
Prescaled Integer Division

David W. Matula, Alex Fit-Florea
Department of Computer Science and Engineering

Southern Methodist University�
matula,alex � @engr.smu.edu

Abstract

We describe a high radix integer division algo-
rithm where the divisor is prescaled and the quotient
is postscaled without modifying the dividend to obtain
an identity �������
	������� with the quotient ���
differing from the desired integer quotient � only in
its lowest order high radix digit. Here the “oversized”
partial remainder � � is bounded by the scaled divisor
with at most one additional high radix digit selection
needed to reduce the partial remainder and augment
the quotient to obtain the desired integer division result������	����� with ������������� .

We present a high radix multiplicative version of this
algorithm where a ��	! digit base " rectangular aspect
ratio multiplier allows quotient digit selection in radix"$#&%(' with a cost of only one �)	$ digit multiply per high
radix digit, plus the fixed pre- and post-scaling opera-
tion costs. We also present a Booth radix * additive ver-
sion of this algorithm where appropriately compressed
representation of the partial remainder with Booth dig-
its +,�.-0/1���,/2�0/3�4/5-76 allows successive quotient digit se-
lection from the leading partial remainder digit without
the iterative table lookups required in SRT division.

1 Introduction

Digit serial division algorithms generating quotient
digits in a higher radix in most significant digit first
order are well known. The SRT division procedure
characterized by Atkins in [1] iteratively employs ta-
ble lookup for determining the next quotient digit and
an adder to update the partial remainder. Using a short-
by-long rectangular aspect ratio multiplier the digit se-
rial division procedure may be implemented in a much
higher radix using multiplication of the partial remain-
der by a short reciprocal of the divisor with rounding to
determine the next quotient digit. Updating the remain-
der is then accomplished employing another short-by-
long multiply. See [3] and [5] for an extensive list of
references on these methods.

Prescaled division is an enhanced version of digit se-

rial division introduced by Svoboda in [9] that has been
followed with a rich literature noted in [5]. The process
of prescaled division scales both the numerator and de-
nominator by a predetermined short reciprocal of the di-
visor. Division of the scaled numerator by the scaled di-
visor yields the identical quotient to any precision with
a remainder that is implicitly also scaled by the short re-
ciprocal. The efficiency advantage of prescaled division
does not apply to integer division as the necessary addi-
tional work to effectively “descale” the scaled remain-
der costs as-much-as or more than the savings gained.

We present an alternative methodology for prescaled
integer division of a dividend � by a divisor � that
provides both the quotient � and remainder � , achiev-
ing almost the same efficiency as that of a straightfor-
ward prescaling procedure providing the same quotient
with a scaled remainder. Our algorithm involves divi-
sor prescaling and quotient postscaling. That is, the
(unscaled) dividend is divided by the scaled divisor re-
sulting in a “reduced” integer quotient and an “over-
sized” remainder � � . Subsequent scaling of the re-
duced quotient by the short reciprocal yields an iden-
tity �8�9� � �:�� � . The oversized remainder � �
may then be processed by a traditional integer division
method (noting that essentially only one high radix digit
need be determined) to augment � � to obtain the integer
quotient � and determine the final integer remainder �
satisfying ������	����� with �;�������<��� .

The general theory of our prescaled integer division
method is outlined in Section 2. Our main result in Sec-
tion 3 is a prescaled integer division algorithm employ-
ing a �=	� digit rectangular aspect ratio multiplier that
can be proven to determine the quotient and remainder

of -> by digit division in ?A@CB#&%('ED �F4G���	H digit

multiplications.

In Section 4 we describe a version of prescaled in-
teger division employing an adder for partial remain-
der computation where quotient digit selection in Booth
radix * is available from the leading digit of the partial
remainder. Both the divisor prescaling and the quotient
postscaling operations are executable as 3-1 additions
with one initial table lookup to determine the short divi-
sor reciprocal value to be employed as the scale factor.

1

Section 5 provides a conclusion and further direc-
tions for development of this procedure.

2 Scaling Integer Division

Consider integer division with the divisor � being a -digit base " integer normalized to the range " B % ' �� ��" B �H� and the dividend � being a -> -digit integer
satisfying � � � � �
" B � � . The result of integer di-
vision of � by � is an integer quotient � and an integer
remainder � which are uniquely determined by

����� 	�� ��;/ with �;�������<��� � � ���
The bounds on � and � imply �;� � ��" B �=� with

both � and � being -digit base " integers.
Digit serial division develops � by the dependent se-

quential steps

� next quotient digit selection

� partial remainder computation

Both of these steps can cost significant delay. When
a rectangular aspect ratio � 	� digit multiplier is avail-
able, the next quotient digit can be determined in the
high radix " #&%(' by a � 	! digit multiplication by a pre-
determined short reciprocal and rounding. The next par-
tial remainder is then computable by a �=	� digit mul-
tiplication. When only an adder is available to support
digit serial division, the SRT algorithm employs table
lookup for quotient digit selection and subtraction of a
selected digit multiple of the multiplicand for remainder
update.

A much simpler division process occurs when the di-
visor is a value very close to a power of the base. For
the decimal divisor � � �3�,� *4*�����	�
 , it is evident that
the next quotient digit may be taken as the leading radix�&�4� digit of the partial remainder. Thus when the divisor
is near a power of the base the steps of partial remainder
computation and next quotient digit selection are effec-
tively merged into a single operation, taking only about
one half the time per high radix quotient digit generated.

Straightforward prescaled integer division scales a
divisor and dividend by a predetermined integer scale
factor �� selected to generate a scaled divisor ���� very
close to a power of the base. Scaling both the integer
divisor � and dividend � by �� yields

� �� ��� � � ���2 � �� with ����� �� � � ��H� �� � -��
Integer division of ���� by ���� provides a more ef-

ficient procedure to determine the identical integer quo-
tient � , but then concurrently provides a scaled remain-
der value � �� . This form of prescaled division is not
applicable to integer division when both the integer quo-
tient � and integer remainder � must be determined.

We herein present an alternative prescaling algorithm
that returns both the quotient � and remainder � of
integer division with nearly the same efficiency as a
straightforward prescaling algorithm that would gener-
ate the same quotient with a scaled remainder.

Given � and � as in (1), we shall determine � and� in terms of three intermediate integer parameters � , � ,
and � � that are defined as follows. Integer division of� by �� uniquely specifies an integer reduced quotient� and an integer reduced remainder � by the equation

� ��� �� ��E/������;� ������ � � F��
Substituting equation (3) into equation (1) we obtain

�����E���� � � �� ��� �
Letting � � ���E�� � , we obtain from the bounds� ���<� �� ��� and � � ��� � ��� that � �� � � ���� � � . Then � ��� 	 � ����� � � with� �<� � �������� � means that the integers � and � �

can be determined by integer division of the (unscaled)
dividend � by the scaled divisor � �� .

We now wish to find � and � from

� ���������E/
� � � � ���E� �

Note that both � and � can be found from a � 	
digit multiply given that we can also determine � having
found � and ��� from the integer division of � by

� ������ .
Observe that

� � ������ � ������ ����� �
Since �E���� ��� � �� � � �.��!� ���� and since for an

appropriately chosen �� we can obtain "#"$&%('�)+*�, � � - with . - ./� '$)+*�, , the leading digit �&0��214365 #"$ %('�)+*�,�7
either equals � or is very close to � . Using ��0 we may
compute a trial quotient, by � ���8�90 and trial remainder
by � � �:�90 � , with a final small quotient and remainder
adjustment as necessary if � � ���90 � is not in the range; �0/2���=�=< . The process is formalized in the next section.

3 Multiplicative Prescaled Integer Divi-
sion

For multiplicative prescaled integer division we as-
sume support of a � 	 digit base " integer multi-
plier generating a � � digit product. Multiplicative
prescaled division is particularly effective when the as-
pect ratio �> � of the larger multiplicand size to the
smaller multiplier size � is in the range from *?>.� to�3�@> � . To obtain maximum benefit from the use of the� 	 digit multiplier, it is critical that the scale factor

2

used to prescale the divisor have both length and accu-
racy corresponding to the shorter size � of the multi-
plier, allowing division by the prescaled divisor to be
performed with digit selection in radix " #&%(' .

For ��� ��� with integer divisor � satisfying" B % ' ��� ��" B , let " # %(' � �� ��" # �C� and ��� � ������ be determine by

" #�� B % ' ���� ��� � �
Here �� � � $) '&%=*�,

" � is termed an integer-

normalized � -digit short reciprocal of the integer divi-
sor � and

� � �� � � " #�� B %(' is the residue of �� �
modulo " #�� B %(' . Equivalently, �� is the quotient of" #�� B %(' divided by � selected so as to have the neg-
ative remainder � � �����!� � � � � � .

Prescaled integer division of the integer dividend �
by the integer divisor � proceeds as follows

� The divisor � is prescaled by a � -digit short recip-
rocal yielding the scaled divisor � �� .

� Integer division of � by � �� is performed with
digit selection radix " #&%(' , determining a reduced
quotient, oversized remainder pair �7/ � � satisfying

�:��� � ����@� �� � / with ����� � � �������� �
� The reduced quotient � is scaled by �� with the di-

visor “descaled” from ���� to � yielding the iden-
tity

�:� � � ��� ���� �
� A final quotient digit adjustment is performed to

reduce the remainder from the oversized range �;�� � � ���� � � to a remainder � satisfying ���� ���<��� .
The process is illustrated by the following numeric

example.
Example: [Prescaled Integer Division]
Problem: For the �&-$	 	 digit decimal integer division

arguments����F�	 ��� *�
4F����4-4� * (�&- digit dividend)� ���9
 *	�EF � (digit divisor)
find the 	 digit integer quotient � and non negative

remainder � with �;�������<��� such that������	�� � .
Note: We assume our multiplier is a F 	�	 digit

decimal multiplier, so � 	 , � � F , and we pursue
prescaled integer division in radix �&�7#&%('!� �3�,� .

Step 1: Determine the ����F digit short reciprocal�� � � '�
���������� ' � � �&-�
 .
Step 2: Determine the � digit scaled divisor and 	

digit residue

� 	 �� ���9
4*��EF �.	C�&-�
�� �3�,� *,*�����	�
� � *,*�����	�

Step 3: Perform digit serial division of the dividend

by the the scaled divisor determining
� B#&% ' � � ��� -

digits in the high radix 100. Note that digit selection
is obtained directly from the leading digits of each par-
tial remainder with the partial remainder computations
comprising multiplications of the radix �&�4� digit by the	 digit residue

� � *,*�����	�
 in the F�	 	 digit multiplier.���������������������� ��! ��� �#"	�#!$�#" ��%$����
first digit selection���'&(������� ��!)*���#+,�-�$��.�� �#!��� ���.���$��

second digit selection���/&(������� ��!)0����+1�-!.%��$!�% !�!%�� ���.%2� �-�
Step 4: Perform divisor descaling with quotient scal-

ing, �����#"��#!��#"��%��� 34������5&6�-������#������!/78%�������%2���-�
(divisor descaling:)

34������9&6):�-%�!;&<"�!�="�2��+	7>%�������%2���-�
(quotient scaling:)

3?)*������9&@�-%�!#+A&B"!�="�2�A78%�������%2���-�3C�#������#!;&<"!�="�2�D7E%�������%2���-�
Step 5: Reformat digit serial division and determine

a low order digit incrementation by one step of the short
reciprocal division procedure applied to the “oversized”
remainder.

� ���#F (quotient adjustment:)�G�G
 ��=F H6�G	G
 � '�������� ' ��G	I������	����I�J
 �KF (digit augmentation selection:)

' J���L J�G
 G	J '7' G H
 ��� ��I	M�I
 �������/LN�������� ' J�I	��M	G ' J�� (partial remainder adjustment)

' G	I�M	M��
Step 6: Determine (confirm) positive remainder and

provide quotient in non redundant form.� � *�	 	4�
0� ,� � �!	 �O�P�4F , �;��� �Q�&
 *�� F � �
The digit selection procedure for the first phase of

Prescaled Integer Division utilized in Step 3 of the
example is identical to digit selection in SR�T
digit prescaled division. It follows that ? @ B#&% ' D ��� G
high radix digits are determined at a cost of just one� 	� digit multiplication per digit. The remainder� � ��-�	4��	 - �,� 	 in Step 5 in general satisfies . � � . �" B � #&% ' �

, so multiplication by the short reciprocal
determines a H�-,�=� � digit product with leading �
digit tuple magnitude no greater than the short recipro-
cal. Here we obtain �,F4F;��� -&
 .

The digit selection multiplication in Step 5 can
be performed as a � 	� digit multiplication in the

3

form �� 	�1 365$�) *�,�7 � �&-&
 	�-�	4� 	,- � � �4F,F F �O�4*

 ,
with ������� � " #&%(' , (here being �!) then added to
the remainder in Step 6. Since the augmented digit
selected in Step 5 is in the range

; ����H/ �� < , the partial
remainder adjustment can be supported by a � 	 digit
multiplication, with the resulting next partial remainder
output in Step 5 possibly needing further adjustment to
obtain absolute value less than the divisor � .

Algorithm 1 (Prescaled Integer Division)
Stimulus:
A high radix " #&%(' with

� ��� �!��� - , a precision with �� � �� , a -digit integer divisor � with" B % ' �:� � " B � � , a - -digit integer dividend �
with �;��� ���
" B ��� .
Response:
An integer quotient � with ����� ��" B ��� , an integer
remainder � with � � ��� � � � , where � , � satisfy������� � .
Method:� > � � ;�� > � � $ %('�)+*�,

" � ; + short reciprocal 6
� � � ; + initiate partial remainder 6� � ����<� " B � #&%(' ; + residue of scaled dividend 6� > � @
	 � � ���!� D ; + number of high radix digits in ��6������ > � � ����� ��������� ��� �� ����� ������ > � � �"!$#�"&%(' #&%('*) � B,+ + leading

digit selection 6� - � � > � ���-� ���.�� 	 "&%$' #&% '/):� B,+ + leading digit
deletion 6� F�� � > � ���-� ���.�� 	 � 	="0'1% %('*) ' #&% '/) + + partial
remainder determination 6� *�� � > � � 	 " #&%(' 2� ���.�� + + quotient accumulation 6

od;� ���2� > � � 	 �� + + quotient scaling 6� 	 �3� ���.�� > � � ��:	 ���4�5!(#�"0' # %('*) � B6+ + digit augmenta-
tion selection 6� �&��� > �:���7� ������ 	 � + + partial remainder adjust-
ment 6�
 �2� > � � 8� ������ + + quotient accumulation 6� � � ��9 !$:$; � ���<� �� > � ����� +� > � ����
od;� �3��� ��9 !$:=;��>� �?� �� > ��� � +� > � ���C�
od;

Lemma 1 Algorithm 1 for Prescaled Integer Division
performs -> RT� digit base " integer division in the

high radix " #&%(' , with �.� �@� - , employing
� � B#&%(' � � F�� �=	; digit multiplications.

Outline of Proof: A single � 	 digit base " multi-

plication in Statement (3) determines both the next par-
tial remainder and the next high radix quotient digit,

yielding a total of
� � B#&% ' � � � �!�!�C	= digit multipli-

cations in the for loop. The prescaling of the divisor
determining

�
and the postscaling of the quotient in

Statement (5) contributes two more �C	� digit multi-
plications. The remainder scaling in Statement (6) for
low order digit augmentation selection and the partial
remainder adjustment in Statement (7) can be performed
by two more ��	
 digit multiplications for the total of� � B#&% ' � � �F � .

For correctness of Algorithm 1 note initially that� � � � ����
"0'BA %('*) ' #&% '/) . Using induction for� � � � �4/ � ��-0/ � � � /3� , assume . � . ������ " %(' #&%('*) .
Consider the case �C� � . The rational

$ %+') *�, 3"�#" deter-
mines the digit string for the rest of the infinitely pre-
cise quotient, and since �� 	�� exceeds the value by less
than one part in " #&% ' , the high radix digit determined in
Statement

� ��� is either identical to the leading digits of
the string or is � unit larger. If identical, the next partial
remainder � satisfies �=����� � ��
"0'1% %('*) ' #&% '/) , and if
the high radix digit is � unit larger, the next partial re-
mainder is negative with �?� . � . � � ��
" 'B% % '/) ' #&%('*) .
The case for ����� follows by symmetry, so by induc-
tion we terminate the for loop with � ��� 0(H� �� 0 ,
where . � 0 .7� �������� .

As noted in the paragraph before Algorithm 1, the
final high radix digit determined in Statement (6) is
in the range

; �?��H/ �� < . Although this digit can exceed" #&% ' , it does not exceed " # in magnitude and the
remainder adjustment can be supported by a � 	� digit
multiplier, followed possibly by some further additive
adjustments to obtain ����� � � ��� .

Note that determining a full �	 digit multiplica-
tion with a �C	� digit multiplier employs D>B#

E 	 �
digit multiplications. For � ��� �@��� , it follows that
the number of 	 � digit multiplications employed for
prescaled integer division to determine ��/2� satisfying� � � 	 � �� is not much greater than the num-
ber of multiplies to compute ��	 � � to verify the
answer. For example, employing a �&-=	 � -&
 bit mul-
tiplier for a � -&

	�� -&
 bit product utilizes �4� short-by-
long multiplies, and finding the quotient and remainder
by prescaled integer division as given by Algorithm 1
utilizes �!� short-by-long multiplies.

In summary the - R�T digit prescaled integer di-
vision algorithm prescales only the initial divisor, and
then postscales the resulting reduced quotient and over-
sized remainder of this modified division problem. The
postscaling of the oversized remainder is employed to
find a single “oversized” high radix digit to adjust the
quotient and compute an appropriately bounded remain-
der. The foundation of the method with more details on
determining the final high radix digit for quotient ad-

4

justment is included in the following theorem.
Theorem 2 For -;� � � � ���!� , assume given a

� p-digit divisor � with " B % ' ��� ��" B %(' ,� 2p-digit dividend � with �;��� ��� " B %(' ,� k-digit short reciprocal �� and residual
�

satisfying�� � � " B � # %(' �
with �;� � ���<��� ,

� ; �� � � ����� < -digit reduced quotient � and over-
sized remainder � � satisfying � ��� 	 � �� �� � � / with ����� � � �� �<��� .

If ��� ��� ��� �;� , then the -digit quotient � ��� 	?��
and remainder � ��� � satisfies � ����� �� with�;� � ���<��� .
Else if � � ��� � �� � ��� , then the quotient � and
remainder � given by� ��� 	 ����1 365 L #" %��$ %('�)+*�, 7 ,
� � � � � � 1 365 L #" %��$ %('�)+*�, 7 	��� ,
satisfies �:����� �� with �C� ��� � � ��� .

4 Additive Prescaled Integer Division

Our additive prescaled integer division algorithm
will use a slightly different procedure for determining
the postscaled quotient and corresponding remainder.

For the radix * we will assume our short reciprocal�� is a F -digit radix * integer. We divide � by the scaled
divisor ���� so as to obtain F fractional digits giving

��� ��0	 * � ����� � 0	 *
Letting

��� #"G-� ����0 0 �G-� we obtain

�:��� 0 0 �� � � �� 0	 * �
Now

� � � 0 must be divisible by 	 * , yielding
an integer � 0 0 � � " � 3 �G�� where . � 0 0 .� - � . Thus�9� ��0 0 � � 0 0 where an augmentation of � 0 0 by at
most a value from +,���,/1�4/5-76 yields ������� � with� � � � � � � . Division radix * requires generation
of � B � 'J	� digits in the Booth radix * quotient represen-
tation with digits + �.- /1���,/2� /1�4/5-76 , which for � 	 *
is F4F digits. Since the number of quotient digits is rela-
tively large, the generation of an additional F fractional
digits with quotient and remainder adjustment by adding
a fractional part times � back into the remainder does
not significantly increase the number of additive steps
on a relative basis.

Our additive algorithm assumes �� (normalized to� �4/5-�<) is chosen so that ��� ���� � � 'G for a radix* divisor � normalized to 'J � � � � , the above
Table shows that a F digit �� may be chosen so that� � � �� � � 'G . Our partial remainder computation

Divisor
Interval

Short Reciprocal�� Scaled Interval����; 'J / � � � - � �4� ; �,/ �� �� � � / J� � �� � - � � �1� � �4/ �G �� J� / �� � � � � � � - � � �4/ M� �; �� / � I � ' '� � � � � - � �����J / '2''1
 �� � I / �M � � I � � � �3� � �4/ '�
M �� � M /3�!� M� � � � �,- � �4/ M� �
is performed so that when the leading digit of the par-
tial remainder is � or - , then all subsequent digits are
in the set +,���,/2� /1�4/5-76 constituting a fractional part in
the range
 � '� / J��� . Similarly when the partial remain-
der is ��� or �.- , all subsequent digits are in the set+,�.-0/1���,/2�0/3� 6 constituting a fractional part in the range

 � J� / '�� . This provides for partial remainder computa-
tion of � > � * � � ��� �� , where ��� + �.- /1���,/2� /1�4/5-76 is
chosen to maintain the condition that

� � � �,�� is in the
range
 � J� / J��� . The following example illustrates this
additive integer prescaled division procedure for integer
division of an
 digit radix * dividend by a * digit radix* divisor.

[Additive Prescaled Integer Division]
Problem: For the
�	�* digit radix * integer division

arguments�:� �&F,-4-,- � �&- � (
 digit dividend)� � -,- �4� � (* digit divisor)
find the * digit integer quotient � and remainder �

with ��� � � �<��� such that�:��� 	��� � .
We assume our adder is able to perform signed digit

summations and compress the remainder to either the
digit set +,�.-0/1���4/ �0/3� 6 or +,���,/2�0/3�4/5-76

Step 1: Determine the three digit short reciprocal ac-
cording to Table 1.�� � - � �1� � since

J�J ' '��� � is in the interval
� � � / J� � .

Step 2: Determine the � digit scaled divisor ����� 	 �� ��-4-0�4� 	�- � �1� � �,�3� -4- �,� � � �3� - � � � �>� �
Step 3: Perform digit serial division of the divi-

dend by the the scaled divisor determining � quotient
digits including F fractional digits radix * . Note that
digit selection is obtained from the leading digit of the
new partial remainder. If the leading digit is not zero
and the second digit has an opposite sign or is zero,
the bias of the digit set is changed from +,�.- /3���4/ �0/1�46
to +,���,/2� /1�4/5-76 or from + ���4/ �0/1�,/ - 6 to +,�.-0/1���4/ �0/3� 6
in compressing the next partial remainder. The posi-
tive dividend becomes the initial partial remainder with
compression to +,���4/ �0/3�4/ - 6 . The leading two digits
of each partial remainder are underlined to indicate the
control.

5

�������� ������
�	�
��������	� �
�� ������������������ ���������������������

�
���������
� ���� �������
��� ����������������� ���!�
� ��� ���� � �����
� ��� ����������� ����������������� ���!�
� ���
�����������
�!�� � �"������ ���������������������
�	������� � �	�
��
� �������� ����������������� ���!�
�������������
�
������� ���������������������

Step 4: Additively perform divisor descaling with
quotient scaling,- � �3-4-4�0�&- ��- � � � � �4� �-�	 �&�,- � � � �>�.�- �3� � -,-��- � � � � �4� �-�	 � - � �1��	H-4-0�4�!�(�- �&� � -4-� � - � � � � �,� �-�	H- � �1��� 	�-,- �,� �- �&� � -4-� � � � �1� � �3- � � �&-�� 	H-4-0�4� �-0�3� � -4-

Step 5: Add fractional quotient digits times divisor
into remainder.� � � � �&-;	H-4-0�4� �-0�3� � -,-� � � � � � � � � - �-0�3� � -,-� �3�,�

Step 6: Determine (confirm) positive remainder and
provide quotient in non redundant form.� � - F,F,- � ,� � �3�,� � , ��� � ���<��� .
Observation 2 The additive Prescaled Integer Division
procedure as described in conjunction with the example
yields a quotient � and remainder � � � ����� �
satisfying ��� ��� �� .

The procedure described may be improved so that the
partial remainder need not be fully compressed to obtain
the next quotient digit. It can be shown that a short re-
ciprocal table can be determined requiring no more thanF digits in �� where the scaled divisor ���� is restricted
to the narrower range

; �,/1� '' I � . This allows partial com-
pression of the redundant partial remainder where effec-
tively only a couple leading digits of the partial remain-
der need be compressed to obtain a quotient digit that
will preserve the sufficiently compressed range of the
redundant partial remainder. The determination of ap-
propriate reciprocal values is aided by the methodology
in [8]. The possibility of using only a limited number of
leading digits of the redundant remainder to determine
the next quotient digit follows from the methodology in
[5].

By using higher precision table lookup of the recip-
rocal to bound the size of ���� in a much smaller neigh-
borhood of unity, it is possible with partial compression
of the remainder to perform additive integer prescaled
division with higher radices such as radix
 or � 	 . Em-
ploying efficient partial compression techniques such as
described in [2, 4, 6, 7] might allow implementations
where a radix
 or � 	 digit could be determined each
cycle.

5 Conclusion

We have demonstrated a new divisor-prescaling
quotient-postscaling digit serial division algorithm that
can be applied to integer division. The procedure al-
lows each quotient to be computed at a rate of one high
radix quotient digit per � 	. digit multiplication for the
multiplicative version and one high radix quotient digit
per partially compressed addition for the additive ver-
sion, with the remainder available at an additional cost
essentially independent of the number of digits gener-
ated in the quotient. Fine tuning of the additive version
and some implementation studies of the algorithms are
planned to determine the overall feasibility of these inte-
ger division algorithms compared to current implemen-
tations of existing integer division methods.

References

[1] D. E. Atkins, “Higher-Radix-Division Using Esti-
mates of the Divisor and Partial Remainders” IEEE
Transactions on Computers, vol. 17, no. 10, pp. 925-
934, 1968.

[2] M. Daumas and D. W. Matula, ”Further reducing
the Redundancy of a Notation Over a Minimally Re-
dundant Digit Set”, J. VLSI, vol. 33, pp. 7-18, 2003
(see also: M. Daumas and D. W. Matula, ”Recoders
for Partial Compression and Rounding”, Research
Report 97-01 Laboratoire de l’Informatique du Par-
allelisme, Lyon, France, 1997).

[3] M. D. Ercegovac and T. Lang, Division and Square
Root, Norwell, Mass.: Kluwer Academic, 1994.

[4] P. Kornerup, “Digit-Set Conversion: Generaliza-
tions and Applications” IEEE Transactions on Com-
puters, vol. 43, no. 5, pp. 622-629, 1994.

[5] L. A. Montalvo, K. K. Parhi, and A. Guyot,
”New Svoboda-Tung Division”, IEEE Transactions
on Computers, vol. 47, no. 9, pp. 1014-1020, 1998.

[6] A. N. Nielsen, D. W. Matula, C. N. Lyu and G.
Even, “An IEEE Compliant Floating Point Adder
that Conforms with the Pipelined Packet Forwarding
Paradigm”, IEEE Transactions on Computers, vol.
49, no. 4, pp. 33-47, 2000.

[7] P.-M. Seidel “High Speed Redundant Reciprocal
Approximation” 3rd Real Numbers and Computers
Conference, Paris, France, pp. 219-229, 1998.

[8] D. Das Sarma and D. W. Matula, ”Measuring the
Accuracy of ROM Reciprocal Tables.”, IEEE Trans-
actions on Computers, vol. 43, no. 8, pp. 932-940,
1994.

[9] A. Svoboda, ”An Algorithm for Division”, Informa-
tion Processing Machines, no. 9, pp. 25-32, 1963.

6

