PRESCRIBING GAUSSIAN CURVATURE ON R^{2}

SANXING WU

(Communicated by Peter Li)

Abstract

We derive a sufficient condition for a radially symmetric function $K(x)$ which is positive somewhere to be a conformal curvature on R^{2}. In particular, we show that every nonnegative radially symmetric continuous function $K(x)$ on R^{2} is a conformal curvature.

In this paper, we consider the prescribing Gaussian curvature problem. Let (M, g) be a Riemannian manifold of dimension 2 with Gaussian curvature k. Given a function K on M, one may ask the following question: Can we find a new conformal metric g_{1} on M (i.e., there exists u on M such that $g_{1}=e^{2 u} g$) such that K is the Gaussian curvature of g_{1} ? This is equivalent to the problem of solving the elliptic equation

$$
\begin{equation*}
\Delta u-k+K e^{2 u}=0 \tag{0}
\end{equation*}
$$

on M, where Δ is the Laplacian of (M, g). This problem has been considered by many authors. In case M is compact, we refer to [6] for details and references.

In case $M=R^{2}$, equation (0) becomes

$$
\begin{equation*}
\Delta u+K(x) e^{2 u}=0 \tag{1}
\end{equation*}
$$

and this problem is well understood if $K(x)$ is nonpositive; in particular, if $|K(x)|$ decays slower than $|X|^{-2}$ at infinity, then equation (1) has no solution (see [11], [13]). However, if $K(x)$ is positive at some point, the situation is totally different. If $K\left(x_{0}\right)>0$ for some $x_{0} \in R^{2}$, R. C. McOwen [10] proved that, for $K(x)=O\left(r^{-l}\right)$ as $r \rightarrow \infty$, equation (1) has a C^{2} solution, where l is a positive constant. Also, it is not difficult to see that equation (1) has solutions for every positive constant $K(x)=C$.

Since there is no known nonexistence result for $K \geq 0$ on R^{2}, one may propose the following

Problem 1. Is it true that every nonnegative function (smooth enough) on R^{2} is a conformal Gaussian curvature function?

[^0]We shall prove an existence theorem for equation (1) when $K(x)$ is a radially symmetric function. As usual, we set

$$
\begin{aligned}
K_{-}(x) & =\min \{K(x), 0\} \\
K_{+}(x) & =\max \{K(x), 0\}
\end{aligned}
$$

so $K(x)=K_{-}(x)+K_{+}(x)$.
Theorem 1. If $K(x)=\widetilde{K}(r)$ is a radially symmetric continuous function on R^{2}, and there exists an $\alpha>0$ such that

$$
\begin{equation*}
\int_{0}^{\infty} s^{(1+2 \alpha)}\left|\widetilde{K}_{-}(s)\right| d s<\infty \tag{2}
\end{equation*}
$$

then equation (1) has infinitely many solutions.
Corollary 2. If $K(x) \geq 0$ is a radially symmetric continuous function on R^{2}, then equation (1) has infinitely many solutions.

Remark 3. The above theorem seems to suggest a positive answer to Problem (1). This is particularly interesting because in dimensions $n \geq 3$, not every positive function on R^{n} is a conformal scalar curvature function. W. M. Ni [12] has shown that a nonnegative function $K(x)$ on R^{n} cannot be a conformal scalar curvature function if $K(x)$ satisfies $K(x) \geq C|x|^{l}$ near ∞, where $C>0$ and $l>2$ are constants. Moreover, W. Y. Ding and W. M. Ni [3] have shown that there exist smooth radial functions $K(x)$ which are constant at infinity such that the equation

$$
\Delta u+K(x) u^{\frac{n+2}{n-2}}=0
$$

has no radial solution.
Our proof is based on the following Schauder-Tychonoff fixed point theorem (cf. [1], [4]).
Theorem (Schauder-Tychonoff). Let E be a separated locally convex topological vector space, let A be a nonempty closed convex subset of E, and let T be a continuous map of A into itself such that $T(A)$ is relatively compact (i.e., $\overline{T(A)}$ is compact) in E. Then T admits at least one fixed point.

Proof of Theorem 1. Let $K(x)=\widetilde{K}(r)$ with $r=|x|$; we try to find a solution $u(r)$ of (1) with $u(0)=\beta$ and $u^{\prime}(0)=0$. Then (1) is equivalent to the following integral equation:

$$
\begin{equation*}
u(r)=\beta-\int_{0}^{r} s \log \left(\frac{r}{s}\right) \widetilde{K}(s) e^{2 u(s)} d s \tag{3}
\end{equation*}
$$

Now we choose $0<\alpha^{\prime}<\alpha$ and β such that

$$
\begin{gather*}
\int_{0}^{e} s \log \left(\frac{e}{s}\right)\left|\widetilde{K}_{-}(s)\right| e^{2(\beta+1)} d s<\frac{1}{2}, \tag{4}\\
\int_{0}^{e} s\left|\widetilde{K}_{-}(s)\right| e^{2(\beta+1)} d s<\frac{\alpha^{\prime}}{2}, \tag{5}\\
\int_{e}^{\infty} s^{\left(1+2 \alpha^{\prime}\right)}\left|\widetilde{K}_{-}(s)\right| e^{2(\beta+1)} d s<\frac{\alpha^{\prime}}{2} \tag{6}\\
\int_{e}^{\infty} s^{\left(1+2 \alpha^{\prime}\right)} \log \left(\frac{e}{s}\right)\left|\widetilde{K}_{-}(s)\right| e^{2(\beta+1)} d s<\frac{1}{2} \tag{7}
\end{gather*}
$$

Define the functions $A_{\beta}(r)$ and $B_{\beta}(r)$ by

$$
\begin{gather*}
\begin{cases}A_{\beta}(r)=(\beta+1), & \text { if } 0 \leq r \leq e \\
A_{\beta}(r)=(\beta+1)+\alpha^{\prime} \log \left(\frac{r}{e}\right), & \text { if } e \leq r\end{cases} \tag{8}\\
B_{\beta}(r)=\beta-\int_{0}^{r} s \log \left(\frac{r}{s}\right) \widetilde{K}_{+}(s) e^{2 A_{\beta}(s)} d s
\end{gather*}
$$

Let X denote the locally convex space of all continuous functions on $[0, \infty)$ with the usual topology, i.e., $\lim _{n \rightarrow \infty} f_{n}=f$ in X iff f_{n} converges to f uniformly on any compact subset of $[0, \infty)$.

Now consider the set

$$
Y=\left\{u \in X \mid B_{\beta}(r) \leq u(r) \leq A_{\beta}(r), \quad r \in[0, \infty)\right\}
$$

It is easy to see that Y is a closed convex subset of X. Let T be the mapping

$$
\begin{equation*}
(T u)(r)=\beta-\int_{0}^{r} s \log \left(\frac{r}{s}\right) \widetilde{K}(s) e^{2 u(s)} d s \tag{10}
\end{equation*}
$$

We shall prove that T is a continuous mapping from Y into itself such that $T Y$ is relatively compact.

First, we verify that $T Y \subset Y$. Assume $u \in Y$. Hence we have

$$
\begin{equation*}
B_{\beta}(r) \leq u(r) \leq A_{\beta}(r), \quad r \in[0, \infty) \tag{11}
\end{equation*}
$$

It is easy to see that $T u$ is continuous. Now for $0 \leq r \leq e$ we have

$$
\begin{aligned}
(T u)(r) & =\beta-\int_{0}^{r} s \log \left(\frac{r}{s}\right) \widetilde{K}_{-}(s) e^{2 u(s)} d s-\int_{0}^{r} s \log \left(\frac{r}{s}\right) \widetilde{K}_{+}(s) e^{2 u(s)} d s \\
& \leq \beta-\int_{0}^{e} s \log \left(\frac{e}{s}\right) \widetilde{K}_{-}(s) e^{2(\beta+1)} d s \\
& \leq(\beta+1)=A_{\beta}(r)
\end{aligned}
$$

For $e \leq r$, we have

$$
\begin{aligned}
(T u)(r)= & \beta-\int_{0}^{r} s \log \left(\frac{r}{s}\right) \widetilde{K}_{-}(s) e^{2 u(s)} d s-\int_{0}^{r} s \log \left(\frac{r}{s}\right) \widetilde{K}_{+}(s) e^{2 u(s)} d s \\
\leq & \beta-\log \left(\frac{r}{e}\right) \int_{0}^{e} s \widetilde{K}_{-}(s) e^{2(\beta+1)} d s-\int_{0}^{e} s \log \left(\frac{e}{s}\right) \widetilde{K}_{-}(s) e^{2(\beta+1)} d s \\
& -\log \left(\frac{r}{e}\right) \int_{e}^{\infty} s^{\left(1+2 \alpha^{\prime}\right)} \widetilde{K}_{-}(s) e^{2(\beta+1)} d s \\
& \quad-\int_{e}^{\infty} s^{\left(1+2 \alpha^{\prime}\right)} \log \left(\frac{e}{s}\right) \widetilde{K}_{-}(s) e^{2(\beta+1)} d s \\
\leq & \beta+\frac{\alpha^{\prime}}{2} \log \left(\frac{r}{e}\right)+\frac{1}{2}+\frac{\alpha^{\prime}}{2} \log \left(\frac{r}{e}\right)+\frac{1}{2} \\
= & (\beta+1)+\alpha^{\prime} \log \left(\frac{r}{e}\right)=A_{\beta}(r)
\end{aligned}
$$

On the other hand, since $u(r) \in Y$, we have

$$
\begin{aligned}
(T u)(r) & =\beta-\int_{0}^{r} s \log \left(\frac{r}{s}\right) \widetilde{K}_{-}(s) e^{2 u(s)} d s-\int_{0}^{r} s \log \left(\frac{r}{s}\right) \widetilde{K}_{+}(s) e^{2 u(s)} d s \\
& \geq \beta-\int_{0}^{r} s \log \left(\frac{r}{s}\right) \widetilde{K}_{+}(s) e^{2 A_{\beta}(s)} d s \\
& =B_{\beta}(r)
\end{aligned}
$$

This verifies that $T Y \subset Y$.
To show that T is continuous in Y, let $\left\{u_{m}\right\}_{m=1}^{\infty} \subset Y$ be a sequence converging to $u \in Y$ in the space X. Then u_{m} converges to u uniformly on any compact interval of $[0, \infty)$. Now

$$
\begin{equation*}
\left|T u_{m}(r)-T u(r)\right| \leq \int_{0}^{r} s \log \left(\frac{r}{s}\right)|\widetilde{K}(s)|\left|e^{2 u_{m}(s)}-e^{2 u(s)}\right| d s \tag{12}
\end{equation*}
$$

but

$$
\begin{aligned}
s \log \left(\frac{r}{s}\right)|\widetilde{K}(s)|\left|e^{2 u_{m}(s)}-e^{2 u(s)}\right| & \leq s \log \left(\frac{r}{s}\right)|\widetilde{K}(s)|\left(e^{2 A_{\beta}(s)}-e^{2 B_{\beta}(s)}\right) \\
& \leq s \log \left(\frac{r}{s}\right)|\widetilde{K}(s)| e^{2 A_{\beta}(s)}
\end{aligned}
$$

and $s \log \left(\frac{r}{s}\right)|\widetilde{K}(s)| e^{2 A_{\beta}(s)}$ is integrable on any compact interval of $[0, \infty)$. Hence from (12) and the uniform convergence of u_{m} to u on any compact interval, we conclude that $T u_{m}$ converges to $T u$ uniformly on any compact interval, which implies that $T u_{m}$ converges to $T u$ in X. This verifies that T is continuous in Y.

We can easily compute that

$$
\left|(T u)^{\prime}(r)\right|=\left|\int_{0}^{r}\left(\frac{s}{r}\right) \widetilde{K}(s) e^{2 u(s)} d s\right| \leq \int_{0}^{r}\left(\frac{s}{r}\right)|\widetilde{K}(s)| e^{2 A_{\beta}(s)} d s
$$

Hence, on any compact interval of $[0, \infty), T Y$ is uniformly bounded and equicontinuous. This proves that $T Y$ is relatively compact in Y. So by the SchauderTychonoff fixed point theorem, T has a fixed point u in Y. This u is a solution of (2) and hence a solution of (1). We notice that, if (3) has a solution for some β, then it has a solution for all $\beta_{1} \leq \beta$. This completes the proof of Theorem 1.

In the $n \geq 3$ dimension case, if we also assume that $K(x)=\widetilde{K}(r)$ is radially symmetric in (1), and we want to find a radially symmetric solution $u(r)$ such that $u(0)=\beta$ and $u^{\prime}(0)=0$, then (1) is equivalent to

$$
\begin{equation*}
u(r)=\beta-\frac{1}{n-2} \int_{0}^{r} s\left(1-\left(\frac{s}{r}\right)^{n-2}\right) \widetilde{K}(s) e^{2 u(s)} d s \tag{13}
\end{equation*}
$$

In this situation we can show the following
Theorem 4. If $K(x)=\widetilde{K}(r)$ is a radially symmetric continuous function on R^{n}, $n \geq 3$, such that

$$
\begin{equation*}
\int_{0}^{\infty} s\left|\widetilde{K}_{-}(s)\right| d s<\infty \tag{14}
\end{equation*}
$$

then the equation

$$
\begin{equation*}
\Delta u+K(x) e^{2 u}=0 \tag{15}
\end{equation*}
$$

has infinitely many solutions.

Proof. The argument is essentially the same as in the proof of Theorem 1. We leave the details to the readers.

References

1. K. S. Cheng and J. T. Lin, On the elliptic equations $\Delta u=K(x) u^{\sigma}$ and $\Delta u=K(x) e^{2 u}$, Trans. Amer. Math. Soc. 304 (1987), 639-668. MR 88j:35076
2. K. S. Cheng and W. M. Ni, On the structure of the conformal Gaussian curvature equation on R^{2}, Duke Math. J. 62 (1991), 721-737. MR 92f:35061
3. W. Y. Ding and W. M. Ni, On the elliptic equation $\Delta u+K u^{\frac{n+2}{n-2}}=0$ and related topics, Duke Math. J. 52 (1985), 485-506. MR 86k:35040
4. R. E. Edwards, Functional analysis, Holt, Rinehart and Winston, New York, 1965.
5. D. Hulin and M. Troyanov, Prescribing curvature on open surfaces, Math. Ann. 293 (1992), 277-315. MR 93d:53047
6. J. Kazdan and F. W. Warner, Curvature Functions for Compact 2-manifolds, Ann. Math. 99 (1974), 14-47. MR 49:7949
7. M. Kalka and D. G. Yang, On conformal deformation of nonpositive curvature on noncompact surfaces, Duke Math. J., 72 (1993), 405-430. MR 94i:53040
8. \qquad , On nonpositive curvature functions on noncompact surfaces of finite topological type, Indiana Univ. Math. J. 43 (1994), 775-804. MR 95j:53060
9. R. C. McOwen, On the equation $\Delta u+K(x) e^{2 u}=f$ and prescribing negative curvature on \mathbf{R}^{2}, J. Math. Anal. Appl. 103 (1984), 365-370. MR 86c:58755
10. Conformal Metrics in R^{2} with Prescribed Gaussian Curvature and Positive Total Curvature, Indiana Univ. Math. J. 34 (1985), 97-104. MR 86h:53008
11. W. M. Ni, On the elliptic equation $\Delta u+K e^{2 u}=0$ and conformal metrics with prescribed Gaussian curvature, Invent. Math. 66 (1982), 343-352. MR 89g:58107
12. \qquad , On the elliptic equation $\Delta u+K(x) u^{(n+2) /(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), 495-529. MR 84e:35049
13. D. H. Sattinger, Conformal metrics in R^{2} with prescribed Gaussian curvature, Indiana Univ. Math. J. 22 (1972), 1-4. MR 46:4437

Department of Applied Mathematics, 100083, Beijing University of Aeronautics and Astronautics, Beijing, People's Republic of China

[^0]: Received by the editors May 10, 1996.
 1991 Mathematics Subject Classification. Primary 58G30; Secondary 53C21.
 Key words and phrases. Prescribing Gaussian curvature, semilinear elliptic PDE, integral equation.

