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PRESCRIBING GAUSSIAN CURVATURE ON R2

SANXING WU

(Communicated by Peter Li)

Abstract. We derive a sufficient condition for a radially symmetric func-
tion K(x) which is positive somewhere to be a conformal curvature on R2.
In particular, we show that every nonnegative radially symmetric continuous
function K(x) on R2 is a conformal curvature.

In this paper, we consider the prescribing Gaussian curvature problem. Let
(M, g) be a Riemannian manifold of dimension 2 with Gaussian curvature k. Given
a function K on M , one may ask the following question: Can we find a new
conformal metric g1 on M (i.e., there exists u on M such that g1 = e2ug) such
that K is the Gaussian curvature of g1? This is equivalent to the problem of
solving the elliptic equation

∆u − k +Ke2u = 0(0)

on M , where ∆ is the Laplacian of (M, g). This problem has been considered by
many authors. In case M is compact, we refer to [6] for details and references.

In case M = R2, equation (0) becomes

∆u+K(x)e2u = 0(1)

and this problem is well understood if K(x) is nonpositive; in particular, if |K(x)|
decays slower than |X |−2 at infinity, then equation (1) has no solution (see [11],
[13]). However, if K(x) is positive at some point, the situation is totally different.
If K(x0) > 0 for some x0 ∈ R2, R. C. McOwen [10] proved that, for K(x) = O(r−l)
as r → ∞, equation (1) has a C2 solution, where l is a positive constant. Also,
it is not difficult to see that equation (1) has solutions for every positive constant
K(x) = C.

Since there is no known nonexistence result for K ≥ 0 on R2, one may propose
the following

Problem 1. Is it true that every nonnegative function (smooth enough) on R2 is
a conformal Gaussian curvature function?
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We shall prove an existence theorem for equation (1) when K(x) is a radially
symmetric function. As usual, we set

K−(x) = min{K(x), 0},
K+(x) = max{K(x), 0},

so K(x) = K−(x) +K+(x).

Theorem 1. If K(x) = K̃(r) is a radially symmetric continuous function on R2,
and there exists an α > 0 such that∫ ∞

0

s(1+2α)|K̃−(s)| ds <∞,(2)

then equation (1) has infinitely many solutions.

Corollary 2. If K(x) ≥ 0 is a radially symmetric continuous function on R2, then
equation (1) has infinitely many solutions.

Remark 3. The above theorem seems to suggest a positive answer to Problem (1).
This is particularly interesting because in dimensions n ≥ 3, not every positive
function on Rn is a conformal scalar curvature function. W. M. Ni [12] has shown
that a nonnegative function K(x) on Rn cannot be a conformal scalar curvature
function if K(x) satisfies K(x) ≥ C|x|l near ∞, where C > 0 and l > 2 are
constants. Moreover, W. Y. Ding and W. M. Ni [3] have shown that there exist
smooth radial functions K(x) which are constant at infinity such that the equation

∆u+K(x)u
n+2
n−2 = 0

has no radial solution.
Our proof is based on the following Schauder-Tychonoff fixed point theorem (cf.

[1], [4]).

Theorem (Schauder-Tychonoff). Let E be a separated locally convex topological
vector space, let A be a nonempty closed convex subset of E, and let T be a con-

tinuous map of A into itself such that T (A) is relatively compact (i.e., T (A) is
compact) in E. Then T admits at least one fixed point.

Proof of Theorem 1. Let K(x) = K̃(r) with r = |x|; we try to find a solution u(r)
of (1) with u(0) = β and u′(0) = 0. Then (1) is equivalent to the following integral
equation:

u(r) = β −
∫ r

0

s log
(r
s

)
K̃(s)e2u(s) ds.(3)

Now we choose 0 < α′ < α and β such that∫ e

0

s log
(e
s

) ∣∣∣K̃−(s)
∣∣∣ e2(β+1) ds <

1

2
,(4) ∫ e

0

s
∣∣∣K̃−(s)

∣∣∣ e2(β+1) ds <
α′

2
,(5) ∫ ∞

e

s(1+2α′)
∣∣∣K̃−(s)

∣∣∣ e2(β+1) ds <
α′

2
,(6) ∫ ∞

e

s(1+2α′) log
(e
s

) ∣∣∣K̃−(s)
∣∣∣ e2(β+1) ds <

1

2
.(7)
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Define the functions Aβ(r) and Bβ(r) by{
Aβ(r) = (β + 1), if 0 ≤ r ≤ e,

Aβ(r) = (β + 1) + α′ log
(
r
e

)
, if e ≤ r,

(8)

Bβ(r) = β −
∫ r

0

s log
(r
s

)
K̃+(s)e2Aβ(s) ds.(9)

Let X denote the locally convex space of all continuous functions on [0,∞) with
the usual topology, i.e., limn→∞ fn = f in X iff fn converges to f uniformly on
any compact subset of [0,∞).

Now consider the set

Y = {u ∈ X |Bβ(r) ≤ u(r) ≤ Aβ(r), r ∈ [0,∞)}.

It is easy to see that Y is a closed convex subset of X . Let T be the mapping

(Tu)(r) = β −
∫ r

0

s log
(r
s

)
K̃(s)e2u(s) ds.(10)

We shall prove that T is a continuous mapping from Y into itself such that TY is
relatively compact.

First, we verify that TY ⊂ Y . Assume u ∈ Y . Hence we have

Bβ(r) ≤ u(r) ≤ Aβ(r), r ∈ [0,∞).(11)

It is easy to see that Tu is continuous. Now for 0 ≤ r ≤ e we have

(Tu)(r) = β −
∫ r

0

s log
(r
s

)
K̃−(s)e2u(s) ds−

∫ r

0

s log
(r
s

)
K̃+(s)e2u(s) ds

≤ β −
∫ e

0

s log
(e
s

)
K̃−(s)e2(β+1) ds

≤ (β + 1) = Aβ(r).

For e ≤ r, we have

(Tu)(r) = β −
∫ r

0

s log
(r
s

)
K̃−(s)e2u(s) ds−

∫ r

0

s log
(r
s

)
K̃+(s)e2u(s) ds

≤ β − log
(r
e

) ∫ e

0

sK̃−(s)e2(β+1) ds−
∫ e

0

s log
(e
s

)
K̃−(s)e2(β+1) ds

− log
(r
e

) ∫ ∞

e

s(1+2α′)K̃−(s)e2(β+1) ds

−
∫ ∞

e

s(1+2α′) log
(e
s

)
K̃−(s)e2(β+1) ds

≤ β +
α′

2
log

(r
e

)
+

1

2
+
α′

2
log

(r
e

)
+

1

2

= (β + 1) + α′ log
(r
e

)
= Aβ(r).
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On the other hand, since u(r) ∈ Y , we have

(Tu)(r) = β −
∫ r

0

s log
(r
s

)
K̃−(s)e2u(s) ds−

∫ r

0

s log
(r
s

)
K̃+(s)e2u(s) ds

≥ β −
∫ r

0

s log
(r
s

)
K̃+(s)e2Aβ(s) ds

= Bβ(r).

This verifies that TY ⊂ Y .
To show that T is continuous in Y , let {um}∞m=1 ⊂ Y be a sequence converging

to u ∈ Y in the space X . Then um converges to u uniformly on any compact
interval of [0,∞). Now

|Tum(r) − Tu(r)| ≤
∫ r

0

s log
(r
s

)
|K̃(s)| |e2um(s) − e2u(s)| ds,(12)

but

s log
(r
s

) ∣∣∣K̃(s)
∣∣∣ |e2um(s) − e2u(s)| ≤ s log

(r
s

)
|K̃(s)|(e2Aβ(s) − e2Bβ(s))

≤ s log
(r
s

)
|K̃(s)|e2Aβ(s)

and s log( rs )|K̃(s)|e2Aβ(s) is integrable on any compact interval of [0,∞). Hence
from (12) and the uniform convergence of um to u on any compact interval, we
conclude that Tum converges to Tu uniformly on any compact interval, which
implies that Tum converges to Tu in X . This verifies that T is continuous in Y .

We can easily compute that

|(Tu)′(r)| = |
∫ r

0

(s
r

)
K̃(s)e2u(s) ds| ≤

∫ r

0

(s
r

)
|K̃(s)|e2Aβ(s) ds.

Hence, on any compact interval of [0,∞), TY is uniformly bounded and equicon-
tinuous. This proves that TY is relatively compact in Y . So by the Schauder-
Tychonoff fixed point theorem, T has a fixed point u in Y . This u is a solution of
(2) and hence a solution of (1). We notice that, if (3) has a solution for some β,
then it has a solution for all β1 ≤ β. This completes the proof of Theorem 1.

In the n ≥ 3 dimension case, if we also assume that K(x) = K̃(r) is radially
symmetric in (1), and we want to find a radially symmetric solution u(r) such that
u(0) = β and u′(0) = 0, then (1) is equivalent to

u(r) = β − 1

n− 2

∫ r

0

s

(
1−

(s
r

)n−2
)
K̃(s)e2u(s) ds.(13)

In this situation we can show the following

Theorem 4. If K(x) = K̃(r) is a radially symmetric continuous function on Rn,
n ≥ 3, such that ∫ ∞

0

s|K̃−(s)| ds <∞,(14)

then the equation

∆u+K(x)e2u = 0(15)

has infinitely many solutions.
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Proof. The argument is essentially the same as in the proof of Theorem 1. We leave
the details to the readers.
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