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w 1. Introduction 

On the  s t a n d a r d  two  s p h e r e  S2={x  e R31x~+x2z+x~= 1} wi th  m e t r i c  ds20=dx~+d~+dx~,  

when  the  m e t r i c  is s u b j e c t e d  to  the  c o n f o r m a l  c h a n g e  ds2=e2"ds~, the  G a u s s i a n  

cu rva tu re  o f  the  new m e t r i c  is d e t e r m i n e d  b y  the  fo l lowing equa t ion :  

A u + K e  2 u = l  on  S 2 (1.1) 

where A denotes the Laplacian relative to the standard metric. The question raised by 

L. Nirenberg is: which function K can be prescribed so that (1.1) has a solution? There 

is an obvious necessary condition implied by integration of (1.1) over the whole sphere: 

(with dkt denoting the standard surface measure on S 2) 

fs Ke2Udl~ = 4er. (1.2) 

(t) Research supported in part by N.S.F; grants and the Forschungsinstitut fiir Mathematik, E.T.H. 
Ziirich, Switzerland. 
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Thus K must be positive somewhere. Some further necessary condition has been noted 

in Kazdan-Warner [9]. For each eigenfunction xj with Axj+2xj=0 (j= 1, 2, 3), the 

Kazdan-Warner condition states that 

fs(VK, Vx:)e2"dl~=O, j =  1,2,3. (1.3) 
2 

Thus functions of the form K=q, ox i where 7: is any monotonic function defined on 

[-1,1] do not admit solutions. (We will give in w below an interpretation of the 

condition (1.3) in terms of conformal transformations of $2.) When K is an even 

function on S 2 (i.e. K is reflection symmetric about the origin), Moser [12] proved that 

the functional 

(1.4) 

1,2 achieves its maximum on H'ev~, (the Sobolev space of even functions with first deriva- 

tives in L2($2)) and hence its maximum u satisfy the Euler equation (1.1). The proof in 

[12] was based on Moser's sharp form of the Sobolev inequality [11]: Given u E HI'Z(S z) 
(respectively u E l, 2 2 H~ve,(S )), there is a universal constant C o such that 

fs2 (expa(u-a)z/ f lVul2d~) d~Co (1.5) 

for all a~<4~r (respectively a~<8ar) where a=(I/4ar)fs2ud ~. In [4], we gave the corre- 

sponding version of Moser 's result for those K satisfying a reflection symmetry about 

some plane (e.g. K(xI,Xz,X3)=K(xI,x2,-x3)); in that case we exhibited a solution to 

(1.1) also satisfying reflection symmetry by solving the Neumann problem to (1.1) on 

the hemisphere H={x E S 2, x3~0}with boundary condition Ou/On=O under the hypoth- 

esis that 

1 fnK>max(maxK(p),O)" 2~ p E SH 

In case K possesses rotational symmetry some sufficient conditions were given in Hong 

[8]. For example, when K is rotational symmetric w.r.t, the x3-axis, positive some- 

where and max (K(0, 0, 1), K(0, 0, - 1))~<0. 

In this paper, we give two sufficient conditions for existence to the equation (I. 1).  

The first is an attempt to generalize Moser's result: 
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THEOREM I. Let K be a smooth positive function with two nondegenerate local 

maxima (which we may assume w.l.o.g.) located at the north and south poles N, S. Let 

q~ t be the one-parameter group o f  conformal transformations given in terms o f  stereo- 

graphic complex coordinates (with z = ~ corresponding to N and z=O corresponding to 

S) by opt (z)=tz, 0<t<oo. Assume 

inf I fs K~ max K(Q). (1.6) 
0<t<~ 4~ 2 VK(Q)=0 

Q.N, S 

Then (1.1) admits a solution. 

Remark. (1.6) is an analytic condition about the distribution of K which can be 

verified for example if K has non-degenerate local maximum points at N, S and in 

addition the following properties: (1) K has (suitably) small variation in the region 

( [ x3 l>e  ~. (2) All other critical points of K occur in the strip {]x3]<e } and there the 

critical values of K are significantly lower than the minimum value of K on (Ix3[>e}. We 

observe that this is an open condition. 

THEOREM II .  Let K be a positive smooth function with only non-degenerate 

critical points, and in addition AK(Q)*0 where Q is any critical point. Suppose there 

are at least two local maximum points o f  K, and at all saddle points o f  K, AK(Q)>0, 

then K admits a solution to the equation (1.1). 

Remarks. (1) While under the earlier sufficient condition in [12], [8], [4] solutions 

obtained were local maxima of  the functional F restricted to some suitable subspace of 

H 1, 2, it is actually the case that when K is a positive function, no solution to (1.1) can be 

a local maximum (i.e. index zero solution) unless K is identically a constant. This 

. follows from a second variation computation coupled with an eigenvalue estimate of 

Hersch [7]: Suppose u is a local maximum of the functional F[u], then direct computa- 

tion yields (for (1/4et) fs  2 Ke 2u= 1) 

2 1 Ke2.v2_~l_l_ I K e 2 . v ' ~ ] _ _ ~  0 >1 F[u+tv] IVvl 2 
d t  2 ~ 2 \ 4~r Js ~ / J 2 

for all v E H 1' 2. This implies that the first non-zero eigenvalue 21 of the Laplacian of  the 

metric Ke2"ds 2 satisfies 21~>2. While the estimate of Hersch [7] says ).1~<2 with equality 

if and only if the metric Ke2Uds2 has constant curvature one. This coupled with the 

assumption that K, u satisfy (1. I) is equivalent to K---constant. 

15-878283 Acta Mathematica 159. Imprim6 le 23 octobre 1987 
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(2) Based on the analysis in sections 3, 4, 5 of this present paper,  we know the 

precise behavior of concentration near the saddle points of K where AK(Q)<0, and the 

following stronger version of Theorem II will appear in a forthcoming article. 

THEOREM I I ' .  Let K be a positive smooth function with only non-degenerate 

critical points, and in addition AK(Q)=I=0 where Q is any critical point. Suppose there 

are p + l  local maximum points of  K, and q saddle points of K with AK(Q)<0. I f  q~=p 

then K admits a solution to the equation (1.1). 

We sketch in the following the main idea of the proofs of Theorem I and II and an 

outline of the paper. As explained in the remark above, we should look for saddle 

points of the functional F. ThUs we look for a max-min scheme for the functional F. 

Since the functional does not satisfy the Palais-Smale condition, we need to analyse 

when a maximizing max-min sequence fails to be compact. This is given in w 2 in the 

Concentration lemma (based on an idea of Aubin [1, Theorem 6]), where it is proved 

that for a sequence uj E H l' 2(S2) normalized by the condition (I/4er) f s 2 e2UJdlt = 1, satisfy- 

ing the bound 

1 fs IVujl2dlt+ 1 fs ujdlt<~C S [ u d  = 2 

then either (i) uj has bounded Dirichlet integral, hence we may extract a weakly 

convergent subsequence which gives a weak hence strong solution of (I. I) or (ii) on a 

subsequence the mass of  e 2u~ concentrates at a single point P on the sphere in the sense 

of measure. Observe that a maximizing sequence uj for a max-min problem will 

automatically satisfy the condition S[uj]<<.C (for some constant C; after normalizing the 

sequence by (1/4at)fs2e2UJdlu=l). Thus if we do not have convergence, we must study 

the phenomena of concentrating sequence. Our strategy is that when e 2~ is sufficiently 

concentrated, we can compare Flu] with J[u] where 

J[u]=log-~fs2e2"d/~---~fs2lVulZdl~-2-~fsUd/a 

whose critical points are known, i.e. e 2"= det Ida01 where qo is a conformal transforma- 

tion of S 2. In fact J[u]~<0 with J[u]=0 precisely when e 2"= det Id 01. This analysis  of  J 

was due to Onofri [14] and will be recalled in w 3 where we also sharpen the estimates in 

w 2 in a form which is used crucially in later analysis (of the saddle points of K). Thus 

when uj is a maximizing concentrating sequence, we will compare e 2ui with det Id jl 
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where tpj. is a sequence of similarly concentrating conformal maps. We show that 2uj is 

then close to logdet Idq0il in the sense that S[uj] is close to zero (which is the value of 

S[�89 det Id~jl]). This approximation is done in w 4 and reduces the analysis of F[uj] on 
2uj. 

the concentrating sequence to that of the analysis of the first term log (1/4Jr) f s ~ Ke  a/~, 

which is made explicit in our asymptotic formula (w 5) for evaluating such integrals 

f s2fe2Udl, when e 2u is concentrated. We combine the foregoing analysis in w to 

conclude that for a 1-dimensional max-min scheme concentration can only occur near a 

saddle point Q of K where AK(Q)<0. We then give the proof of Theorem I and II in w 7. 

We remark here that the analysis provided in w 4 and w 5 is more than sufficient to 

prove Theorems I and II, however for ease of future reference we give the complete 

analysis here. 

While Theorems I and II and the previously cited work give sufficient conditions 

for existence of equation (1.1), there is another result of Kazdan-Warner [10] which 

states that for any K positive somewhere on S 2, there always exists some diffeomor- 

phism q0 so that the equation Au+Kocpe2U=l  is solvable. It is therefore of interest to 

find some analytic conditions on the class of functions K which is topologically simple 

(e.g. K has only a global maximum and a global minimum) that ensures existence of a 

solution of (1.1). 

In related developments for the analogous equation of prescribing scalar curvature 

on a compact manifold M of dimension n, n>~3, the corresponding equation becomes 

4 n -  1 A u + R  11 (n+2)l (n-2)  = g 0 li 
n - 2  

where R 0 is the scalar curvature of the underlying metric ds 2 and R is the prescribed 

scalar curvature of the conformally related metric ds2=u4/(n-2)ds~. When R=constant,  

this was Yamabe's problem and is recently solved by Aubin [2] and Schoen [16]. While 

for the analogous problem of prescribing R on S n (n>~3) with ds~ the standard metric on 

S ", Escobar and Schoen gave [5] the analogue of Moser's theorem (for even functions 

on SZ); Bahri and Coron [3] have announced an analogue of Theorem II' on S 3. 

A c k n o w l e d g e m e n t .  We are indebted to Lennart Carleson for encouragement, 

insightful comments and assistance through our work. We would also like to thank Rick 

Schoen and S. Y. Cheng for informative discussions and helpful comments, and Jtirgen 

Moser for his interest in our work as well as warm hospitality. 
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w 2. Preliminary facts and notations 

The standard 2-sphere S 2 is usually represented .as {xER311xl2=l}. Relative to any 

orthonormal frame e 1, e2, e 3 of  R 3 we have the Euclidean coordinates xi=x.  e i and we 

call (0, 0, I) (resp. (0, 0, - 1 ) )  the north pole (resp. south pole). Through the stereo- 

graphic projection to the (x I, x2)-pland we have the complex stereographic coordinates 

x I + ix 2 
Z - - -  (2.1) 

1 - x  3 

which has inverse transformation 

2 2 Izl2-1 
x 1 - - R e z ,  x 2 - - I m z ,  x 3= . (2.2) 

l+lzl l+lzl Izl +l 

The conformal transformations of  S 2 are thus identified with fractional linear transfor- 

mations 

az+b 
w -  a d - b c  = 1, 

c z + d '  
a, b, c, d complex numbers 

which form a six-dimensional Lie group. For  our purpose we need the following set of  

conformal transformations: Given P E  S 2, tE (0, oo) we choose a frame e l, e 2, e3=P, then 

using the stereographic coordinates with P at infinity we denote the transformation 

cpe, t ( z )=  tz. (2.3) 

Observe that cpe, l=id a n d  qgp, t=~l~_p,t_l, hence the set of  conformal transformations 

{q~e,, Ie E S 2, t~> 1 } is parametr ized by B3=S2x [ 1, ~ ) /S2x  { 1 }, where B 3 is the unit ball in 

R 3 with each point (Q, t)E S2x [1, oo) identified with ( ( t -1 ) / t )Q  E B 3. H 1 = H  1'2=H1'2($2) 

is the Sobolev space of  L 2 functions on S 2 whose gradients also lie in L 2. 

Ilulh,2 = 1 ( I V u l : + u : )  , 
2 

we also denote 

We adopt the notation ~:f to mean the average integral (1/4aO fs2fdl~. 
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Definition. For u E H l' 2($2) let 

stu]=f,v,,,z+2fu (2.4) 

J[u] = log f 
e2U- g[u]. (2.5) 

F[u] = F r [u] = log f Ke2U-S[u]. (2.6) 

The critical point of J[u] satisfy the Euler equation 

Au+e z~= 1 (2.7) 

where A denotes the Laplacian with respect to the standard metric. All solutions of 

(2.7) are of the form u=�89 Idq~l, cp a conformal map of S 2. Similarly the critical 

points of F r [u] satisfy the Euler equation 

Au+ Ke 2~ = 1. (2.8) 

The functional S[u] enjoys the following invariance property: 

Definition. Given u C H 1'2 and q0 a conformal transformation. Let 

u~0 = u o q0 +�89 log det I dq01. (2.9) 

We also write Tt(Q)(u) for u, when 9=ga, r 

PROPOSITION 2.1. S[ul=S[u~o ]. 

The proof is left as an exercise in integration by parts, using the equation (2.7) for the 

part �89 Idq~l. 

The implicit condition found by Kazdan-Warner [9] is an easy consequence of S[u] 

=S[u~]: 

COROLLARY 2.1. I f  u satisfies (2.8) then 

f (VK, Vxj) e2U=O, j = 1 , 2 , 3 .  (2.10) 
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Proof. u is a critical point of F[u], hence 

d F[Tt(Q)(u)] = O. 
t=l 

F[Tt(Q) (u) ] = logf Kexp (2Tt(Q) (u)) -S[Tr(Q) (u) ] 

= l o g f  Kexp(2Tt(Q) (u)) -S[u] 

= l o g f  KeZ"~ [dcpQ, tl-S[u] 

=logf Ko ,aJ,.e2"-S[u]. 

dF[Tt(Q)(u)] t=l = f d(Ic~ t=l e2u" 

But a simple calculation shows 

d =(VK,  Vx 3), if x 3 = x ' Q .  

This gives the desired conditions. 

More generally, Kazdan and Warner [9, p. 33] found the following implicit conse- 

quence by a tricky partial integration. If Av+heO=c then 

f eWh. V X  i = (2 -  c) f e~ i = 1,2, 3. (2.11) 

Given u EHI'2(S2), e 2u may be thought of as a mass distribution. So we define the 

center of mass of e2": C.M.(e2U)=jCxeEu/jCe 2u. 

Definition. = {U ~. Hl'2lC.M.(e2U) --- 0} 

.~o = {uE ~l~e 2u= 1} 

For each QES 2, 0<t<o0, 
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See, , = {u ~ / t 1 , % % ,  ~ ~e0}" 
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or 

that 

PROPOSITION A. Given a 

S[uj]<.C, then either 

(i) there exists a constant C' such that f [~ujl2~C ' 

(ii) a subsequence concentrates at a point  P E S 2, i.e. given e>0, 3 N  large such 

fB 2uj >_ e ~ ( 1 - e ) ,  for  j > - N  
(p, e) 

where B(P, e) is the ball in S 2 o f  radius e, centered at P. 

{ H1'2 C.M.(e 2u) _ p ;  1 - 6 = f P . x e  2u} 
Cp,~= uE IC.M. (e2,) I 

We remark that for each u E H 1'2 with ~e 2"= 1, we can find some (Q, t)E S2x[1, ~) 

with u E 6eQ, r This is an easy consequence of the fixed point theorem. A rigorous proof 

of the fact can be found in [14], but for our purpose later we also need the continuous 

dependence of the choice of (Q, t) in terms of a continuous path of u in HL2(S2). We 

state this as (and post-pone the proof to the appendix). 

PROPOSITION 2.2. Given a continuous map 

u: R (or A:  the unit disc in the complex plane)---> HI'Z(sZ), 

there is a continuous map 

(Q, t): R (or A)--* $2• oo)/S2x{1}-~B3; 

so that u(s) E ~Q(s),t(s)for all s E R (or s E A). 

We are ready to state the Concentration lemma which is the main technical result of 

this section. 

sequence o f  funct ions uj~H1'2(S 2) with ~e2Uj=l and 
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The proof is based on the following result of Aubin [1, Theorem 6], since a sharpened 

version of this result (see Proposition B in w 3) will be required later on we refer the 

reader to w 3 for its proof. 

PROPOSITION 2.3. [1]. Suppose u E H  1'2 with ~e2Uxj=O for j= l ,2 ,3  then for every 

e>0, there exists a constant C, with 

f e 2 " < , C ~ e x p ( ( l + e ) f l V u l 2 + 2 f u ) .  (2.12) 

(2.12) is often used in the following way: 

COROLLARY 2.2. Suppose u E bao then ~lVul2~<4(S[u]+ log Ci/4) where Cl/4 is the 

same constant as in (2.12) with e--1/4. 

~e --1, thus by (2.12) for each e>0 we Proof of Corollary 2.2. Since u E Sa0 we have 2u 

have 

Choose e =1. We have 

~< S[u] +log C1/4. 

We remark that the statement of Corollary 2.2 should be compared with the sharpened 

version of Corollary 3.1 in w 3. It indicates that 9~0 forms a compact family in H 1'2 in the 

subset where S[u] stays bounded. This is a key fact which has also been used in the 

proof of Onofri's inequality ([14]) which we now state: 

PROPOSITION 2.4. [14]. Given uEHI'2(S 2) then we have J[u]~<0 with the equality 

holding only for u=�89 det Idtpl where cp is a conformal map of  S 2. 

Remark. The functional J[u] has intrinsic geometric meaning which motivated the 

study in [14] of Proposition 2.4 above. Namely given uEHa'2(S 2) with ~eZU=l, let 

dsE=e2Uds 2 and denote fii=e-2UA the Laplace-Beltrami operator associated to ds 2, and 

let 0=;[0<)[l~<;[2~<...~<;[n--~oo be the spectrum of - A  (A and {~.k} will denote the 

corresponding objects belonging to ds2), then it was pointed out in [15] that the limit 
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detA f l )~k e-(l/3)S[ u] 
detA -= ~_~| k=l 2* 

(2.13) 

exists. Proposition 2.4 states that under the normalization (jTe2U= 1), S[u] is always/>0 

and is zero only when e2"ds~ is isometric to the standard metric ds~. Thus the limit in 

(2.13) is always ~<1, with 1 only obtained by the standard metric (up to isometries). 

By a simple change of variable, we often refer to Onofri's inequality in the form 

feCu<.exp(C---~f ]V//12+Cfs for any real number C. (2.14) 

Notice also that by taking C=2 in (2.14), we have again that for u E HI'2(S 2) with ~e2"=l 
then S[u]~>0. 

We now finish this section by proving Proposition A. 

Proof of the Concentration lemma (Proposition A). Since ujE 6eQj, t ~ so that 

vi=TtJ(Qj) (uj)E 6e o and S[vj]=S[uj] we have S[vj]<.C. It follows from Corollary 2.2 above 

that J:IV vJ2<~C '. We have two possibilities. Either all q~aj. 5 lie in a compact set, i.e. 

tfiC", in which case it follows easily that J:lv ujl2<.c(c ', c") or the tj do not remain 

bounded, in that case a subsequence still denoted uj has tf--> ~ and Qj~P. Further since 

]:IV v~[~<C ' a subsequence converges weakly to v~E 0~ Since 

the right hand side converges to 

f~ ,  ,fB(e ~)) e2v~ 

which fo r j  large is greater than l - s ,  this proves the Concentration lemma. 

w 3. A variant of Onofri's inequality 

In this section, we will prove a variant of Onofri's inequality as stated in w 2. The 

statement of this variant is somewhat technical, but we need to use a consequence of 

the inequality (stated as a corollary below) in the proof of Proposition C and D in w 4 

and w 5. 
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PROPOSITION B. There exists some a < l  such that for all 

a Se, fe2" exp(aflVul2+2fu). 

Since ( l - a )  ~lVulZ=S[u]-(a ~lVulZ+2 ~u), we get from Proposition B a direct con- 

sequence: 

COROLLARY 3. I. I f  u E 5e o then ~[Vul2<~(1-a) -1S[u]. 

To prove Proposition B, we begin with the idea behind the original proof of 

Onofri's inequality and consider for each a~<l, the functional 

L(u)=log f eZ"-(a f [VulZ+2 f u) (3,1) 

and let ~ = s u p ,  es~J,(u ). 

a>�89 J//~a is achieved by some function u a ~ "~PO which satisfies: 

Then by the result of Aubin (Proposition 2.3) for each 

We claim 

u, = 0 for a sufficiently close to 1. (3.4) 

Assuming (3.4), it is then obvious that ~a=0  for a sufficiently close to 1 and the 

assertion in Proposition B follows. 

Proof of (3.4). We will first establish a general lemma. 

LEMMA 3.1. Suppose u E 5P satisfies the equation 

3 
aAu+e 2u= 1+ E ajxje 2~, on S 2 

j= l  

for some constants aj (j= 1,2, 3) and some a<-l. Then aj=O for j= I, 2, 3. 

For each r /> 0, there exists a constant C~ with 

f .1 IVa~ f o r  l>~a~>-~-+r/. (3.2) 

3 
- -  2Ua 0 ,  a 2u,, 52  a �9 a~uo+e = 1 +,..., aj xje on for some constants aj,  j = I, 2, 3. (3.3) 

j= l  
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Proof of Lemma 3.1. Applying the Kazdan-Warner condition (2.11) with v=2u, 

c=2/a, h=(2/a) (1-  E~= 1 aixi), we get for each j =  1,2, 3, 

2_ e2U~ 7 ~ O~iXi .Vxjdbt= ( 2 _ 2 ) .  e2 u 1- ~ aix i x2d/u 
a ,,i=l i=1 (3.5) 

. . . . . .  e 2u a i X  i x2dl~. 
\ a~ a j \i=l 

Multiplying (3.5) by aj and sum over j = l ,  2, 3, we get 

~ - f  [ ( 3 / ~ 1 )  2d, u - 2 ( 2 - 2 )  Ie2U ~ctixi2dlt.  (3.6) 
- -  e2U • .= O~iXi a \ a / .j i=1 

When a < l ,  the left hand side of (3.6) is always negative while the right hand side is 

always positive (or zero when a= 1) unless E~= I aix;-O, i.e. ai=O for all i= I, 2, 3, which 

finishes the proof of the lemma. 

Applying Lemma 3. I to the functions u a (a<. 1), we get 

aAuo+e 2u~ 1. (3.3)' 

We will now use (3.3)' to derive some pointwise estimates of u a. 

LEMMA 3.2. U a (a~<l) satisfies 

( a ) j  e 4(u~ ~uo)__ 1+o(1) as a--~l, 

(b)fuo=o(1) a s  a---~l ,  

(c) actually, u~(~)=o(1) for all ~ES 2 as a---~l. 

Proof. (a) Assuming the contrary, there will be an e>0 and a sequence ak---~ 1 with 

Vk=Uak- ~Uak satisfying ~e4Vk>~ 1 + e as k---, ~.  From (3.2), there is some o E H 1 with Vk---~ V 

weakly in H I. Thus by an argument in Moser [12], J:eCVk~ ~e cv for any real number c, in 

particular c=2, 4, and also v k E 6e implies v E 5 e. Thus 

J M = J ,  t o l = l o g f e 2 ~  [V012+2 f V) 
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t> lim sup JI (Ok) 
=limsup(Jak(Vk)--(1--ak)f 'Vvkl 2) 

= limsup ( ~ , - - ( 1 - - a k ) f  ]Vvk] 2) 

I>0. 

On the other hand Jl [v]~<~l=O by Onofri's inequality. Thus J~ [v]=O and hence v is a 

solution of the equation Av+eZ~ This together with the fact that v E 5e with 

J:v=O implies v-O, which contradicts our assumption that 

fe4V=limf e4~ 

and establishes (a). 

(b) is an easy consequence of (a): we simply notice that 3~e 2u'= 1 and hence ~e4U">~l 
and J:ua~<0. 

(c) To see this, we apply Green's function to the equation (3.3)' and obtain for all 

~ES 2, G(~,P) the Green's function on S 2, 

-Ua(~)+fUa=fs2AUa(P)G(~,P)dl-t(P) 

= l f  (l_e2~(e))G(~,P)dl.t(p). 

Thus 

Ua(')--f Ua ~-~- ( f  (1--e2%)2)l/2(f ,G(,,e),2dj.l(e)) I/2 

and the claimed estimate (c) follows from (a) and (b). 

We will now finish the proof of (3.4) by using the fact that Ua E ~0 and that the next 

eigenvalue of the Laplacian operator in S 2 greater than 2 is 6. Thus 

6f(e2U.-1)2~f IV(e2"~ 1)] 2 
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= 4 f IVu~[2e 4ua 

= -- f (AUa) e 4uo 

- a l f  (1 -e  2"~ e 4"" (by (3.3)') 

= I f  (e2",- 1) (e4"a- 1) 

- al f (e2,,_ 1)2(e2,a+ 1) 

- 2+(~ f as a---~l 

where the last step follows from (c) in Lemma 3.2. Thus as a---~l, ~(e2"a-1)2=0, i.e. 

u~--0 as a--~l, which finishes the proof of (3.4) and hence the proof of Proposition B. 

Remark.  In view of Aubin's inequality (2.2) and (3.2) above, it may be interesting 

to see if Proposition B holds with a=  1. 

w 4. A Lifting iemma: comparing F[u] with J[u] 

When a function u E H l' 2 or a parametrized family of functions u s E H L 2 with ~e 2us= 1 is 

sufficiently concentrated near a point P E S 2, namely u E 5r t with t>-t o, we can compare 

the functional F[u] with J[u]. In fact we will compare F'[u] with J'[u] to construct a 

continuous lifting process which increases the value of F[u] and J[u] simultaneously 

until S[u] becomes suitably small while leaving fixed the class 5r t to which u or u s 

belongs. We formulate this process as the following Lifting lemma. 

PROPOSITION C. Given u s a continuous family  in H 1'2, where UsE 5PQs, t ~ with t~ 

large and S[us]<<.c l, there exists a continuous path us, y, yE[0,7  o] with us, o=u~, 

us, yE~Q~,t ~ for  all yE[0, Yo] such that J[u~,r], F[us, r] both are increasing in y and 

S[us,eol=O(t-~l (log t, )2). 

The basic concepts behind the proof of Proposition C are the facts that J ' [u]=0 

only when S[u]=0 and also that the functional value of J[u] remains unchanged when 
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one changes u to Tt(P)(u). Thus when the center of  e 2u is sufficiently close to the 

boundary of the unit ball B, we anticipate F[u] to behave like J[u]. To make these 

statements more precise, we will break the proof of Proposition C into several lemmas. 

The first lemma is a technical one, which lists some properties of functions in b~0 (recall 

5e0= {u fi H l, ~e 2u= I, ~e2Uxj=O,j = I, 2, 3}) which we will use in the proof of Lemmas 4.2 

and 4.3. 

LEMMA 4.1. Suppose u E 9~ . Then 

f.x  j = 1 , 2 , 3  

Suppose S[u]<-C l, then 

A(u) = (A#(u)) with Au(u) = f eZ"xixj, the matrix 

has lowest eigenoalue >I C(C 1) > 0. 

i , j= 1,2,3 

(4.1) 

(4.2) 

Proof. The first inequality in (4. I) is an easy consequence of the following inequal- 

ities: (with aj=~uxj; a=~u) 

1 = (e2"(1-xj)  >! e 2~u(1-x) = e 2(a-a) 

I = f e~"(1 +xj) >t e zfm+x) = e 2<a+a). 

Thus a-ai<~O, a+aj<.O, i.e. lajl-<-a for each j = l , 2 , 3 .  The fact -a-<�89 2 is the 

content of Onofri 's inequality. To prove (4.2), for each unit vector C=(C  1, C 2, C 3) we 

have 

( A ( u ) C , C ) =  e 2" = e 2 " ( x , x ) w h e r e  x =  Cjxj. 
i=1 

Since 

- '  

-- @)2(f e-2"<x,x>) -1 
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to see that the eigenvalue of  A(u) are bounded from below for u E 5e 0, it suffices to prove 

that the eigenvalue of  A ( - u )  are bounded from above. We can see this latter fact by 

applying again the Onofri 's  inequality and Corollary 3.1: 

f e+(x,x)<_(f <x,x)') 
< e - 2 1 u + Z l f V u l  2 

4~ stu 1 
< e4~lwl ~ < e 1-a 

LEMMA 4.2.  For each constants C1, C2>0, there exists some constant C(C l, Cz)>0 

with 

inf sup J'[u] (v____~) >i C(C1 ' CE ) > 0. (4.3) 

ue5~0 

where 

 u)=(veg'ifv=O, fe2"vxj=Oforj=l,2,3). 
And  i f  u depends continuously (H 1'2 topology) on some parameter s, v satisfying (4.3) 

can be chosen continuously as well. 

Proof. We will argue by contradiction. Suppose (4.3) fails, then there exists some 

sequence {u.}, e. with UnE ~0' C2<S[un]<CI, En"~O as n->oo such that for all OnE ~t(Un) 

we have 

J'[u,] (v,) <~ e, Ilo.ll, (4.4) 

Since u. E 5e o we have 

f [VUn[ ~ S[Un] <<- C..-..~ 1 " 
- 1 - a  

Thus some subsequence of  (u~}, which we will denote by {u.}, again will have a weak 

limit in H 1'2 to some uE :T O with S[u]<.C1. We now claim 

J '[u](v)=O for all v E ~ u ) .  (4.5) 

i c 2u n 1 2 3 y. = (y., y.,  y.) and To see (4.5), fixe v E ~ u )  with 11o112=1, let ~n=J,e vxj, j = l , 2 , 3 ,  

choose I~. to satisfy A(u.) I~.=y.. Then - 3 j Vn-V-Ej=l f i .  x s is in 5flu.) and we have 
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IVv.12 = Wv12-4 fl~bj+ 2 
j = l  j = l  

(4.6) 

where bj=•vxj (thus Ib~l<�89189 and 

J'[u.l(v)=J'[u.l(v.)-2j~= fl~ Vu..Vxj 

3 

2 = J'[u.] ( v . ) -  4 ~ ~ 
j = l  

where J -  a.-fu.x~. 
We now notice that by (4.2) we have (y=(~eZuoxj)=0) 

(4.7) 

[1,= (A(u,))-ly - . (A(u ) ) - l y=0  as n---~. (4.8) 

We also have from (4.1) and Corollary 3.1 

la ;I-- -< Ilu"ll2 < 1 - a  
C 1 

S[u,] <~ 2(1-a-----~" (4.9) 

Substituting (4.8), (4.9) and (4.4) into (4.6), (4.7) we conclude that IIv.ll2--,1 and 

J'[u,] (v)---~O as n---~oo. Since J'[u,] (v)---~J' [u] (v) from the definition of weak conver- 

gence, we have proved that J'[u] (v)=O for all v E 9o(u) as claimed in (4.5). 

Since 

= f (e2"+Au - 1) v, 

an immediate consequence of (4.5) is that u satisfies 

3 

A u + e  2u = 1+ Z d j x j e  2u 

j = l  

for some coefficients dj, j = l ,  2, 3. Since u E 9o0, we apply Lemma 3.1 to conclude dj=0 

for a l l j= l , 2 ,3 .  Thus Au+eZ"=l and we have (since uE 9~ u -0 .  

We will now see that u - 0  contradicts our assumption that S[u,]>~C l by the 

following reasoning: Applying (4.4) and similar arguments as in (4.5)--(4.9), we obtain 

I/'[u.]l~O= I/'[Oll. Thus 
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IJ'tu.J (u.)l < I~'tu.]l Ilu.II ~ l / ' t u j l  \ l - a /  

// C, \1/2 
a s  

- - , f lVu. I  z as n-- -~.  

Thus ~ClVu.lZ~0 as n---~oo. Since ~lVu~12~a[un]~C1 for all u~ with j:e2""=l. We have 

obtained a contradict ion and thus established (4.3) in Lemma 4.2. 

The continuous dependence  assertion follows from the following observations. 

Firstly 6e(u) depends continuously on u, since for all tp E H L2 we have 

(e2U-e zO'+ou)) <- e 2pu) I~le26U-ll q) 1~9 r for a l l - - p  --q r = 1 ,  

and the middle factor  can be estimated by 

( f  le2~"'l'q)<~ f (216u'e2~")q 

/ f \ 1/2 / F \ v2 
~< L ~  (21~ul) 2 ) I ~ e  4qcSu ) -'->0 as II~ull,,2--'0. 

while the remaining factors stay bounded.  

Therefore  as u s varies continuously in the parameter  s, supoe s~us ) J '  [u] v/llvJl also varies 

continuously in s. By taking the projection of  vs0 (which achieves SUpve z%) J'[u] v/lloll) 

into the nearby 5e(us); we can achieve in a neighborhood of  s a continuous choice v s 

such that 

_ J ' [u d (v) J'[us](v~) >I 1 sup 

Ilvsll 2 o~zu,~ Ilvll 

A partition of unity then gives the desired continuous choice of  v s such that 

_ J'[us] (v) J'[us](Vs) I> 1 sup 

Ilosll 2 v~u~> Ilvll 
for all s. 

16-878283 Acta Mathematica 159. Imprim6 le 23 octobre 1987 
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The next lemma establishes the complimentary case of Lemma 4.2, i.e. the case when 

S[u] is small. 

LEMMA 4.3. There exists a constant r/>0 whenever uE ~e o with S[u]~rl. Then 

sup J'[u] (v)/llvll ~ c (~)  (S[u]) '~2 for some C(r/) > 0. (4.3)' 
v E s162 

Remark. Actually in the case of (4.3)', the function v can be expressed explicitly in 

terms of u (as is apparent in the proof of the lemma), hence clearly depends continuous- 

ly on u. 

Proof. We will make the explicit choice of v namely v=-(u-a-E~=lfljx j) where 

I~=(flj) satisfies A(u)i l= ' /with yj=~Ce2"uxj. To see that v satisfies (4.3)', we write 

f f  Ilvl12- - iVvl2= IVul2-4~fljai+ fl] (4.6)' 
j = l  j = l  

where aj=~ux 1 and 

f 3 f 2J'[al(v)= IVulZ-2~3ja~+ e2"(v-o). 
j=l 

To see that J'[u] (v) is bounded from below, we first observe that for u E 9~ 

--f  e2U(v--O)= f e2U(u--ft) 

= f e2U(a-d) 

where /~=u-3  Eajxj with ~ satisfying ~ax]=O. Thus 

(4.7)' 

and 

fe2"(~-~)=f(e2"-l)(Ci-d)~(f (e2"- 1)2) '/i ( f  (t~- t~)2) ''2 

<~(e2flVul2+2stu]--l)'/2-~6(f [Vul2) 1/2 (Onofri's inequality) (4.10) 
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IVul2 e (4/(l-a))s("l. 

We now begin to estimate the coefficients aj, t31. To simplify notations, we will write 

S=S[u]. Notice that it follows from Corollary 3.1 that ~[Vul2~S[u] for u E 5e 0. Thus by 

(4.1) lail=O(S). To estimate fly, we notice that 

Ao(u)=feZ'x, xj=f (e2U-l)xixj if i . j ,  

1 A,.,(u)= f e2"x~= f (eZ'-l)x~+-~. 

Hence similar estimates as in (4.10) indicate that Aij(u)=O(S ~/2) when i#:j, 
Aii(u)=~+O(S m) for all i , j= l ,2 ,  3, and ~=A-ly=(3+O(Sl/2))y. Thus to estimate/3 i it 

suffices to estimate yj. To do so, we rewrite 

f yj=aj+yFai=aj+ (e2U-1)uxj 

= ai+ f (e2"-l)(u-a)xj 

~a~+(f (e2U-1)2) l12(f (/J--/g)2) 1/2 

= aj+O(S). 

And conclude that [yil<~laj[+O(S)=O(S). It now follows from (4.6)', (4.7)' and (4.10) that 

110112 = [ IVul2+o(s 2) (4.6)" 
J 

and 

2J'[u] (v) ~> ( 1 -  2V'-6- e(4/('-~))St"l)f Ivulz-~ 

It follows that when S=S[u] is sufficiently small we have 

\ v~-/J 
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T \ x/--g-/(S[ul)"211vtl 

We have thus finished the proof of Lemma 4.3. 

As immediate consequences of  Lemma 4.2, 4.3, we have 

COROLLARY 4.1. Suppose uE 5e o with S[u]<~cl. Then there exists some positive 

constant C(Cl) and some v, E H 1 with IIv.ll-<l, ~o.---0 and 

(v,) >, C(c 0 (S[u]) v2, and f e2Uv, xj = 0 for all j = 1,2, J'[u] 3. 

COROLLARY 4.2.  Suppose u E 5fa, t with S[u]<-c 1. Then there exists some constant 

C(cl) and s o m e  V u E H  1 with IIv.ll-<l and 

(a) J'[u] (v,) >- C(c,) (S[u]) 1/2 

f f e(s[u])i/2 (b) VuVvu+ v, ~< l - a  

(c) dsd(feZr'(e)("+'~ for all j = l  2,3. 

Remark. v, can be chosen to depend continuously on u. 

Proof. Given u E ,9~ t denote qg=q0o, t, then u , =  Tt(Q) (u) E 5e o. Choose v,=v% o cp -1, 

where the pair (u,,  v%) satisfies the condition in Corollary 4. I. Then 

(a) J'[u] (v~) = J ' [u j  (0%) >- C(c O S[ u ~] v2 = C(Cl ) S[u]1/2. 

(b) 

/ 1 \ v2 
=  sEu3) . 

(C) d feZr"Q)'u+~O.)xj = 0 ( d  f )[  f 2,, ds = -~s e2(U~+S%Og)XJ = 2  e ~(vuocp)x J 
s=0 

,.. f 2u~ 
= Z f e  v%x s = 0 by Corollary 4.1. 
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We will now begin to estimate the difference between J'[u] (o,) and F'[u] (o,) when 

uE6PQ, t with t--->~. For computational purpose, we will now adopt the coordinate 

system in the plane through the stereographic projection treating Q as north pole. 

Denote Q=(0,0, I). Then through the projection :t, a point ~=(xl,xE,x3) in S 2 corre- 

sponds to z=(x, y) in the plane with 

2x 2y Izl 2-1 

x l -  l+lzl 2, x2- l+lz[2, x3= iz12+l" 

Using these notations, we first list a preliminary estimate of ~fe 2" (which we will 

sharpen later in w 5) when u E 6eo, t, f some ~2 function. 

LEMMA 4.4. Suppose u E b~a,t with S[u]<~cl and f some C2 function defined on S 2, 

then there exists some neighborhood N(Q)=N(Q,f) such that when t--->~. 

fN ,f-flQ)leEu=o(t-1/E), fN e2"=O(t-1/2). (4,11) 
(Q) (Q) C 

Proof. Assume w.l.o.g, that Q=(O, O, 1), the north pole. Assume also that in a 

neighborhood of Q, say Izi>~M we have 

fl~)=f(Q)+aXl+bx2+O(]xll2+lx2l 2) f o r  ~ = ( x i , x 2 , x 3 ) E S  2. (4.12) 

We now choose N(Q)={~' E S 2, :r(~')=z', Iz'l>~t~M} for some a>0  chosen later. Then 

fN( lf-f(Q)l(r ( [f-f(Q)l~ 
Q) .]q~Q,l t (N(Q)) 

= I If(zt)-f(Q)l exp (2Tt(Q) (u) (z)) dA(z) 
.llz I~ta-lM 

where 

dA(z) = I dlzl 2 dO 
(1~-Izl2) 2 

is the area form on the plane. 

From (4.12), on the range Izl>~t~-~M we have the pointwise estimate 

I ~ z t ) - f ( O ) l - _ o ( ~ + o  ( Iztl2 ~ 
\ l + lztl2 / \ ( l + lztl2) 2/ 

\ Iztl/ \ Iztl 2 ] 

(4.13) 
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Thus 

(4.14) 

On the other hand, when ~'E (N(Q)) c, applying the same change of variable as 

before, and noticing that u~o,, E 9~ we have 

fN(Q)C e2U = 

<< 

exp (2Tt(Q) (u) (z)) dA(z) 
< ~ t a - I M  

(exp (2Tt(Q) (u))- 1) dA(z)+ I dA(z) 
<~ta- I JJzl<~ta-t M 

f (exp(2Tt(Q)(u)( ')-l)2 ~ (fzl<~_iMdm(z))-~ 

+ dA(z) 
<~t a -  1 M 

= Ot S[u]g~-"st"l)u20(t~-l)+o(t 2(~-1)) 

= O(t~-l). 

(4.15) 

From (4.14), (4.15), it is clear that the choice of a=~ would satisfy (4.11). 

LEMMA 4.5. Suppose uE 5~Q,t with S[u]<-c l, then as t--->~ we have for all v E H  1 

(4.16) 

where d t = O(t-l/2), d2= O(t-I/z log t). 

Proof. F i x  v e n ~ and denote A=~Ke2"v, B=~Ke 2", A I=K(Q) feZ"v, B~=K(Q) ~e 2" 

=K(Q). Then 

A AI 1 

B B 1 BB I 
- -  [(A-AI) BI +A 1 (B1-B)]- I ( F '  [u] (v) -J '  [u] (v)) = 

Thus 

A, IB!-.Bl + 2.1AI_AI. 
IF[u] (v)-J'[u] (v)l-< 2 ~ IBI IBI 
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Since IB[>~infK, to obtain (4.16), it suffices to estimate ~AII, }B1-B l, and ~A1-A I. For A 1 

we apply Onofri's inequality to get, ifAl~>0, 

a~=fe2"v<-logfe2"e~ IV(2u+v)L2+f(2u+v) 
(4.17)' 

:s u,(f 
IfAl~<0, we apply the above argument to - v  and get 

(4.17) 

For the term BI-B, we apply Lemma 4.4 with f=K, N(Q)=N(Q, K), then from 

(4.11) we have 

]B~-BI ~< fN IK-K(Q)Ie2"+211KII| N e2U=O(t-l/2). (4.18) 
(Q) (Q)C 

To estimate A l - A ,  we apply Lemma 4.4 again with N(Q)=N(Q, K) and notice that 

from (4.13) 

6 =  sup IK(tz)-g(Q)l 
tz 6 N(Q) 

Denote h(z)=K(tz)-K(Q)+26, then the choice of 6 implies that h>0 o n  t-iN(Q) with 

11h11| on t-1N(Q). Thus 

that 6= Off-v2). Thus if we rewrite 

Al-A= f (K-K(Q))e2"v= f (K-K(Q))~176 

and denote ~(z)= Tt(Q) (u) (~), (x(~)=z), O(z)=v o q~Q,t (6). Then A l - A  =I+I I+I I I ,  where 

I = fz (K(tz)-K(Q)+26) e2a(z)O(Z) dA(z) 
6 N(Q) 

II = fz (K(tz)-K(Q)+26) e2a(z)O(z) dA(z) 
6 N(Q) c 

III = -26  ~ e2"v. 
J 
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i < ftzeN~Q)hezadA(z) log ftZeUtQ) he2ae~ 

ftzE N(Q) he2adA(z) 

where 

= C(61)log--~)~) +C{61) log (46 fR2 e2a e~ ) 

f C(61) = I he2adA(z) <~ 46 = O(t-!/2), &z E N(Q) 

And ~e 2a e~ 2u e v. Applying the same estimate as in (4.17)' we conclude that 

I<<-C(~')logc-~)+C~"(S[u]+fVu'Vo+fo+l f IVu'2). 

Applying similar estimates to -v ,  we get 

v. vv+fol+�88 ) 

We may apply the same technique, as in the estimation of I, to estimate II, using e 2a as 

weight, and observe that from (4.15), (4.11) we have 

C(62) = fz e2a'z)da(z)=f(lV e2U(~ 
t E (N(Q)) c (Q))r 

Thus 

[II[<<.C~2)log~+41lKH| fFu.Fv+fv + l f  lFv[2). 

A direct application of (4.17) also gives 

,III]<~26(S[u]+ f Vu'Vv+fv +l  flvv,2). 

Combining the estimates in I, II, III we obtain 

where 62=0(t-1/2), 63---O(t-l/210g t). 

(4.19) 
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Combining (4.17), (4.18), (4.19), we obtain the estimate (4.16) as claimed in the lemma. 

COROLLARY 4.3. Given uESPQ, t with t--~oo and with S[u]~c l, then there exists 

some v u E H ~'2 with IIv~ll~ 1 and which satisfies: 

J'[u] (v~) >- C(c 0 (S[u]) 1/2 (4.20) 

F'[u] (Vu) >i C(c 0 (S[u])U2-O(t-l/21og t) (4.21) 

d exp2Tt(Q)(u+sv,)xj =0 for all j =  1,2,3. (4.22) 
ds 

Proof. Choose v, associated with u E 9~ t as in the statement of Corollary 4.2 then 

(4.20), (4.22) are automatically satisfied. To see (4.21), we apply condition (b) and 

Lemma 4.5 to the pair (u, v,) then 

~-J [ul (v,)-61 ~,cl*c~ 1 
1-a  

= J'[u] (v,)-O(t-l/Elog t) 

>i C(c 1 (S[ul)l/Z-O(t-l/Elog t) 

which establishes (4.21). 

We are now ready to prove Proposition C. 

Proof. Suppose uoE ~Q,t with t large and S[u0]~Cl, we will first prove a version of 

the proposition which corresponds to lifting above the point u 0. To do this we apply 

Corollary 4.3 to obtain some V,oEH1 satisfying (4.20), (4.21) and (4.22). We can now 

construct the path u 7 by solving the ordinary differential equation dur/de=v~, with u 0 

given and normalize the solution by J:e2"= 1 for all e. It then follows from (4.22) that for 

a l l j= l ,2 ,  3, 

dfexp(2T'(Q)(uy))xi=2fexp(2T'(Q)(%))vuoq~o_, ,x j  
de 

d 
f exp(2Tt(Q)(uy+sv~))xj s=o 

I 

ds 

=0.  
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Then 

f exp (2Tt(Q) (uy))x i = 0 = f exp (2T'(Q) (u0)) for all y. 

We may now apply (4.20), (4.21) to the pair uy, o,~ to conclude that J[uy], F[uy] both are 

increasing functions of y and we can continue this lifting process till we reach the point 

where S[uy0]=-J[u~0]=O(t'l(log t)2). 

If u varies continuously in the parameter, then according to Lemmas 4.2, 4.3 and 

Corollaries 4.1, 4.2 we have continuous dependence of o u on u, hence we have 

continuous dependence of the O.D.E. solution duy/dy=ou, on the initial data u. 

w 5.  A n  a s y m p t o t i c  f o r m u l a  

In this section we will derive an asymptotic formula (Proposition D) which will be used 

in the analysis of the concentrated masses. This formula is a sharpened version of the 

corresponding estimates (4.1 I) in Lemma 4.4. Again, we will break the derivation of the 

formula into several technical lemmas. 

LEMMA 5.1. Suppose f is a C2 function defined on S 2. Then for t--->oo 

f f o  CpQ.t = f(Q)+2AflQ) (t-21og t)+O(t-2). (5.1) 

Proof. We will use the plane coordinates deriving from the stereographic projec- 

tion treating Q as north pole as explained before in Lemma 4.4. Using the Taylor series 

expansion of f around Q=(0, 0, 1), we have 

f(xl, x 2) = f(Q) + ax I + bx2 + Ax~ + Bx I x2 + Cx~ + O(Ixll3 + lx213) (5.2) 

which holds in a neighbourhood of Q say/Q(Q)={zEC, Izl~M). 
Now we let R be the region in C such that (q0Q.t (R))=N(Q), i.e. R =  {z E C, [zl~M/t} then 

fR 1 fu/ t  dlz, 2 1 M 2 ( ~ )  
- - -  = O  a s  t---~oo ( 5 . 3 )  

oda(z)=-~ jo (1+1zl2)2 2 fl+M 2 

and 

 2,o ot ,54, 
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In the region R we apply (5.2) and notice that since 

2 Re  z 2 c o s  Olz I 2 Im z 2 sin Olzl 
x~-  l+ l z lZ -  l+lzlZ , x z -  l+ lz12-  l+lzlZ , 

and R is a symmetric region w.r.t the x I and x 2 coordinates, we have 

fR(Xx:(tz))dA(z) =o 

fRxl dA(z) = O. x 2 (tz) 

Thus 

J. J. J. J. U. (1 + Itzl2) 3 a.,itz)) 

= f(Q)+ O(t-2)+ A ~x~ (tz)da(z)+C (x~  (tz)da(z)+ O(t 3) 
JR JR 

And 

Similarly we have also 

x~ ( tZ) dA (z) = 4 t21zl3 dlzl " 
I=M/, (l +t21z12) z (l+lz12) 2 

=4p , .  

(from (5.3)). 

(5.5) 

fRx~ ( tz) dA (z) o~,. 4 

Now an explicit calculation yields that ~t=t-21og t+O(t-2). 

Combining the estimates in (5.6), (5.5), (5.3) into (5.4), we get the desired estimate (5.1) 

as in the statement of the lemrna. 

LEMMA 5.2. Suppose g>~O is a bounded function defined on S 2, and wE ST o with 

S[w]<<.c I for each e>0 we have, setting ca=(1-a)/2 

" f ge2W L,<~ <~U~ 

where U~= eZ(W+~) ( f  g)+llgll= O(e-~2cjstwl) 

L,-- e2'~-') ( f  g)-Ilgll= O(e-'2%'stwl) 
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Proof. For the fixed function wC b~ e>0 denote  Ae={~(~S 2, Iw(r Then 

by the inequality of Moser (1.5), 

Ia,I <~ Co e -~2/~lvwI2 

Thus for each positive function g we have 

fgeZW=fw_wl,ege2W+flw_wl~ge2W 

e2(~+~) ~ g+C o !IglL e2 ~[Vwt2 + 2S[W] e-t2/2 ~lVwl 2 

f 
~< e2(w+e) ~ . ~-a s[wl -e2cJS[w] 

g~-t. 0 g | e = U~ (by Corollary 3.1). 

Similarly, we may obtain the lower estimate L, of ~ge zw. 

We will now apply the estimates in the lemma above to evaluate the center of mass 

of e 2u with u fi boQ, t- 

LEMMA 5.3. Suppose u E boO, t and S[u] = O(t -a) for some a>0  and for t sufficiently 

large assuming Q=(0, 0, 1), we have 

f xi e2u O(t-(l+a')), i = 1,2, a' <a/2 (5.7) for for any 

f e 2" = l-4t-21og t+O(t -2) (5.8) x3 

f x~e2"= 4t-21ogt+O(t-2), i= 1,2 (5.9) for 

f xl e 2u= O(t-z). (5.10) x2 

Proof. For the given uEboa, t denote w=%, q~=q~Q.t. Then wE6e 0 with 

S[w]=S[u]<.c~. It follows from Lemma 5.2 that for i=1,2, 

e2(W-e) ( (  x i 0 qgl--O(e-e2%/s[wl)<~ ~ Xi 0 qge2W<~eZ(Cv+e)(~ xioclg)+O(e-e2%/S[w]). 
\,.'xi~O / axi~O \axi~O 

(5.1o) 
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Similarly we have estimates for ~xi<~oXiOq). Since ~ x i o  ~v=0, we have 

f x~oq~=-~  x;o~0 
i~O Jxi~O 

and by an explicit computation 

Thus 

fx XiO~O---- O(t-l)" 
i>>-O 

fxie2U f(xiocP)eZW f xioq~e2W+~ xio = = q~ e 2w 

i~O d xi<~O 

~ (e2(~+e)--e2(~-e)) (~xi>~oXi O qP) + O(e-e2ca/S[w] ) 

Similarly we have 

f X ie 2~ i> (e 2(w-e) e2(W+e)) ~[ . . . .  -e2%/S[wK 
t "  

- ~x i o c o ) -  u k e  ) 

.Ix i>~O 

Since S[w]=S[ul=O(t-a), we may pick e with eE-log t/t a such that 

-t2%/S[w] e = O ( / - 2 ) ;  

with this choice of e, (5.7) follows. 

For the terms ~x~ e 2u, i--l,  2, we apply Lemma 5.2 directly and obtain 

e2(~-~)(f~oq))-O(e-t2cdSLwl)~fx~eEu=fx~oq2e 2w 

Since ~x~ o cp=4t-Elog t+O(t -2) by Lemma 5.1, we observe that 

a - -  S[w] ~_ 
e ~-a << e~w ~ eS[w]. 
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Thus the same choice of  e as before gives (5.9). 

For  (5.8), since x3=(Izl z -  1)/(Izl2+ 1), a computat ion indicates that 

f x o q~Q. t = 1-- 4t-21n t+O(t-2). 

Thus we may apply L e m m a  5.2 to the function 1 - x  3, similarly as we did for x~ (i= 1,2), 

and obtain (5.8). 

Formula (5.10) can be verified similarly as (5.7) based on the information that 

f xlx20cP=O and fx XlX20cP=O(t-210gt) 
I x2~>0 

with the same choice of  e (e2~(log t/ta)) as before.  

Now we are ready to prove Proposit ion D. We first simplify some notations. For  

the given u E ~Q,t with S[u]=O(t-~), we assume w.l.o.g, that Q=(0,  0, I) and (x 1, x 2, x 3) 

the coordinate system with Q as north pole. We also denote  P=(p~,p2,p3)Cz S 2, the 

projection of  the center  of  mass of  e 2u on the sphere, i.e. 

Pi = e2Uxi e2Uxi for i = 1,2, 31 
, J  \ i = 1  \ J  

Then by estimates (5.7), (5.8) in Lem m a  5.3 we have pl=O(t-l-a'), p2=O(t-I-a') 
(a'<a/2) while p3 = 1-4t-21n t+O(t-2). Denote by (Yl, Y2, Y3) the coordinate system in S 2 

treating P as north pole. And to simplify notation, we may rotate coordinates in the 

(x~,x2)-plane and assume w.l.o.g, that P=(Pl,P2,P3) with pl=O(t-l), P2=0, P3 un- 

changed as before.  Then in the new coordinate system we have 

Yl = x" (P3,0, - P l )  = P3 xl--Pl X3 

Y2 = x2 (5.11) 

Y3 = x.P = plxl+P3X3. 

To compute  ~fe 2u for a general c#2 function, we now expand f i n  a Taylor  series in a 

neighborhood of  P say 

f(Yl,Y2, Y3) =f(p)+~t+6yz+Ay~+Byly2+Cy~+O(ly,13+lyEI 3) (5.12) 
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for (Yl, Y2, Y3) in the same neighborhood N(Q)= {z E C, Izl~>M} as in the expansion (5.2) 

before. Denote again R = {z E C, [zl>~M/t}. Then 

ffe2"=ffoq~e, te2~=fsoqDe, te2~da(z)+fRJocPe, te2~ 

Applying (5.3) and Lemma 5.2 to the function g=XRc we have (adopting the same 

argument as in Lemma 5.3) 

fRcfocPelte2W ~ llfll| fRce2W= O(t-2). (5.13) 

In the region R, we apply the expansion (5.12) and notice that by our choice of the 

coordinate system (Yl, Y2, Y3) we have 

f e2W f e2" Yi~ ---- Yi =0 

Thus 

for i=  1,2, 

fR f(tz)e2wdA(z)=f(e)+~t fn Y~~ fn Y~~ 

+B fR Yl Y2 0 CpQ. t e2WdA(z) + O( t-2)" 

Now, applying (5.11), we have 

Ry 0 Cp Q, t e2W dA (z) = fR (P3 x l -Pl  x3) 2 o ~O Q, t(Z) e2W dA (z) 

=P~fRx]~ te2WdA-2PlP3fRxlx3~ te2Wda(z) 

+P] fR x2 o fpQ, te2WdA. 

(5.14) 

Applying the estimates-in (5.9), (5.7) and (5,13), and noticing that x]=l-x~-~, 
xlx3=-x I (1-xa)+x 1, we have 

fRY~ fPa, t = (5.15) e2W dA 4t-Elog t+O(t-2). o 
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Applying (5.9) and (5.13) directly we have 

fRy~oq~Q, te2~da = fRx~ ocpQ,,e2~da = 4t-21ogt+O(t-2). (5.16) 

For the cross term Yl Y2 we have from (5.11) 

fRY, Y2~ 
We can apply (5.10) to estimate the term involving x~ x 2, and estimate the term involving 

x2x 3 in the same way as we treated x~x 3 before. We get the conclusion that 

f ry  o e2WdA = O(t-2). (5.17) Y2 q0 o, t 

Combining (5.15), (5.16), (5.17) and (5.14) we have obtained the formula 

f fe 2u = f(P) + 2Af(P) t) + (/-2log O(t -2) 

as desired in Proposition D below. 

We may now summarize what we have proved above in the following: 

PROPOSlXION D. Suppose uE fieQ.t with S[u]=O(t -a) for a > 0  and t sufficiently 

large, then uECe, o where 6=4t-21nt+O(t -2) and ]e-Ql=O(t-~), and for every ~2 

function f defined on S 2 we have 

f f e  " =f(P)+2AJ~P) = 3'(P) + 1 Af(e) 6 + O(6/log 1/6). (5.18) t-210g t+O(t -2) 
Z 

We also want to remark that we can run above parameter changes (from ~Q, t to 

Ce,~) backwards, and obtain: 

COROLLARY 5.1. Suppose u E Ce, ~ with S[u] = O(6#) for some f l>0 and 6 sufficient- 

ly small. Then uE b~Q,t where 6=4t-21ogt+O(t -2) and IP-Q[=O(t -l) and (5.18) holds 

for any ~2 function f. 

Proof. We will use the same notation as in the proof of Proposition D and denote 

Q=(0,0,1),  P=(Pl,P2,p3) with the coordinate system x=(xl,x2,x 3) and Y=(Yl,Y2,Y3) 
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related as in (5.11) as before.  Then following the computations in (5.7), 

observe that for S[u]=S[Tt(Q)(u)]=O(6 ~) we can choose e small with 

e-~2cds[,l < c) 2. 

(5.8) and 

Thus (5.7), (5.8) appear in the form 

f xi e2u= 0(t-1)+0(6 z) for i =  1,2 (5.7)' 

f x e 2u = 1 - - 4 t - 2 1 o g  t+O(t-2)+O(62). (5.8)' 

Since (I-6)2=E~=1 (~x i e2U) 2, we have 6=4t-21og t+O(t-2). Substituting (5.7)', (5.8)' 

into (5.11) we get 

(f )/(: P l = ( 1 - 6 )  x le  2" x le  2~ + x 2e 2" =O(t-1) .  

Since p2=0 by our choice of  coordinate system we conclude that ]Q-Pl=O(t-l), which 

finishes our proof  of  the corollary. 

As it turns out, sometimes it is more convenient to express the asymptotic formula 

(5.18) in terms of  the (Q, t) parametes of  a function u E O~ The only disadvantage in 

using these parameters is that if we expand f E  c~2($2) in terms of  its Taylor series 

expansion in a neighborhood of  Q=(0,  0, 1), we have 

fix1, x2, x3) = f(Q) + axl + bxz + Ax~ + Bx l x~ + cx~ + O(Ixl3). (5.12)' 

Then ~x i e2U~O for i= 1,2, hence in the formula (5.18)' we pick up some [Vf(Q)[ term. We 

may estimate this linear term as: 

fxie2U=fxiocpQ, texp(2Tt(Q)(u)) 

x i o CPo, t exp (2Tt(Q) (u)) 
J 

2 S[u] 
~< ( O ( t - Z l o g  t))l/2(S[u])l/2e l-a 

using the fact that u~Q, Eg~o for i=1,2 .  Thus we have 

17-878283 Acta Mathematica 159. Imprim6 le 23 octobre 1987 
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COROLLARY. Suppose u E bOQ, t with S[u]=O(t-~) for some a>0,  and t large. Then 

for any fE  cE2($2) we have 

f f e  2~ =J~Q) + 2Af(Q) t-210g t+O(t-2)+O(IVJ~Q)l(t-210g (5.18)' t ) 1/2( S[ u]) l/2). 

w 6. Analysis of concentration near critical points 

In this section we apply w 4 and w 5 to analyze the phenomenon of concentration near 

critical points of K. We will consider the concentration which occurs in the variational 

scheme Var (P~, P~), which we now define. 

Given two points P,~,Pa on S 2, we formulate the one-dimensional scheme 
f 

(Pa, Pa) as follows. Let ~(Pa, Pa )= /u :  (-0% oo)---~H1,2($2), up: -oo<p<oo is a con- Var 

tinuous one parameter family of functions in H"2(S 2) with ~e 2"= 1 and satisfy: 

(1) 

(2) 

SIup]---~0 as hol---~oo 

f lim xe 2"p = P~, 
p---,- ~ J 

lim f xeZUP= Pal. 
p-*+~ 

Let 

c =  sup minF[up]. 
u~ ~pa,Pt~) p 

Given a maximizing path u ~k) which assumes its minimum at Pk denoted by u ~) then if Pk ~ 

{u~k } converges weakly in H l, then the limit u will weakly satisfy the Euler equation 

(I.I). Consequently by the regularity theory for elliptic equations u will be a strong 

solution of (1.I). In the proofs of Theorem I and II in w we will show that such a 

scheme converges for suitable choice of Pa, P~. 

We first remark that in the scheme Var(P~,P~), we may restrict the class of 

competing paths in such a way that if concentration occurs along the paths then the 

functional S must be small at such points so that we may apply the asymptotic formulas 

of w 5. More precisely we define the class of paths 

~t 0 (Pa, P#) = {u E ~(ea, P#)I up E bOO, t, t I> 2t 0 ~ S[up] = O(t-l(log t)2)}. 
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Choose t o and constant  C large so that the lifting Proposition C holds for all u E 5r t, 

t ~ t  o. For each use  5~Q,t, there exists us, z, 0~<r~<r(u) continuous in r with Us, o=Us, 

us,~E 5eQ, t, F[us,~] and J[u,,~] both monotone increasing in r such that at r = r ( u ) ,  S[us, ~] 

=O(t-l(logt)2). Let  Q(t)=min [1, (t-to)/to] for tE [t 0, ~), For use 5eQ,, let 

~us, Q~O~%) if t t> t o 

u's = I. us if t < t o 

Then u' s E ~o  (P,~, P ) .  While F[u's]>~F[us]. Hence it follows that 

sup minF[u  s] = sup minF[u~]. 
uE~' .  s u E ~  s 

In view of the equality above, we will assume that all paths u in the scheme belong to 

the lifted path class ~0  (Pa' Pa L 

Assuming u k is an unbounded sequence in H ~'~ and a max-min sequence for the 

scheme Var (P~, P~), it then follows from Proposition A (the Concentration lemma) that 

2Uk," _ _ .  (k)'~ the masses e ~Uk--Upk) converges (perhaps on a subsequence) to a delta function 

concentrated at P~ E S 2. Our first proposition says that in this case we may assume 

without loss of generality that Poo is a critical point of K. We state this as 

PROPOSITION E.  For the variational scheme Var(P a, P~), i f  the maximizing se- 

quence o f  minima {uk} does not converge, then we can construct another maximizing 

sequence o f  minima {ok} f o r  the scheme (if necessary) such that e 2v~ c o n c e n t r a t e s  at a 

critical point  o f  K. 

Proo f  o f  Proposit ion E. Our tlrst observation is Uaat Ior me max-min sequence {uk} 

we have ukE 5eQk, t k with Pk--*P| E S 2, and tk-->oo, since we choose to work in path class 

~0 '  this means S[Uk]-->O. We construct a competing max-min sequence of paths by 

replacing our given sequence of path over  the intervals where the (Q, t) parameters fall 

in the region D={IVK(Q)lE>~ct-1; t>~to} by paths obtained from the given one using the 

following flow U2 s in H l' 2($2) associated to the gradient field VK on S 2. 

d -~ r  ,=o u ' ' ' '  ds u ,=  �9 u,,~ = (u,)~Q _~O ~ 
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where us E6eQs.t, R(Q, 0')=rotation in the plane spann (Q, KVK(Q)), with angle of 

rotation 0'; O=Q(Q, t)IVK(Q)[, ~ is a cut off function with support in ~. 

Since R is a rotation, u r E 6PS_~Q, t for u E 5eQ,,. Thus the flow W~ does not change the 

t-parameter of a function while it rotates the Q parameter along the gradient line of K. It 

follows from the asymptotic formula that along the flow dF[u,]/ds is positive, hence F is 

increasing�9 Since the gradient flow VK has critical points as limiting values, it follows 

that our modified sequence of paths concentrates at a critical point of K. 

Turning our attention to the situation where a maximizing sequence of minima u ~k) 
PC 

concentrates at a critical point P= of K, the next Proposition F rules out the possibilities 

that P= can be (a) a local maximum (b) a local minimum and finally (c) a saddle point Q 

with AK(Q)>0. This is accomplished with the asymptotic formula (Proposition D) 

which can be applied to evaluate the functional F on very concentrated mass distribu- 

tions e zu. 

PROPOSITION F. In the problem Var (Pa, P#) where Pa, P,  are local maxima of  K, 
2u (k) 

ira maximizing sequence o f  paths u (k) ~ ~' (Pa, P#) has minima e pk concentrating at a 
t o 

critical point P| then w.l.o.g, we may assume that 

(a) P= cannot be a local maximum o f  K 

(b) P= cannot be a local minimum or a saddle point o f  K where AK(P| 

Proof  o f  Proposition F. We begin with a simple consequence of  the asymptotic 

formula: under the hypothesis of the proposition we have 

sup minF[up] = limF[ up, j(*)l 
k--} Qr 

~km log f Ke 2"~':- S[u~p~] 

I 

�9 I" 2u(C) 
= hm log ~ Ke pc because u ~k) E ~'  

k-->~ . /  t~ 

= lim log [K(Pk)+O(6k) ] where, u r E Cpc, O k 
k - - ~  

= log K(P| 

(6.4) 

We choose coordinates x l, x2, x 3 so that P| 0, 1). 

For assertion (a) observe that for any path up E ~0 '  the path of the center of mass 
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p ~C .M.  (e 2up) = js 2up is continuous in p. Hence if for some p, C.M. (e 2up) is very close to 

P| the path C.M.(e 2up) must hit the disk %= 1-%, for some small e 0 and for some P=Po. 

Since Upo E ~0 we apply the asymptotic formula to estimate F[Upo]: 

f 2u, 
F[Uoo] = log Ke "-S[Upo] 

~ log Ke p" 

<.log[K(Po)+IAK(Po)6o+O(6o)], where UpoECeo,%. 

Since IP0-e.l-<v' -0, AK(Po)<. �89 AK(P, )<0  we find 

K(P. ) -K(Po) -  Ix- AK(P 0) 60 I> - I AK(P.) .  (Ie0-e| 12+c~0) 1> - 1 AK(P.)  %. 
4 8 

Thus F[ueo]<~logK(P| o, which contradicts (6.4). 

For assertion (b) we will construct a flow ~'s which will yield a competing sequence 

of paths which have minima achieved at functions t~k not concentrating at any critical 

points Q with AK(Q)>0. Given P E S 2, let q0e, ~ be the conformal transformation given in 

stereographic complex coordinates z with z(P) = oo, z ( - p ) = 0  defined by q~p,, (z)=rz. 

Choose e small enough so that in each e disk B(Q, e) centered at any critical point Q of 

K with AK(Q)>0 we have AK(P)>-M>O for all P EB(Q, e). Choose a smooth function Q, 

defined on S2x(0, 1], 0<~<1 with 

supp Q 

where 60=4to21Og to, Q=I on 

LI B(Q,e)x(O,6 o] 
Q critical 
AK(Q)>O 

U B(Q, el2) x(O, C~o/2]. 
Q critical 
AK(Q)>0 

Define the flow d~s(u)=u s by the o.d.e. 

d 
it s = e(es, 6s)--~r ,=~ Tt(ps) (u), where u s E Ce, ,a,. 
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Claim (6.5). For u s C(P, 6) with 

(P,~)E U B(Q,e)• o] 
Qcritical 
AK(Q)>0 

we have u s E C(P s, ~) where 6s increases as s increases. 

To prove claim (6.5) choose coordinates x l, x v x 3 so that P=(O, O, 1). Then 

d ( 2u s d C.M.(e2~,)=__~s ~ xe 
ds 

f d 2u, d l  
= J X T s e  = 2 , x e ( P , , 6 , ) . e  -~r ~= T~(P,)(u,) 

= f xo(Ps, 6,)-~- r ~=exp(T~(e,)(u,)) 

=o(P:6) f -~r l~= (xoge . . : , ) e2" '= .p (P:3 ) / (Vx ,  Vx'P~)e 2". 

Observing that IVx3] 2--- 1 -x~, (Vx i, Vx3) = -x ix  ~ for i= I, 2, 

A(IVx312) = -2+6x~, a(Vx,, Vx3) = 6x, x 3, 

we apply the asymptotic formula (Proposition D) to the integral to find 

/ [Vx312e 2us = 2 6s+o(6) 

f (  e 2u'= for i =  2. Vxi, Vx3 > O(t~ s) l, 

Thus it follows that 

d (C.M.(e2U0, C.M.(e2Ug) <0 ,  
ds 

verifying the claim (6.5). 

Claim (6.6). The flow ~s increases the value of the functional F: 

d d l [ d 
ds ~ s  og j Ke2U'- ds S[u~] 
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Taking the 

B(Q, e), 

= - - ( f  Ke2U')-lp(Ps,6s, f (VK, VX.Ps)e 2" 

= 2 (Ps) 

Taylor expansion of K around Q=(0,0,1) where P,=(ct, 0 , ~ ) E  

K(x l, x2) = K(Q)+ Ax~ + Bx~ x2 + Cx~ + O(lxl3). 

We have 

(x-e~) = O.Xl ...l_ ~ X 3  ~. aXl + ~ V l __X 12_x 22 

and 

A (VK, Vx. P~) (P,) = - 2AK(P~) + O(c0. 

Thus we find for use Ce,.~ s with P, E B(Q, e) 

0 ) 2u s d F[us] = Ke o(P~,d)[(A(K)(P~)-c)d~+o(6s)]>~O. 
Cs 

Otherwise dus/ds=O hence dF[us]/ds=O, verifying claim (6.6). Thus to finish the asser- 

tion (b) we apply the flow ~s to a maximizing sequence whose minima concentrates at a 

critical point Q with AK(Q)>0, then for large values of s, we obtain a competing 

sequence which do not concentrate at Q in fact not at any such Q because of claim 

(6.5). This finishes the proof of Proposition F. 

w 7. Proof of Theorems I and II 

In this section we will use the analysis in w 6 to prove Theorems I and II. 

Proof of Theorem I. The first observation is: Suppose K is a function which allows 

a solution u for the equation (1.1), then so is Koq0 with u~ as a solution for any 

conformal transformation q0 of S 2. Thus we may assume w.l.o.g, using conformal 

transformation that the given local maxima of K are located at the north and south poles 

of the sphere which we denote by N, S respectively. 
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We now consider the variational scheme Var(N, S) introduced in w 6, and let c= 

max u minpe(_=,=)F[up]. Let u <k) denote a maximizing family of paths with minpF[u~pk] = 

flu~)]; we abbreviate u~k ) by u k. Normalize u k by ~e 2uk= 1, and apply the Concentration 

lemma (Proposition A) to the sequence {uk}. If  lVukl z stay bounded, then uk-+u weakly 

in H ~'2, and the function u would be a weak solution, hence (e.g. [12]) a strong solution 

of (l. 1). Thus we assume u k has a subsequence which we also denote by u i which is a 

concentrated sequence with its mass e 2" converging to a point P= E S z. Assuming 

lAkE ~Qk,t k and assume w.l.o.g. (via Lemma 6.1) that Q,--*P| and tk---*cc as k--->~, and 

since u (k) E ~o (N, S) we get S[uk]=O(t~ l (log tk) 2) after applying Proposition C and 

c = log K(P~). (7.1) 

We now apply Proposition E in w 6 and conclude that we may assume w.l.o.g, that 

P| is a critical point of K. Next, we apply part (i) of proposition F in w 6 to conclude, 

since N, S both are local maximum points of K, that 

c < max (log K(N), log K(S)). (7.2) 

On the other hand, the assumption (1.6) of Theorem I indicates that for the test 

functions ut=llog}dq~tl with 9,(z)=tz in the stereographic projection coordinates 

based at N, we have 

F[ut] = logf KeZU'-S[u/] 

<~ log f K[dcp,[ 

=log f Kocp~" =log f Koqg_,. 

Thus by our assumption (1.6) in Theorem I, 

inf Flu,] > sup log (K(Q)) 
0<t<~ VK(Q)=O 

Q#:N, S 

which implies (by definition) that 

c > sup log (K(Q)). 
VK(Q)=0 
Q*N, S 
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We draw from (7.1), (7.2), (7.3) a contradiction, and conclude that the original 

max-rain sequence {uk} for the scheme Vat (N, S) must converge to a solution u which 

satisfies (1. I). We have thus finished the proof of Theorem I. 

Proof  o f  Theorem II. Choose any two local maxima P1, P2 of K and do the 

variational scheme Var (Pl, P2). It follows from our study of the concentration phenom- 

enon that a maximizing sequence of minima must converge to a solution. 

Appendix. Proof of Proposition 2.2 

First we will recall the proof (cf. [14]) that given u E H 1'2($2) with ~e 2u= 1, there exists 

some conformal transformation q0Q, t so that the center of mass of  exp (2Tt(Q)(u)) is at 

the origin. To see this, we consider the map 

{CpQ, t IQES  2, 1 ~<t< ~}--->R 3 given by X(qgQ, t)= ~ XOC]gQ, t e2u. X : B  3 ~  _ 
3 

This is obviously a continuous map, with the continuous boundary value 

lira X(CI, Q, ,) = Q. 
t --- .  0o 

Thus the Brouwer degree theorem gives the existence of some (Q, t) with the required 

property 

f xexp (2T t (Q) (u ) )= fxoq~Q: te2U=O.  

Next to produce a continuously varying set of q~Q,,t s when u s C HI'2(S 2) depends 

continuously on the parameter s, we will first prove the existence of a continuously 

varying tps with 

f xe  2(us)~ = 0 

where (Ps is a general conformal map of  S 2, not necessarily of the form qgQ, r To see this, 

we will apply the Implicit function theorem. Denote by G the full group of conformal 

maps of S 2 onto itself. Given u E H  1'2 consider the map X:G-->R 3 defined by 

X(g)= ~(x 0 g) e 2u for all g E G the same map as before. We claim that the differential of 
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the map X evaluated at the identity map g = l  has full rank equal to 3. To see this, we let 

el, e 2, e 3 denote an orthonormal frame in R 3 and xi=x. ei, i= 1,2, 3. Then 

d=~fx~~ e2u 

gives a linearly independent tangent vector to G at g= I. Thus the differential dXof  the 

map X at g = l  expressed in the coordinates x i has the matrix dXIg=I=(A,B) where 

A--(A0)~j=I with Ao.=~(Vxi.Vxj)e 2u (B another 3x3 matrix) with rank (dXIg=O=3 as 

claimed. Thus the ordinary differential equation 

ds s=o ( x ~  = ,=0 (x~ xe --~s 

with 90=9, Uo=U satisfying ~e2~x=0 is always solvable for some 9, E G with 

d f (x o 9,) e2~' = 0. 
ds s=0 J 

Continuing the flow 9,, we get a continuous family of 9, E G with ~;(x 0 9,)e2U*=0 for 

given continuous family u,. 

Finally we show that the conformal map 9s E G chosen above may in fact be chosen 

of the form 9,=go,, t .  For this we observe that for every rotation R of R 3 we have 

f (xoq~oR)e2"=O if f (xog)e2U=O. 

Hence we may appeal to the following basic fact about Lie-groups: 

Polar decomposition [13]. Given 9 ~ G= the conformal group of S 2. Then 9 may be 

uniquely written as 9=PR, where R is a rotation of S 2 and P is a positive hermitian 

matrix (which corresponds to P=gQ, t for some QES 2, l~<t<cr Furthermore, the 

choices of R and P depend continuously on 9. 

Choose Ps corresponding to 9~ in the polar decomposition. Then P,=q~Q],t, for a 

continuous map of Q,, t, with 

f x o exp (2Tts(Qs) (u,)) = f x o Ps e2'' = O. 

This finishes the proof of Proposition 2.2. 
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