

denote the formula computed for each automaton A. Now

suppose the input automaton A has n states and m edges. An

inspection of Steps I to III reveals that there is a polynomial

p(x, y) such that:

1) If (A, I) has a universal vertex, then |ΦA| ≤ |ΦA′ | +
p(n,m).

2) If (A, I) is a disjoint union, then |ΦA| ≤ |ΦA0 |+ |ΦA1 |+
p(n,m).

3) If (A, I) is empty, then |ΦA| ≤ p(n,m).

Note that the length of the formulas may depend on the size

of the alphabet, but that is bounded by the number m of edges.

Of course, we may assume that p has only positive coefficients.

Let us show by induction on |A| that |ΦA| ≤ |A|2p(n,m+
|A|n2) for every A. If (A, I) is empty, then this is clear.

If (A, I) has a universal vertex, then we construct A′ over

(A′, I ′), where A′ has n states and m edges and |A′| = |A|−1.

Therefore:

|ΦA| ≤ |ΦA′ |+ p(|A|, n,m)

≤ (|A| − 1)2p(n,m+ |A|n2) + p(n,m)

≤ |A|2p(n,m+ |A|n2).

Now suppose (A, I) is a disjoint union of (A0, I0) and (A1, I1).
Then we construct A0 and A1. They each have n states and

m+ n2 edges, because we add the edges labeled �
q
p for each

p, q ∈ Q. Moreover, we have |A0|, |A1| < |A| and thus by

induction

|ΦAi
| ≤ |Ai|

2p(n,m+n2+ |Ai|n
2) ≤ |Ai|

2p(n,m+ |A|n2).

That implies

|ΦA| ≤ |ΦA0 |+ |ΦA1 |+ p(n,m)

≤ (|A0|
2 + |A1|

2)p(n,m+ |A|n2) + p(n,m)

≤ (|A0|
2 + |A1|

2 + 1)p(n,m+ |A|n2)

≤ |A|2p(n,m+ |A|n2).

Thus, the resulting formulas have polynomial size.
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