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PRESCRIBING CURVATURE ON COMPACT SURFACES
WITH CONICAL SINGULARITIES

MARC TROYANOV

Abstract. We study the Berger-Nirenberg problem on surfaces with conical
singularities, i.e. we discuss conditions under which a function on a Riemann
surface is the Gaussian curvature of some conformai metric with a prescribed
set of singularities of conical types.

Introduction

During the last two decades, a lot of work has been done to understand which
real functions defined on a surface S equipped with a conformai structure are
curvature of some pointwise conformai metric ds on S. For a survey of this
theory, the reader can consult [1, Chapter 5] or [9].

The first case that has been handled is that of compact surfaces with negative
curvature. It is the nicest and simplest result one could hope for that has been
obtained:

Theorem (Melvyn Berger [2]). On a compact Riemann surface of genus at least
two, any smooth negative function is the curvature of a unique conformai metric.

In this paper, we obtain criteria for a function S, defined on a surface with
conical singularities and/or corners, to be the curvature of a Riemannian metric
compatible with a given conformai structure. Our first result parallels Berger's
theorem:

Theorem A. Let S be a compact Riemann surface. Let px,p2, ... ,pn be points
of S and 6X, 62, ... , 6n be positive numbers. Assume

2nX(S) + J2(ei-2n)<0.
«=i

Then any smooth negative function on S is the curvature of a unique conformai
metric having at p¡ a conical singularity of angle 6¡.

(Conical singularities are defined below.)
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794 MARC TROYANOV

Not long after Berger's theorem, Kazdan and Warner proved a theorem pro-
viding necessary and sufficient conditions for a function to be the curvature of
a conformai metric on a torus:
Theorem [10]. Let S be a Riemann surface of genus 1. Then a smooth function
K: S —> R  (^ 0) is the curvature of a conformai metric on S if and only if

(i) K changes sign,
(ii) ¡sKdA<0,

where dA is the area element of a conformai flat metric on S.
In a previous work, we obtained the following proposition (of which an al-

ternative proof is given in the present paper):

Proposition [17]. Let S be a compact Riemann surface. Let px, p2, ... , pn be
points of S and 6X, 62, ... ,6n be positive numbers. Assume

n

27r*(.S) + £(0i-2?T) = O.
¡=i

Then there exists a conformai flat metric on S with conical singularity of angle
6j at px   (V/). This metric is unique up to homothety.

Our next result is similar to Kazdan and Warner's theorem:

Theorem B. Let S be a compact Riemann surface. Let px, p2, ... , pn be points
of S and 8X, 62, ... , 6n be positive numbers. Assume

n

2nxiS) + £(0/-2ä) = O.
«=i

Then a smooth function K : S —* R (^ 0) is the curvature of a conformai metric
on S with conical singularities of angle 8j at pt if and only if

(i) K changes sign,
(ii)  ¡sKdA<0,

where dA  is the area element of a conformai flat metric (having the desired
singularities) on S.

Unfortunately, life is not so simple in the case of the sphere, and, for instance,
Kazdan and Warner [10] and Bourguignon and Ezin [3] haved constructed func-
tions that are curvature of no conformai metric on the sphere (with its usual
conformai structure).

But, on the other hand, the case of the projective plane is completely under-
stood thanks to Moser's work (the projective plane is not a Riemann surface,
but the theory works also in the nonorientable case).

Theorem [13]. Let K: RP2 -, R be a smooth function positive at some point.
Then there exists a metric on RP , compatible with its canonical conformai
structure, and having K as curvature.

What is crucial in the proof of this theorem is 0 < *(RP ) < 2 .
Our last result generalizes Moser's theorem:
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Theorem C. Let S be a compact Riemann surface. Let px,p2, ... , pn be points
of S and dx < d2< ■■■ < 6n be positive numbers. Assume

n

0 < 2nx(S) + Y^i^i * ln) < min{4;r ,20,}.
¡=i

Then any smooth function on S, which is positive at some point is the curvature
of a conformai metric having at p¡ a conical singularity of angle 6j.

Our results extend to nonorientable surfaces and to surfaces with (piece-
wise geodesic) boundary. (Let us mention that some results in the presence of
geodesic curvature for the boundary, in the smooth case, have been obtained by
Cherrier [5].)

Let us stress that our discussion here (and in the rest of the paper), concerns
pointwise conformai metric. For "simply" conformai metric, the results are
much simpler (the only obstruction comes from the Gauss-Bonnet formula, see
[11, Theorem 5.1]).   Recall that a metric on a Riemann surface is pointwise

? 11conformai if it locally reads ds  = p(x, y)(dx + dy ) where z = x + iy is a
complex parameter on the surface, and a metric is simply conformai if it is the
pullback by a diffeomorphism of a pointwise conformai metric.

The paper is organized as follows:
§ 1 Generalized Riemann surfaces with divisors;
§2 A Gauss-Bonnet formula;
§3 Statements of the results, examples;
§4 Analysis on a surface with conical singularities;
§5 Study of the equation Au = he " - h0, proof of the main theorems;
Appendix: A weighted Sobolev inequality.

In the first two sections, we develop general considerations about Riemannian
surfaces with conical singularities. In the third section, we present our results
and examples. In the last two sections, we study the techniques used to prove
the theorems. The actual proof is given in §5.8.

Let us now say a word about our methods. Suppose we are given a surface
5 with a conformai structure, and a function K : S —* R. The question is

(*) Is there a conformai metric on S with curvature AT?

To investigate this question, we use the same technique as in [2], i.e., we
choose some conformai metric ds0 (sometimes called the base metric) on S
and try to "conformally deform" this metric: ds2 = e2u ds2 (where u: S -, R
is some function). We know (see top of p. 16 in [10]) that a metric of this type
will have curvature K if and only if u is a solution of the nonlinear elliptic
partial differential equation

Au = Ke u - K0,

where K0 is the curvature of ds0 . (Our convention for the Laplacian is such
that if ds2 = p(x,y)(dx2 + dy2), then A = -l/p(d2/dx2 + d2/dy2).)
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796 MARC TROYANOV

Thus, to answer (*), we have to study the above equation. To this aim, we
use the variational method.

Let us now define our singularities. By definition, a point p £ S is a conical
singularity of order ß (or of angle 8 := 2n(ß + 1)) of the metric ds if there
exists a nonsingular conformai map z : U —» C defined in a neighbourhoood U
of p such that z(p) = 0 and ds = p(z)\z\ \dz\ in U, for some continuous
positive function p.

The information considering the singularities is coded in a divisor, a metric
having conical singularities of order ßx, ß2, ... , ßn at px, p2, ... , pn £ S is
said to represent the divisor ß := £"_, /?,/>,.

To study (*) for metrics with conical singularities, we simply start with a base
metric having the desired singularities, and consider only continuous conformai
deformations (so that ds0 and ds = e " ds0 both represent the same divisor).
Thus, to answer (*), we have to study a nonlinear partial differential equation
on the singular Riemannian surface (S, ds0 ).

Notice that, in the first decade of this century, Emile Picard—probably moti-
vated by the uniformisation problem for Riemann surfaces with branch points—
already studied the above equation with K = -1 and conical singularities. His
results correspond to our Theorem A in the case K = -I and S = S2 , see [16].

Independently from our work, Robert McOwen [ 15] also obtained our The-
orem A for K = -1 (on any compact surface).

The results of this paper are part of my thesis at Geneva University [18].
I am happy to have the opportunity to thank Professor André Haefliger, my
advisor, for his constant support throughout this work. It is my pleasure to thank
Henri Maire for his guidance when I had to face subtle analytical questions, and
Professors J. Moser and J. P. Bourguignon for their interest in my work and for
the stimulating discussions I had with them.

1. Generalized Riemann surfaces with divisors

1.1 Definitions. A generalized Riemann surface (G.R.S.) is a topological surface
(perhaps with boundary) 5 with an atlas {qbr. Uj -, A%f) where A%f = {z £
C: Im(z) > 0} , such that the coordinate changes <¡>¡o(t>~ are, wherever defined,
conformai (i.e., holomorphic or antiholomorphic) mappings. As usual, two such
atlases will be considered to define the same structure on S if their union is
still such an atlas.

An oriented generalized Riemann surface without boundary obviously has a
natural structure of Riemann surface.

A conformai (singular) Riemannian metric on a G.R.S. 5 is defined by a
local expression

(1.1) ds2 = pi(zi)\dzl\2,

where z¡ is a local coordinate on S and pi is a positive measurable function.
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A (real) divisor on a G.R.S. S is simply a formal sum

«
where the p¡ are points of S and the /3( are real numbers. The set {pf (which
is assumed to be discrete) is the support of ß , denoted by supp(/?) ; the number
\ß\ := J2¡ ßi is the degree of the divisor.

We shall always assume that a divisor ß = £V ßipi satisfies the following
condition:

(1.2) ßi > -1    if pi i dS   and   ßi > -\   if pt £ OS.
Let S be a G.R.S., ß = '5flißipi De a divisor satisfying (1.2). A conformai

1 1metric ds on S is said to represent the divisor ß if ds is a smooth (i.e.,
of class C ) Riemannian metric on S\swpp(ß) such that if zi is a coordinate
defined in a neighbourhood Ui of p¡, then there exists a continuous function
« : [/,.-► R, which is of class C   on U¡ - {pf , and such that in Ui :

(ds2 = e2u\zi-al\2ß'\dzi\2   if PlidS,

\ds2 = e2u\zl-af'\dzi\2   ifPi£dS,
where ai = zfpf .

The point pi is then said to be a conical singularity of angle 8i = 2n(ßi + 1)
if pi £ dS, and a corner of angle ç»(. = 27t(/3¡ + \) (or of "exterior angle"
-2nßf if j?; e dS. In both cases, we will simply say that ds has a singularity
of order ßi at p;.

Observe that C, equipped with the metric \z\ \dz\ , is isometric to an
euclidean cone of total angle 6 = 2n(ß + 1). Thus, if ds has a conical
singularity of order ß at p , then ds admits a "tangent cone" of angle 6 at
this point. In other words, the number ß( measures the "number of turns" in
excess at the point pi.

1.2 Examples. (1) Let S be a Riemann surface and a bea holomorphic dif-
ferential on S, then ds2 := |<y|2 is a (flat) conformai metric on 5 representing
the divisor ß = div(û>).

(2) Let (Sx, dsx ) be a smooth Riemannian surface, and /: £ —► Sx be a
branched covering, then ds2 := fi*(ds2) is a metric on S representing the
"ramification divisor" ß = ^f,Op(fi)p, (where Op(f) is the ramification order
of / at the point p £ S).

(3) If S is a surface with a polyhedral metric, then this metric is Riemannian
and represents the divisor ß = £ /?,/>,, where p¡ ranges through the set of
vertices, and ßi = 6f2n - 1 if p¡ is an interior point of total angle 8i, and
/?( = ^(-/27t - j if pf is a boundary point of angle tpj.

(4) If (S, ds ) is a smooth Riemannian surface on which a finite group G~ 2
acts by isometries, then S = S/G carries a metric ds   representing the divisor
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798 MARC TROYANOV

ß = J2 ßpP where ßp is determined by the action of G on S in the following
way. If p £ S represents p £ S, we note I(p) c G the isotropy group of p.
Then, ßp := (1/n) - 1 if I(p) is a rotation group of order n, ßp = (l/2k) - \
if I(p) is a dihedral group of order 2k, and ßp = -\ if p is a boundary point
and 7(p) is a symmetry group of order 2.

1.3 Conformai mapping. There is a natural class of mappings between two
G.R.S.'s. These are the conformai mappings. From a topological viewpoint,
these mappings are covering maps in the sense of orbifold theory (in dimension
2).

A map f:S'—>S between two G.R.S.'s is said to be conformai if it is
continuous and, whenever z is a coordinate defined in an open set U c S',
and w a coordinate defined in V c S (U being such that fi(U) c V), then
w := f(z) defines a nonconstant holomorphic or antiholomorphic map.

A point p £ S' is a regular point of / if / is one-to-one in a neighbourhood
of p , it is a singular point of / otherwise.

Lemma 1. Let p £ S' be a singular point of a conformai map fi: S' —> S, and
denote by p = f(p') its image. Then the singularity has one of the following
types:

Type I: (p £ dS). There exist coordinates z in a neighbourhood of p , w
in neighbourhood of p and an integer m such that

w = fi(z) = a + (z-a)

Type II: (jp £ dS'). There exist coordinates z in a neighbourhood of p , w
in a neighbourhood of p and an integer m such that

w = f(z) = a + <P((z - a')m+x).

Type III: (p £ dS', p £ dS). There exist coordinates z in a neighbourhood
of p , w in a neighbourhood of p and an odd integer m such that

w = f(z) = a + ®((z-a'){m+X)/2).

Where a = w(p), a = z(p), and O is the map C —> C defined by
<D(x + iy) = x + i\y\.

The integer m is called the branching order of / at p . Singularities of
Type III are called folds if the branching order m equals 1.

Proof. This is an immediate consequence of the classificaion of singularities of
holomorphic functions.   D

Observe that, off the singularities, the map / is a covering map and hence, the
number of preimages of all regular points is constant (assuming S connected).
This number is the number of leaves or the degree of /.

Examples. ( 1 ) If S' and 51 are Riemann surfaces and / is a holomorphic map,
then it is a conformai map, and the only possible singularities are of Type I.
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(2) If S' = {(x, y, z) £ R3: x2 + y2 + z2 = 1} is the usual sphere, 5 =
{(x, y, z) £ S' : z > 0} the upper hemisphere, and f:S'-,S is defined by
f(x, y, z) = (x, y, \z\), then / is conformai of degree 2 and the singularities
are folds lying on the equator {z = 0}.

(3) The map f:C-*S:={x + iy:x>0, y > 0} defined by f(x + iy) =
\x\ + i\y\ is conformai. It has folds on the axis (off the origin), and a singularity
of Type III and branching order m = 3 at 0. (Indeed, if one considers the
coordinate w = (x + iy)2 on S, then w = f(z) = <P(z2)).

(4) More generally, if (S', ds' ) is a Riemannian surface (perhaps with con-
ical singularities and corners) admitting a discrete group G of isometries, then
the canonical projection /: S' —> S := S'/G is a conformai mapping with
singularities at points of nontrivial isotropy. Its degree is the order of G.

Suppose we are given a conformai mapping /: S' -> S between two G.R.S.'s
and a real divisor ß = Y, ßpP on S. Then, we define a divisor ß' (also
denoted by fi*ß) on S' by /?' = J2ß'p'P' where

' ßnp') ifp' is regular;

, m + (m + l)ßf{pl) if p is of Type I;

p m/2 + (m+ Vßfip'-, if P is of Type II;
(m - l)/2 + (m + l)A/(p') if P is of Type III.

Where m is the branching order of p .
If ß = 0, then /?' is not zero, unless / has no singularities, and it is called

the "ramification divisor of /". Its degree \ß'\ is the "total branching order"
of/.

1.4 The canonical double cover of a compact G.R.S. The next proposition will say
that a compact G.R.S. can be thought of as a closed Riemann surface modulo
an involution. Let us first give a few examples:

(1) If S is orientable and dS ± 0, then S = S'/o where S' is the "dou-
ble" of 5 (i.e., two copies of S glued together along their boundary), and the
involution a exchanges the two copies of 5.

(2) If 5 is nonorientable and dS = 0, then S' is the classical "orientation
cover" of 5.

(3) Let S be the surface obtained from the triangle {(x,y):0 < x <
y < 1} by identifying (x, 1) with (0,x) (hence S is homeomorphic to a
Möbius band). Then S' is the torus {(x, y) mod Z), and o is the involution
o(x,y) = (y,x).

Proposition 2. Let S be a compact G.R.S. Then, there exists a closed Riemann
surface S' and a conformai map f:S' -> S of degree 2. Furthermore, S'
admits a conformai involution a: S' -, S' such that f(p) = fi(q) if and only if
p = q or p = o(q). Finally, the only singularities of fi are folds forming the fix
point set of o (which may be empty).
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800 MARC TROYANOV

Proof. Let S? denote the set of germs of locally one-to-one conformai maps,
fi: U -, %f where %A = {z £ C: Imz > 0} and U is some open set in S.
Let us denote such a germ at a point x £ S by (x, tp). We define the "source"
map /: .S" —► S by f(x, <t>) = x .

If we topologize J? by the topology of germs, then / is a local homeomor-
phism.

We shall say that (x, tp) and (y, \p) £ AfAA are equivalent if one of the fol-
lowing conditions holds:

(1) x = y£dS,or
(2) x=y £ dS, and \p o tp~l is holomorphic at x.

We note S'' := Jî?'/ ~ and /: S' -, S the map induced by / on S'. It is clear
that S' is an orientable surface with a natural structure of Riemann surface
on fx(S\dS). Thus it only remains to describe a chart in a neighbourhood
of a point x £ f~x(dS). To this aim, choose a conformai map <f>: U —► £?
representing a germ (x, tp) £ Äff at x = fi(x') £ dS.

The set Û := {(y, tp): y £ U} U {(y, -tp): y £ U} (where tp is the com-
plex conjugate of tp) is open in 21. The image If' of U in S' is thus a
neighbourhood of x .

The map tp' : C/'-»C, defined by tp'(y, tp) = tp(y), tp'(y, -tp) = qb(y), is the
desired chart.

On 2f, an involution is defined by cr(x, tp) := (x, -tp). This involution
is compatible with the equivalence relation ~. We thus have an involution
a : S' —► S' which clearly has the desired property.   D

2. A Gauss-Bonnet formula

Let (S, ß) be a compact G.R.S. with divisor ß = E/A^/ such that i1-2)
holds. A conformai Riemannian metric ds on S representing ß has a cur-
vature function defined on the complement of the support of ß . We will make
from now on the following assumption:

The curvature extends on S as a Holder-continuous function.

(A function on 5 is Holder-continuous if, in any local coordinate, it satisfies
a Holder condition.) If S has a boundary, then the geodesic curvature is a well
defined continuous function k: dS\supp(ß) -> R. We also assume that:

The geodesic curvature extends continuously on dS.

If S is compact, then the Euler characteristic of (S, ß) is defined to be

X(S,ß):=xiS) + \ß\,
where #(S) is the topological Euler characteristic of S, and \ß\ (=£,-/*,-) is
the degree of ß .
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Proposition 1 (Gauss-Bonnet formula). Let (S, ß) be a compact G.R.S. with a
2divisor as above. Let ds   be a conformai metric representing ß. Then

kff,"A+e¡Lk*-&-'>-2n
where K is the curvature, dA the area element, and k the geodesic curvature
ofids2.

Example. Let S be the surface of a cube with vertices px,p2, ... ,p%. Then its
natural metric represents the divisor ß = J2i=\i~\)P¡ ■ The Euler characteristic
of S is thus xiS, ß) = 2 + 8 x (-¿) = 0. This is coherent with the Gauss-
Bonnet formula since the metric is flat.

Corollary 2 (Riemann-Hurwitz formula). Let (S, ß) be a compact G.R.S. with
a divisor as above. If f: S' -, S is a conformai map of degree n, then

X(S',ß') = nX(S,ß),

where ß' = fi* ß.
The proof of the corollary follows immediately from the proposition. In-

deed, if ds2 represents ß , then fds represents /?' (the existence of at least
one conformai metric representing ß follows easily from a partition of unity
argument).

The proof of the proposition rests on the following lemma:
2Lemma 3. If ds   has a conical singularity of order ß at p £ S\dS, then

\z - a\—-   and   |z-a|-=->0,     when z-, a,oz oz

where  z  is a coordinate in a neighbourhood of p,   a = z(p)  and ds2 =
e2u\z-a\2ß\dz\2.
Proof. We have

du . .2/?   lu-4K\z -a\   e   ,dzd~z
where K is the curvature.

Assume first that ß > 0. Since u is (by definition) continuous as well as
7C|z - a\2ß, the elliptic regularity implies that u £ W2fcp for all p < oc (see
[8]). By Sobolev embedding, u £ Cl's , and the lemma follows immediately. If
-1 < ß < 0, choose m suchthat ß' := m + (m+l)ß > 0 and set z = a+wm+x .
Lifting the metric to this branched covering, we have ds2 = e2u |w|2^ \dw\2
with u = u + log(m + 1). Using the equation above, we see that du'/dw is
continuous, hence

, , du 1     ,   , du
l2-ald~z  =7r7TîlWldlf

goes to 0 when z —► a .   D
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Proof of Proposition 1. We only give the proof in the case where k = 0 (i.e.,
dS is geodesic off the support of ß), since we will not use the more general
case. Thanks to Proposition 2 in §1.4, it is easy to reduce the proof to the case
where 5" is without boundary and orientable. We assume therefore that S is a
closed Riemann surface.

Choose a smooth conformai metric ds2 on S. If Kx and dAx denote the
curvature and the area element of dsx , then the classical Gauss-Bonnet formula
reads

AjUdAi = x(s).
There exists a function v : S —> R such that ds2 = e2vdsx . We have

(2.1) KdA = KxdAx-d*dv,
where * is the Hodge operator on forms (i.e., *dv is locally defined by *dv =
-i(dv/dz) dz + i(dv/dz) dAz).

Thanks to equation (2.1), we only have to show that

2k JJSd*dv = \ß\.
's

Since S is compact, supp(/?) = {px, p2, ... , pf¡ is finite. Let Dfe) be a disk
of radius e around pi. Choose e small enough so that all Dfe) are disjoint.
Let Se := S\ \J¡ Dfe), then by Green's theorem we have

— / /  d *dv = =- Y/        *dv
271 JJS. 2n~lJdPM

Fix i £ {1,2, ... , n} and choose a coordinate z in D¡ such that z(pA) = 0.
The point pi being a conical singularity of order /?., we have v = ßilog\z\ + u ,
where u is continuous and satisfies the condition in Lemma 3. Hence

^- /       *dv = ^f- *dlog\z\ + =- *í/m = /?.+ _/       *du.
ln JdDt{E) l1t JdDf(e) ¿n JdD^e) zn JdD^e)

Using Lemma 3, we have

lim — /        *dv = ßr
e^o 2n JaDjE)

3. Formulation of the results
3.1. Let (S, ß) be compact G.R.S. Besides the Euler characteristic xiS > ß).
we introduce another number: the Trudinger constant defined by
(31) xiS   «}     imin{2>2 + 2a}   ifô5 = 0;

1 min{l, 1 +a, I +2a'},    otherwise,
where a = min{/?( : p¡ e S\dS) , and a = min{ «3y : pi £ dS}.

Observe that if ß satisfy (1.2), then x(S, ß) is positive.  (Originally, this
constant appeared analytically and not geometrically, see §4.8 and §4.9.)
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3.2 The negative case.

Theorem 1. Let (S, ß) be a compact connected G.R.S. with a divisor ß =
J2ißjPt satisfying condition (1.2), and K: S —> R be a Holder-continuous
function. Assume /(S, ß) < 0 and sup(A^) < 0, then there exists on S a
unique conformai metric representing ß, having K as curvature and such that
dS\supp(ß) is geodesic.

By Gauss-Bonnet formula, if K is a negative function on S, then we must
have xiS, ß) < 0 for K to be the curvature of some metric representing ß
on S. The theorem says that it is a sufficient condition.

An important particular case is the following: Let 51 be a closed Riemann
surface of genus g, px, p2, ... , pn be points in S and vx, v2, ... , vn £ N be
positive integers. Assume the number

A = n + 2g-2-\T^
«=l    i

to be positive. Then there exists a unique conformai hyperbolic metric on 5"
having at pi a conical singularity of order l/vi - 1. Thus, £ = ßf ¡T where T
is a fuchsian group with elliptic elements of order vi in the isotropy of points
above p¡ (this is the uniformisation theorem for Riemann surfaces with branch
points).

3.3 The null case.

Proposition 2. Let (S, ß) be a compact connected G.R.S. with a divisor ß =
Y,ißiPi satisfying condition (1.2) and such that xiS, ß) = 0.

Then there exists on S a conformai flat metric representing ß, and such that
dS\supp(ß) is geodesic. This metric is unique up to homothety.

This proposition has been previously obtained by a different method [16].

Theorem 3. Let (S, ß) be as in the previous proposition. Let K: S -,R be a
Holder-continuous function such that K ^ 0.

Then there exists on S a conformai metric representing ß, having K as
curvature (and such that dS\supp(ß) is geodesic) if and only if

sxip(K) > 0   and    ÍÍ KdA0 < 0,

where dAQ is the area element of some conformai flat metric representing ß on
S.

For instance, on the surface of a cube, any function K which is positive
somewhere and negative in average is the curvature of some conformai metric
(having the same conical singularities as the cube).
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3.4 The positive case.

Theorem 4. Let (S, ß) be a compact connected G.R.S. with a divisor ß =
J2jßiPi satisfying the condition (1.2), and such that 0 < xiS, ß) < x(S, ß).

Then a Holder-continuous function K: S -, R is the curvature of some con-
formal metric representing ß (and such that dS\supp(ß) is geodesic) if and
only if sup(K) > 0.

Examples. (1) Choose a spherical triangle T c S with vertices px,p2, p3 of
angles \6X, \62, jd3 (9¡ < 2%). Glueing two copies of T isometrically along
its boundary, one obtains a Riemannian surface 5 (homeomorphic to a sphere)
with constant positive curvature and three conical singularities px,p2, p3 of
angles 6X, d2, 03. The classical conditions on the angles of a spherical triangle

n < \6X + \Q2 + ij03 < min{0;} + n,

are equivalent to the conditions 0 < xiS, ß) < x(S, ß). Hence, any function
positive somewhere on S is the curvature of some conformai metric having at
pi a conical singularity of angle 6i.

(2) Let D = {z: \z\ < 1} be the closed disk, px,p2, ... ,pn be n points on
the boundary dD and tpx, tp2, ... , tpn be positive numbers such that

«i
(n - 2)% < y^ç>, < 2min{^;} + (n — 2)n.

«=i
Then any function positive somewhere on D is the curvature of some conformai
metric having at pi a corner of angle tpi and such that dD\{pf is geodesic.

Observe that the arithmetical condition on the q>i is exactly the condition of
existence of a spherical polygon with angles tpx, tp2, ... , tpn.

3.5 Critical and "supercritical" surfaces with divisor. We shall say that a compact
G.R.S. with divisor (S, ß) is subcritical if

0<X(S,ß)<r(S,ß).

It will be said to be critical if x(S, ß) = x(S, ß), and supercritical if x(S, ß) >
x(S,ß).

For instance, the sphere (with trivial divisor), the disk (with trivial divisor),
the sphere with divisor ßp + ßq (ß < 0) and the disk with divisor ßp (ß <
0, p £ dD) are critical surfaces. The sphere with divisor ßxpx + ß2p2 (0 >
ßx ^ ß2) and the disk with divisor ßp (ß < 0, p £ dD) are supercritical. The
only smooth subcritical surface is the projective plane.

Theorem 4 says that on a subcritical surface, a function is the curvature
of some conformai metric representing the divisor if and only if this function
is positive somewhere. By contrast, there are known counterexamples on the
sphere (see [10 and 3]).

In general, very little is known about the curvature of a critical or supercritical
surface (we know for instance that there is no metric of constant curvature on a
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sphere with divisor ßxpx + ß2p2 if ßx ^ ß2 (see [19]), in particular, there is no
metric with constant curvature on the sphere having a single conical singularity).
However, there are some positive results, Chang and Yang give criteria for a
function to be the curvature of some conformai metric on S related to the
structure of its critical points (see [6]).

Concerning supercritical surfaces, it should be easier to treat first the case
where the metric is sufficiently flat in a neighbourhood of the singularities, for
instance, we have the following result of R. McOwen on the sphere with a single
conical singularity:
Theorem 5. Let (S, ß) be the sphere S = C U {co} with the divisor ß = ß • 0,
-1 < ß < 0. If K is a Holder-continuous function positive somewhere and such
that K(z) < C ■ \z\ for some constants C > 0, I > -ß, then there exists a
conformai metric on S representing the divisor ß.

This theorem is a consequence of Theorem 1 in [14]. (To pass from our
notations to those of McOwen, set a = -(ß + 2) and perform the inversion
z = l/x.)
3.6 An application to the Nirenberg problem. The Nirenberg problem is the prob-

2 -5lern of deciding whether a given function on the standard sphere S c R is
the curvature of some (pointwise) conformai metric.

Proposition 6. Let G be a finite subgroup of the orthogonal group 0(3) such
that either the orbit under the action of G of any point of the sphere S2 c R3
contains at least two points and S := S /G has no boundary, or the orbit of any

2point of S   contains at least three points.
Then any smooth G-invariant function K: S -» R which is positive some-

where is the curvature of some conformai metric on the sphere. The metric can
be chosen to be G-invariant.
Proof. Let S be the orbifold S2/G and let ß = £"=1 ßipi be the divisor
on S associated to its orbifold structure (as in Example 4 in §1.2). Assume
ßx = min{/3(}. Choose a point q £ S2 above px £ S, and denote by t the
order of the isotry group of q (i.e., t = #{g £ G: g ■ q = q}), and by m the
order of G.

Assume first that S has no boundary, and observe the following simple facts:

(i) fix > ) -1 ;
(ii)  x(S,ß) = 2 + 2ßx;

(iii) xiS, ß) = £ , by Riemann-Hurwitz;
(iv) í < f , by the hypothesis on the orbits.

From which we have

x(S, ß) = 2(1+ ßx)>] > 1= x(S, ß).
Assume next that any orbit contains at least three points (and S may have

a boundary). Then (i) and (iii) above still hold and we have furthermore:
(ii') x(S,ß)>l+ßx;
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(iv') t < y , by the hypothesis on the orbits.
Hence

x(S,ß)>(l+ßx)>\>AL=x(S,ß).
2Thus, in both case, S = S /G is subcritical and we may apply Theorem 4 on

this surface. This solves the Nirenberg problem for any G-invariant function
on52,   D

4. Analysis on a surface with conical singularities

4.1. In this section, S will be a compact G.R.S. without boundary, ß =
E"=i ß,Pi a divisor such that ßt > -1   (V/).

We set a := min¿{/3.} , co := max;{/3(} .
We will also be given on S a conformai metric <s?s2, with conical singularities,

representing the divisor ß , as well as a smooth conformai metric dsx .
By definition, there exists a function p : S -, R such that

(4.1) ds¡ = p-ds2.
This function is smooth and positive outside of the support of ß . If z is

a coordinate in a neighbourhood of p¡ (such that z(pA) = 0), then we have in
this neighbourhood

(4.2) p(z) = 0(\z\2ß')       (z-0).

4.2. Let dAj denote the area element of ds¡ . Then we have dA0 = p ■ dAx.
It will be useful to compare these two measures: observe first, that it follows
from (4.2) that

k J á [ for all k > 0,    if a > 0,    or
for0<k <-l/a,     ifa<0,

and
for all k > 0,    if co < 0,    or

< k < I/co,     if w > 0.
We will write Lp(dsi ) for the Banach space of functions on S which are p-
integrable with respect to dAi.

Proposition 1.
(i) Ifi p>ma\{q,q/(a+l)), then Lp(ds2) c Lq(ds2f ;

(ii) If p > ma\{q, q(co + I)}, then Lp(ds¡) c Lq(ds\).
Proof, (i) The first embedding is obvious if a > 0. We may thus assume
-1 < a < 0. Set 5 := p/q and t := p/(p - q), from p > q/(a + 1), we have
at > -1 . Thus p £ L'(ds2) by (4.3).

Let / £ Lq(ds2x). Since \ + -s = 1, we have, using Holder's inequality,
l/s    / r \ '/'

(4.3) ( pkdAx<oo\

and
f   -k , Í for al

(4.4) j(,    tA,<oo{(or0

(rnVcu,s^i/r^,) -{¡/dA<
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Raising this inequality to the power 1/q (and remembering sq = p, pdAx =
dAf), we get

WfWmdsi) ^const • Wfh'idsj) ■
(ii) The second embedding being immediate if co < 0, we assume co > 0.

Again, let s = p/q, t =p/(p-q). From p > q(co+l) follows coq/(p-q) < 1.
By (4.4), this implies p~qlP £ L'(ds2).

Applying Holder's inequality to the product

\f\q = (\f\qpq/p)-(p-q/p),
we obtain

js\f\qdAX < (jvfp^dA^15 (jsp-tq'pdAXy'.

Since sq/p = 1, raising the above inequality to the power l/q gives us

Wf\\mäSlA^cte-\\fh^4)-  D

4.3. If u, v are two functions on S, we write (u\v)t := jsu • vdA¡ for their
2 2 7scalar product in L (ds¡ ). The gradient of a function u with respect to ds¡

is denoted by 'Vw. Observe that °V = (l/p)xV .
If X and Y are two vector fields, their pointwise scalar product with respect

to ds) is a function denoted by (X, Y)¡. We have (X, Y)0 = p(X, Y)x. The
integral of this function will be written

(X\Y)i= ¡(X,Y)idAi.
Js

The Dirichlet integral of a function u is

(Vwl'Vw), = (0V«|°V«)0,

it depends on the conformai structure of S, but not on the metric, nor on the
divisor. The Dirichlet integral of u will be simply written (V«|Vm) .

2 2 9Let 77(^5; ) be the Sobolev space of functions u £ L (ds¡ ) with finite Dirich-
let inegral. This is a Hubert space with scalar product

iu\y)H(dsf) :=(wK- + (Vk|Vu).

4.4 Sobolev's embedding.

Proposition 2. There exists a constant C such that for all u £ H(ds2) and all
p £ [0, co[, we have

MLp{dsf) < c-VP-Mipds,)-

Proof. By standard arguments, we reduce the proof to a local inequality which
is proved in the appendix.    D
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4.5 Conformai invariance of 77.
2 2 7 7Proposition3. H(dsf¡ = H(dsx) (i.e., H(ds0) and H(dsf) are equal as sets

and their norms define the same topology).
Proof. Since llwll^^) = ("I"), + (Vu|Vu), we just have to show that

(Í) \\U\\L\d4)^COmt-\\U\\H{dsl)>
and

(ii) llWllL2^)-COnSt-|lMll//(^„2)-
To check (i), choose p > max{2, 2/(<a: + 1)}.   By Proposition 1, we have
HmIIlVí2) - const- IImIIz/(íí52) • ^e conclude by Proposition 2.

The inequality (ii) is verified in the same way by choosing
p > max{2, 2(co+ 1)}.   D

4.6 A compactness result. The Sobolev space of functions u £ Lq(dsx) such
that |'vm| € Lq(ds2) is denoted by Wx'q(ds2). The classical theorem of
Rellich-Kondrachov (see [8]) says that there is a compact embedding

Wx'q(ds2)cLp(ds2),

for all 1 < q < 2, p < 2q/(2 - q). This, with Propositions 1 and 3 (and
the obvious fact H(dsx) c Wx'q(dsx)), implies the following sharpening of
Proposition 2:
Proposition 4. The embedding H(ds¡ ) c Lp(dsi ) is compact for all p £ [1, co[.

4.7 The Poincaré inequality.

Proposition 5. Let y/ £ L2(dsl) be a function such that Js>pdA0 ^ 0, then
there exists a constant Cx such that (u\u)Q < C,(Vw|V«), for all u £ H(dsf
such that (u\ip)0 = 0.
Proof. We have to show that there exists a number p > 0 such that V« e
77(íi52), if (u\ip)0 = 0 and (u\u)0 = 1, then (Vu\Vu) > p .

To this aim, set p := inf{(V«|Vw): u £ H(ds^), (u\ip)0 = 0, (u\u) = 1}.
We have to show that p # 0.

Choose a sequence {tpj} C H(ds0) such that (<Pj\v)0 = 0,  (<Pj\(Pj)0 = 1,
and  (V#> |V#> ) —► p.    Thus,   [cp■}   is a bounded sequence in the Hilbert
space H(ds^). We can therefore find a weakly convergent subsequence. Since
H(ds^) c L2(ds2) is a compact inclusion, we may assume that this subsequence
is strongly convergent in L2(ds2A). We still note {cpA) this subsequence and tp^
its limit. We have

(Ov)o = lim(^»0 = 0;
(OOo = lim(^.|^.)0 = 1 ;

\\<Pj\H(ds¡) ̂liminfWi>j\\md4) = y/^+P-
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Thus we have (V^IVp^) < p. By the choice of p, we must have equality.
The proof will therefore be finished if one shows that (Vç^lV^) > 0.

Suppose (V'<p'gjV'tp>œ) = 0, then cpx must be a constant, and this constant
must be 0 since ((p^W)^ = 0 • This is however impossible because (c^l^^o =
1.    D

4.8 The Trudinger inequality.

Theorem 6. There exist positive constants xi  and Di such that for all u £
H(ds2) : if Js udAi = 0 and (Vw|Vw) < 1, then

Leb"2dA; < D;
is

for all b < 2nxi.
Proof. This is a classical corollary of the Sobolev inequality (Proposition 2),
see [10, p. 23].   G

Definition. The Trudinger constant of (S, ds¡ ) is the number

x(S, ds¡ ) := sup I x:      e nxu dA¡ is bounded for u £ H(dsi ) ,

f udAi = 0,  (Vu|Vw) < lj .

Remark. The value of x(S, dsi ) given by the proof above is only a crude esti-
mate. The best value will be given in the next subsection. Set bi := x(S, ds2).

Corollary 7. Fix ô £ R, p > 1 and tp £ Lp(ds2). Then for all v £ H(ds2)
such that fs vdAi = 0 and b <b¡t we have

\(eSv\tp)\ < Dxlq ■ |H|L,(¿I?) -exp (^-(Vv\Vv)] ,

where q := p/(p - 1).
Proof. We can imitate the proof of inequality (3.5) in [10].   D

To extend this inequality to the case where Js udAi does not necessarily
vanish, we introduce the following functional defined on H(dsj) :

7(") = h,q,s,viu) '■= ̂¿-(v"IVm) + si¥\u)■

Theorem 8. Let ô > 0, p > 1 and \p £ L2 such that Js <pdA0 = 1. Then there
exists a constant D't such that for all tp e Lp(ds2), b < b{ and u e H(ds2) we
have

\(eSu\tp)\ < D\ ■ |M 1^2, • exp(7(«v)),

where I(u) = Ib q ôll/(u) is defined above and q = p/(p - 1).
Proof. Set ü=(fsudAi)/(lsdAi).
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Case 1.  u = 0. We have by Poincaré inequality (Proposition 5)

iu\\p)   < (u\u)(y/\ip) < C(Vw|Vw)(i/y|i/),

and thus (since x2 < y2 =>■ y > -vx ),

(i) (u\ip)>-^C(y/\y/W(Vu\Vu).
Choose b' such that b < b' < b¡ and set p = (qâ2)/(4b), p = (qô2)/(4b'),
and ß = ö2C(\p\tp)/A(p-p').

We have p > p! , û > 0, and from (yj(p - p')(Vu\Vu) - ^fû)2 > 0, we
deduce

(ii) p(Vu\Vw) - Sy/C(f/f\f//)y/i^u\Vu) > //(Vw| Vw) - rj.

The inequalities (i) and (ii) imply

I(u) + ■& = p(Vu\Vu) + ô(u\ip) + û> p'(Vu\Vu).

Combining this inequality with Corollary 7, we obtain

(e   W^D^M^^-e^        ' <(DA"e )\\tp\\LP{ds2}-e".

Case 2. u ¿ 0. The fact that (l\ip) = 1 implies e" = e{"W). Set w := u-ü,
we have

,  aw,    , Su    i   Sw,    , ô(u\w),  ôwi    %(e   |9>) = c    -(e    |ç») = e    ^'(e    \(p).
Since ¡swdAt. = 0, we conclude using Case 1.   D

4.9 The Trudinger constant. It will be important in applications to know the
actual value of the Trudinger constant (the least upper bound of the x such
that the Trudinger inequality fs ebu dA < D holds for all b <2n-x).

In the smooth case, this value is known from the work of Moser [ 12] and
Cherrier [4]. They proved that x(S, dsx) = 2.

Theorem 9 (Moser-Cherrier). There exists a constant Dx such that ifiu £ H(dsx )
satisfies ¡sudAx = 0 and (Vw|Vw) < 1, then

je4KuIdAx<Dx.

7 7(Recall that dsx is a smooth metric on S, whereas ds0 represents the divisor
ß)

In the presence of conical singularities, the Trudinger constant has a different
value:

Corollary 10.  We have x(S, ds^) = min{2, 2 + 2a), i.e., the Trudinger inequal-

ity ¡s eb"2dA0 < D0 holds fior all b < 2it ■ min{2,2 + 2a).

(Recall that a = min^/jj .) Since this number depends only on ß , we will
write x(S, ß) := min{2, 2 + 2a) .
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Proof. For u £ H(ds^), we will write w := j- fs udA0 and ü := j- ¡s udAx

(where Ai := JsdA¡ is the area of (S, ds¡ )). Observe that by Proposition 1,

1*1 ^ J-Ml^) < TxM^ä4)
for r > max{l, co + 1} . Combining this inequality with Proposition 2, we
obtain:

\ü\<cte'\\u\\H{ds2y

Set B := {u £ H(ds^f: ü = 0, (Vm|Vw) < 1} , we deduce from Poincaré and
the above inequalities that there exists an absolute constant c such that \u\ < c,
for all u £ B.

Let b < 2nx, we have to prove that / e u dAQ is bounded for u £ B. To
this aim set ux := u - ü, we then have

/     bu2     j . bit2      f    bu]      2buu,      , .      ~    be       f    bu2,       2bcu.      ,  .I e     • dA0 = e     •     e   ' -e     ' • dA0 <e    • / e   ' ■ e     ' • dAQ.

Now choose q, p, s £ R such that 1 < q < px/2 < 2nx/b and | + \ = 1.
Holder's inequality tells us that

j ebu2 ■ dA0 < (ebèl) ■ (j eqbu'dA0) ** • (J es2b^dA, ' '"

Setting S := 2sbe, we know by Corollary 7 that

[eSu>dA0=[eSu>pdAx

is bounded.
Since p > max{#, q/(a + 1)}, Proposition 1 gives

By Theorem 9, this last integral is bounded since bp < An, fs udAx = 0 and
(Vm|Vm) < 1 .    D

Remark. It is not clear from our proof of Corollary 10 whether the Trudinger
inequality holds for b = 2nx(S, ß). However, some extra work (e.g., using
the symmetrization procedure used by Moser in his proof of Theorem 9) would
show that this is indeed the case. Since we will not need it, we omit this point.

4.10 Some (classical) consequences of the Trudinger inequality. By Theorem 8,
we know that e" £ Lp(ds2) for all p < oo , if u £ H(ds2). More precisely, we
have

Proposition 11. The embedding

H(ds2) c Lp(ds2)
Su

is compact for all p < oo.
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Proof. Let {w.} be a bounded sequence in H(ds2) and p < oo. We have to
show that {u } has a convergent subsequence in Lp(dsx).

Choose #, r such that 2p/(2+p) < q < 2 and \ + { = \ ■
Theorem 8 implies that [e "') is bounded in Ls(ds2) (for all 5). On the

other hand, we have (using Holder's inequality)
,1_   au, m ?n   áti^l —      ,,,
Il  Ve    '\\L<(ds])=Ô\\e    '\  ^Uj\\\^(ds])

.¿«iii ,,1,
'L (as. )    "        j"L (as.<¿ik jiu^-irvu;iu^

Thus {eSu>} is a bounded sequence in Wx'q(ds\). We conclude by Rellich-
Kondrachov (since p < 2q/(2 - q)).   O

Corollary 12. The embedding

H(ds2) c Lp(ds2)
Suu -, e

is compact for all p < 00.

The proof is obvious from Propositions 1,3, and 11.   D

Corollary 13. Let tp £ Lq(dsf)   (q > 2), S £ R. Then the function

H(ds2) -, R

u — ie   \tp)

is continuous for the weak topology in H(ds0 ).

Proof. Let p := q/(q- 1)   (< 2) and let {«} be a sequence in H(dsQ) weakly

converging to u*.   Then {e ">}  strongly converges to e "    in the Lp(dsf)-
topology. This proves our statement since the pairing

Lp(ds20) x Lq(ds20) -, R

(/, g) - if\g)
is a continuous function.   D

5. The equation Au = he " - h0
7 «As in the preceding section, ds0 is a conformai metric with conical singu-

larities representing a divisor ß on a compact generalized Riemann surface 5
without boundary. In this section we study the equation

(5.1) Au = heSu-h0,
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where h and h0 are two Holder continuous functions on S, ô is a positive
number, and A is the Laplacian corresponding to the metric dsQ .

We denote by (u\v) the L2-scalar product with respect to ds^, and by 77
the Sobolev space of functions with (u\u) + (Vw| Vw) < oo. We will also use the
subspace 77' := {« € 77: w = 0} (where w := (w|l)/(l|l) is the average of w).

We now introduce two functionals AF and & : H —► R defined by

Piu) := (Vw|Vw) + 2(h0\u),       &(u) := (h\eSu).

The derivatives of these are

DP(u)(v) = 2(Au + h0\v),        D&(u)(v) = S(heSu\v).

Finally, we define y := (h0\l) = ¡sh0dA.

5.1 Basic properties of P and AA?. (a) The functional AA? is continuous with
respect to the weak topology in 77.

This is Corollary 13 in §4.
(b) There exists a constant c such that |(A0|w)| < c-y^VwlVw) for all u £ H'.
Indeed, (h0\u)2 < (hQ\h0)(u\u) < C,(/20|/z0)(Vw|Vw) by Poincaré inequality.
(c) The functional P is bounded below on H'.
For, we have

A?(u) = (V«| Vw) + 2(hfu) > (Vw|Vw) - 2c ■ v^VwIVw) > -c2.

(d) P is coercive in 77' (i.e., if B' is a subset of 77', then AF is bounded
on B' if and only if B' c 77' is bounded).

Thanks to (c) and Poincaré's inequality, we only have to show that A? is
bounded above:  AF(u) = (Vw|Vw) + 2(/z0|w) < (Vu + Vw) + 2c • yf(Vu\Vu) <
\\u\\H + 2cJM¿-

(e) If h ^ 0, then & has no critical points.
This is obvious from the computation of DAÂ? .

5.2 Admissible subspaces. Before solving (5.1), we have to choose the function
space in which we want to seek a solution. Observe first of all that if u satisfies
(5.1), then S?(u) = y (:= (hfl)) (this comes from JsAudA = -fsd*du = 0).
This condition is called the constraint on w.

Definition. A linear subspace H c 77 is admissible (with respect to the con-
straint 3?(u) = y) if it is closed and if there exists a complementary subspace
L c 77 such that H = L + H (direct sum) and the following condition is
satisfied: if u £ {u £ H: S?(u) = y) and v £ L, then we have

(Vu\Vv) = (heSu\v) = (hfv) = 0.

Examples. The space 77 itself is admissible. The intersection of two admissible
subspaces is admissible. The sum of two admissible subspaces is admissible. If
y = 0, then 77' is admissible (take L to be the constant functions). If G is a
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2group of isometries of (S, ds0 ) such that h and h0 are G-invariant, then the
ri

subspace 77 := {u £ H : u° g = uM g £ G) of invariant functions is admissible
(choose L to be the orthogonal complement of 77 ).

5.3 The variational method. Equation (5.1) has been mainly studied by the vari-
ational method, which is based on the following.

Theorem 1. If there exists an admissible subspace H c 77 and a number m £ R
such that

(i) The set B := {u £ H: 3?(u) = y and P(u) < m) is not empty;
(ii) B is a bounded subset of 77.

Then there exists a number k e R and a function u £ H n C (S) such that u
is of class C   in S\supp(ß), 3?(u) = y and u satisfies the equation

(5.1A) Aw = khe u - hQ.

Remark. If y ^ 0 and if there is a solution w of (5.1A) such that S?(u) = y,
then k = 1 (this is obvious upon integrating (5.1J).

Proof. Set p := iaf{P(u) : u £ B}   (= inf{P(u) : w e 77 and J?(w) = y}).
First step, p is achieved. This follows by standard arguments from the weak

continuity of 2?, the weak semicontinuity of A? and the compactness of the~ 2
inclusion 77 c L .

Second step, u* is a weak solution of equation (5.1A). For (5.1A) is the
Euler-Lagrange equation of the variational problem defining p .

Third step,   u* is Holder-continuous. The metric is locally given by ds0 =
/?(z)|z|2^|i/z| (with p continuous), therefore, equation (5.1J has the local
form

(5.2) -(d2/dx2 + d2/dy2)u* = p(z)\z\2ß\khedu" - hf.

Now, recall (§4.8) that eSu c Lq for all q < oo, hence the right-hand side of
the above equation belongs to Lp for some number p > 1, and we can apply
the Lp -regularity theory of the classical Laplace operator:

Theorem [7, Proposition 6]. Let Q be some domain in R" and g £ LP(Q.) for
some number p > n/2. Then any weak solution of

U£WX<2(Cl), -J2^-2U = g
i=l °Xi

is locally Holder-continuous.

Fourth step, u* is C2 off the singularities and (5.1A) is satisfied in the
strong sense. Since u* is Holder-continuous, the right-hand side of equation
(5.2) is Holder-continuous and we can apply the Holder-regularity theory for
the classical Laplacian:
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Theorem ([8, Theorem 6.13] or [7, Proposition 9]). Let Q be a domain with
smooth boundary in R" . If u, g £ Ck'a(QA) verify

n      Q2Ed
d~?U = g¿=1 yA«

in the weak sense. Then u£Ck+2'a(ci) and the equation above is in fact satisfied
in the strong sense.

Therefore u* £ C2(S\supp(ß)). Now u* also satisfies u* £ H and &(u) =
y , hence Theorem 1 is proved.   D

5.4 Solving (5.1) when h = 0. In this case, equation (5.1) is linear (it is the
classical Poisson equation).

Theorem 2. If h = 0, then (5.1) is solvable if and only if y = 0. The solution is
unique up to an additive constant, it is continuous and C   in S\supp(ß).
Proof. The difference between two solutions satisfies Ait) = 0.   Uniqueness
follows.

If (5.1) has a solution w,then y = (hfl) = (-Au\l) = 0.
Conversely, assume y = 0, and set H = H' (= {u £ 77: (w|l) = 0}),

m := P(0) = 0. We have then
(i) B ;= {u £ H' : A7(u) <0) Í 0;

(ii) ¡F is bounded below on B (see 5.1c);
(iii) B is bounded in 77 (follows from 5.Id).

We conclude the proof by Theorem 1.   O

5.5 Solving (5.1) when y = 0 and h ^ 0. Let / be a function such that
Af + h0 = 0 (known to exist by Theorem 2).

Theorem 3. If y = 0 and h ^ 0, then (5.1) has a solution if and only if the
following two conditions are verified:

( 1 ) h changes sign;
(ii) (h\esf)<0.

All solutions are continuous and C   in S\supp(/f).
Proof. First, we show that conditions (1) and (2) are necessary. Let w be a
solution of (5.1). Integrating (5.1) gives AAAA(u) = (hedu\l) = y = 0, hence h
must change sign. Set w := u - f, we have:

(h\eSf) = (e~Sw\heSu) = (e-Sw\Aw) = -ô(e~SwVw\Vw) < 0

(since w ^ 0).
Now we show that these conditions are sufficient: Let H := {u £ 77: (w|<? )

= 0} and L c 77 be the set of constant functions (= R), observe that 77 is
admissible.

Since h changes sign, we can find a function v £ CX(S) such that &(v) = 0.
Adding a constant if necessary, we may assume v £ 77. Set m := AF(v) and
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B := {u£ H: &(u) = 0 and AF(u) < m). Poincaré's inequality (§4.7) tells us
that (w|w) < C,(Vw|Vw) for all u e 77, hence we easily show (using 5.1c and
5.Id) that AF is bounded below on B and that B is a bounded subset in 77.

Theorem 1 tells us then that (5.1A) has a solution for some k. We claim
that k > 0. Indeed, let w := u - f where u solves (5.1A), then (kh\eSf) =
(e~Sw\Aw) = -ô(e~SwVw\Vw) < 0. The condition (2) implies k > 0.

We directly check that u := u + log(A)/<5 is a solution of (5.1).   D

5.6 Solving (5.1) when y < 0. An obvious necessary condition to solve (5.1)
when y < 0 is: inf(h) < 0. This condition is however not sufficient, a fine
study (in the smooth case) has been carried out by Kazdan and Warner (see
[10, §10]). Our goal here is more modest and we solve (5.1) under the stronger
assumption sup(A) < 0.

Theorem 4. Suppose y < 0 and sup(A) < 0. Then there exists a unique solution
of (5.1). This solution is continuous and C2 on S\supp(/?).
Proof. Suppose we had two solutions u and v of (5.1), then their difference
w would satisfy Aw = e vh(e w — 1). Thus wAw < 0, but fswAwdA =
(Vw\Vw) > 0. Therefore w must be constant, since 3?(u) = ^(v) = y ^ 0,
this constant is 0 and u = v .

Let us now show the existence of a solution: since h, y < 0, we can find
a constant c £ R such that &(c) = y. Set H = 77 and m := P(c). Then
B := [u £ H: &(u) = y, P(u) < m) f= 0.
Lemma.  |^| is bounded below on 77' by a positive constant.

(Proof. We have for all w'e77': \^(u')\ > inf \h\ ■ (eSu>\l) > inf |A|(1 +ôu'\l)
= inf|A|.(l|l) >0.)
Corollary. Set w := (w|l)/(l|l). Then w is bounded on B.

(Proof, u = u +u and we have AA?(u) = e u%A(u). Hence the lemma implies
that w is bounded above on B . On the other hand, using §5.lc and y < 0, we
see that w = ^(^"(w) - 5F(ù)) is bounded below on B A)

To finish the proof of Theorem 4, we have to check that conditions (i), (ii)
and (iii) of Theorem 1 are satisfied:

(i) B is not empty (obvious).
(ii) A¥ is bounded below on B : Indeed A?(u) = AF(u +u)= AF(u') + 2yTi

is bounded below by the above corollary and 5.1c.
(iii) B is bounded in 77: Set B' := {u - w: w € B) c 77', then AF(u) =

P(u + u) - 2yü is bounded above for u £ B', hence, 5.Id implies that
(Vw'|Vw') is bounded on B'. We have then for w = u + w £ B

||M|¿ = (u'\u) + w2(l|l) + (Vw'|Vw')

< (1 + C^iVw'lV"') + w2(l|l),
which is bounded.    D
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5.7 Solving (5.1) when y > 0. An obvious and necessary condition to solve
(5.1) when y > 0 is: sup(A) > 0. Again, this condition is not sufficient, see
[3]. The solvability of (5.1) depends on the value of ô y :

Theorem 5. Suppose that the conditions
(1) sup(A)>0,
(2) 0<áv<4?TT,

(where x = min({2, 2 + 2ßf is the Trudinger constant of (S, /?)) are satisfied.
Then there exists a continuous solution u of equation (5.1), furthermore, u is
C2 on S\supp(ß).
Proof. We can clearly find a function v £ CX(S) such that S?(v) = y. Set
m := 9*~(v) and H = H, then

(i)   B:={u£ 77: &<u) = y and P(u) < m} ¿ 0.
Now choose b such that ay/2 < b < 2nx and set

sf s
¡i") = 4¿iVu\Vu) +-ihQ\u).

By Theorem 8 in §4.8 we have for u £ B :

y = (eóu\h) < D' • sup(A) • exp(7(w)),

and thus 7(w) > const. But we have
S S    / 1 s   \

Yy^iu) = /(«) + 2 [- - JE) (V"IV") > 7(") ̂  const-

Thus
(ii) AAF is bounded below on B .

It follows from the above inequality that (Vw|Vw) is bounded on B . On the
other hand, if w = u + w (u £ 77'), then 2yïï = A?(u) - (Vw|Vw) - 2(A0|w'),
but Poincaré inequality tells us that

ihfù)2 < (h0\h0)(u'\u) < C,(A0|A0)(Vm|V«).

Hence !w| is bounded on B . Thus

\\u\\2H = (u\u) + (Vw|Vw) = (w'|w') + M^lll) + (Vw|Vw)

<(l + C1)(Vw|Vw) + t72(l|l)

is bounded on B ; hence
(iii) B is bounded in 77.
We conclude by Theorem 1.   D

5.8 Proof of the main theorems. The proof of Theorems 1, 3, and 4, and of
Proposition 2 in §3 are almost finished. We will complete the proofs of these
results simultaneously.
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First we assume dS = 0. We are thus given a divisor ß on a compact G.R.S.
S without boundary and a Holder-continuous function K: S —> R in such a
way that the relevant hypotheses are satisfied. Choose some conformai metric
dsQ representing ß (such a metric is easily constructed e.g., by a partition of
unity). Using Theorem 2, 3, 4 or 5 in §5, we get a solution of

Aw = Kelu - K0,

(where A and KQ denote the Laplacian and curvature of dsQ). The desired
metric is ds  := e udsQ . When K < 0, we also have uniqueness from §5.4 and
§5.6.

If dS t¿ 0, we introduce the canonical double cover f:S'—>SofS.
Recall that S' is a compact G.R.S. with a conformai involution a : S' —> S',
the surface S can be identified with S'/o . On S' we have the divisor ß' = fi* ß
which is invariant under o .

Choose on S' a conformai metric ds'0 representing /?' and invariant under
a. By Riemann-Hurwitz (Corollary 2 in §2), we have xiS'ß') = 2xiS, ß).
Thus if S and K: S —► R satisfy one of the hypotheses of Theorems 1, 3, or
4, or Proposition 2 in §3, then so do S' and K' := K o /: S' -, R. Hence,
applying Theorem 2, 3, 4, or 5, in §5, we get a solution of Aw' = K'e - K'0,
on S'. Furthermore, since the space of cr-invariant functions is admissible,
Theorem 1 in §5 implies that the solution can be chosen cr-invariant.

We thus obtain a conformai cr-invariant metric ds' = e u ds'0 of curvature
K' on S' which gives the desired metric on 5 = S'/a .   D

Appendix: A weighted Sobolev inequality

Proposition 1. Let Q be some domain in R" and ß > -1, then there exists a
constant C(Q), independent of p such that for all u £ C0(Q),

(J \u\p ■ \x\nß ■ dx\XIP < Ciil) • p{n-X)/n ■ (J \Du\" ■ dx\ l'n ,

where dx is the Lebesgue measure in R" and Du = (du/dxx, du/dx2, ... ,
du/dxf) is the euclidean gradient of u.
Proof. It is enough to prove the proposition for Í2 = B := {x £ R" : |x| < 1}
and p > n .

Let us introduce the operator T defined by

0Jn_x Jb \x-y\n

(where con_x is the volume of dB). It is easy to see that

(a.l) |w(x)|<r(|Z>w|).

First case,  ß > 0.  Set s := np/((n - l)p + n), then s < -^ and we have
1 = - + (j --) + (};- i) ■   Thus we may apply Holder's inequality to the
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product

w^ _ (jsmy_\ "'. (_±\ '"""'. (|z,„wr)./.-.*.
obtaining

,   2] ¡B\x-yrxdy-\lB\x-y\^dy)
'   X'S-llp     /  , \ l/n-l/j»

y,cr$H      ■(/i|ü"wl"^)
Set a := fB \Du(y)\" dy, since we have

dy f dz[        dy        <[
JB\X-V\s{n-X)  - J\zib \x-yp" ''     J\z\<2 \z\s{" l)

• l)-i(n-l))   ,„       ^„-i(a.3) = co      [ r(("-
Jo

<y_ , • 2«i-i(ii-i)

o n-s(n-l)
co.  , ■ 2n-s{n-X]'««-i

n2
((n - l)p + n) < const ■ p,

the inequalities (a.l) and (a.2) imply

i   a\ i /  \iP ^ p/s-i    p/n-i    f    \Du(y)\"     ,(a.4) \u(x)\p < const • pPI     -aPI      •     -1—^yy dy.

Thus,

(a.5)     / \u(x)\p\x\nßdx<const.pp/s-x.ap,n-x. [ [    lDu{yfndydx,
JB JbJb \x -y\K    '

(we have used \x\nß < 1 which holds since x £ B and ß > 0). By Fubini and
(a.3) we have

(a-6)        LL]7^d>dximmi-°-'>-
Therefore

(a.7) (j \u\p ■ \x\nßdx\lP < const-pxls.axln .

But px/s =p{n-X)ln .px/p < (exle)p(n-X)ln . Thus there exists a constant c such
that

(JB\u\p.\x\nßdxyP<c.p{n-X),n.ax/n.

Second case.  -1 < ß < 0.  Set t := § (1 - j), q := p(l - ß)/(l + ß) (so
that }-f-| = i). Applying Holder's inequality to the product |w(x)| • \x\"ß/p ,
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we obtain

(a.8) U \u\p ■ \x\nß dx\llP < (j \u\qdx\i/Q ■ (J \x\nßt/pdx\ ''' .

Since ^ > -n (for ß > -1), we have ¡B \x\nßl/p dx = K < oo.
On the other hand, applying the proposition in the case ß = 0, we get

(j \u\qdx\'9 < const ■q(n-X)ln (j \Du\n dxX'"

< const   -:—^ • p [      \Du\  dx1 + ß "Us™"'
Setting C(7?) := const• K-(jA)(n  X     , we have from the inequalities (a.8) and
(a.9):

\u\p ■ \x\nß ■ dx\l/P < C(B) .p{"-X)/n ■ (j \Du\" ■ \x\ß{n~p) ■ dx\ l/" .   D
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