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PRESCRIBING THE SYMMETRIC FUNCTION

OF THE EIGENVALUES OF THE SCHOUTEN TENSOR

YAN HE AND WEIMIN SHENG

(Communicated by Matthew J. Gursky)

Abstract. In this paper we study the problem of conformally deforming a
metric to a prescribed symmetric function of the eigenvalues of the Schouten
tensor on compact Riemannian manifolds with boundary. We prove its solv-
ability and the compactness of the solution set, provided the Ricci tensor is
nonnegative-definite.

1. Introduction

Let (Mn, g) be a smooth, compact Riemannian manifold with totally geodesic
boundary of dimension n ≥ 3. The Schouten tensor of g is defined by

Ag =
1

n− 2

(
Ricg −

Rg

2(n− 1)
g

)
,

where Ric and R are the Ricci and scalar curvatures of g, respectively.
Let σk : Rn → R be the k-th elementary symmetric function (1 ≤ k ≤ n)

σk(x) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik ,

Γk the corresponding open, convex cone, i.e. Γk = {x ∈ Rn |
∑

i (x) > 0, 1 ≤ i ≤ k} .
Let

Σθ =
{
x = (x1, · · · , xn) ∈ Rn | min xi + θ

∑
xi > 0

}
.

Now let us consider the general symmetric function F defined on Γ (Γn ⊂ Γ ⊂
Σ 1

n−2
) and satisfying

(C1) F is positive and F = 0 on ∂Γ;
(C2) F is concave;
(C3) F is invariant under exchange of variables;
(C4) F is homogeneous of degree 1;
(C5) lims→∞ F (sx) = ∞, ∀ x ∈ Γ;
(C6) F (x) ≤ �σ1(x) in Γ and F (1, · · · , 1) = n�, where � is a positive constant;
(C7)

∂F
∂xi

≥ Σ F
σ1

for some constant Σ > 0 for all i.
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1128 YAN HE AND WEIMIN SHENG

We need (C1)–(C4) to ensure that the elliptic equations are solvable. If F ad-
ditionally satisfies (C5), then the Liouville Theorem in [12] is applicable. Condi-
tion (C6) says that the Newton-Maclaurin inequality with respect to the function

F holds. F = σ
1/k
k satisfies condition (C7).

We denote [g] = {g̃ | g̃ = e−2ug}. We call the metric ĝ = e−2ug (as well as
the function u) Γ-admissible, or simply admissible, if ĝ ∈

{
g̃ ∈ [g] | λ(g̃−1Ag̃) ∈ Γ

}
.

Here, λ(g̃−1Ag̃) = (λ1, · · · , λn) denote the eigenvalues of g̃−1Ag̃.
In this paper we study the existence of some prescribing problems and the com-

pactness of the solution set. The main result is as follows.

Theorem 1.1. Let (Mn, g) be a compact n-dimensional Riemannian manifold with
totally geodesic boundary. Let F be a symmetric function satisfying (C1)− (C7) on
Γ with Γn ⊂ Γ ⊂ Σ 1

n−2
. If the manifold (M, g) is not conformally equivalent to a

hemisphere, then for any positive function f , there exists an admissible conformal
metric g̃ = e−2ug with totally geodesic boundary satisfying

F
(
λ(g̃−1Ag̃)

)
= f.

Additionally, the set of all such solutions is compact in the Cm-topology for any
m ≥ 0.

We can get the following corollary from Theorem 1.1 immediately. That is, to
find a conformal metric g̃ with nonnegative Ricg̃ such that

(1.1) det
(
μ(g̃−1Ricg̃)

)
= fn,

where μ(g̃−1Ricg̃) = (μ1, · · · , μn) are the eigenvalues of g̃−1Ricg̃ and f(x) is a
positive function.

Since Ricg̃ = (n − 2)Ag̃ + σ1(λ(g̃,
−1 Ag̃))g̃ if we define F (λ) = σ

1/n
n ((n− 2)λ

+(
∑n

i=1 λi)) and Γ = {λ | F (λ) > 0}, then

det1/n
(
μ(g̃−1Ricg̃)

)
= σ

1/n
n

(
μ
(
g−1

[
(n− 2)(du⊗ du− |∇u|2g) + (n− 2)∇2u+�ug +Ricg

]))
= F

(
λ
(
g−1

[
∇2u+ du⊗ du− 1

2 |∇u|2g +Ag

]))
,

where μ = (n − 2)λ +
∑n

i=1 λi. From the definition, it is easy to verify that F
satisfies (C1)− (C5), since

∂F

∂λi
=

∂
(
σ
1/n
n

)
∂μs

(1 + (n− 2)δsi )

and

∂2F

∂λi∂λj
= (1 + (n− 2)δsi )

∂2
(
σ
1/n
n

)
∂μs∂μt

(
1 + (n− 2)δtj

)
.

Moreover, from

F
(
λ(g̃−1Ag̃)

)
= σ1/n

n

(
μ(g̃−1Ricg̃)

)
≤ 1

n
σ1

(
μ(g̃−1Ricg̃)

)

=
2n− 2

n
σ1

(
λ(g̃−1Ag̃)

)
,
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THE EIGENVALUES OF THE SCHOUTEN TENSOR 1129

we know that F satisfies (C6) with � = 2n−2
n . Thus (1.1) turns out to be a proper

equation with respect to the Schouten tensor. Furthermore, as in [6] and [15], by
use of the volume comparison theorem, the C0 estimate of the solutions of such an
equation can be derived if Ric ≥ 0. In other words, the condition Γ ⊂ Σ 1

n−2
ensures

that the volume comparison theorem is applicable, where the eigenvalues λ of the
Schouten tensor satisfy (n − 2)λ +

∑n
i=1 λi ≥ 0 if and only if the eigenvalues of

the Ricci tensor μ ≥ 0. Similarly, on the manifold with totally geodesic boundary,
based on the boundary C1, C2 estimates with the Neumann boundary condition
for the general symmetric function ([2] or [9], etc.), we can get

Corollary 1.2. Let (M, g) be a compact n-dimensional Riemannian manifold with
totally geodesic boundary and with the Ricci tensor semi-positive-definite. If it is
not conformally equivalent to a hemisphere, then for any positive function f , there
exists a conformal metric g̃ = e−2ug with totally geodesic boundary and Ricg̃ ≥ 0
and

det
(
μ(g̃−1Ricg̃)

)
= fn.

Additionally, the set of all such solutions is compact in the Cm-topology for any
m ≥ 0.

Remark 1.3. The conformal problem with respect to the Ricci tensor has been
studied extensively. In [13] and [8], the authors studied the negative Ricci curvature
and proved that there exists a conformal metric g̃ with negative Ricci tensor Ricg̃
such that

det
(
μ(g̃−1Ricg̃)

)
= const.

When the Ricci tensor is positive-definite, in [5], Guan and Wang derived a con-
formal metric with a constant smallest eigenvalue of the Ricci tensor. In [15],
Trudinger and Wang proved the prescribing problem of a positive Ricci tensor on
a closed manifold.

This paper is organized as follows. We begin with some preliminaries in Section 2.
In Section 3, we will discuss the deformation and a priori estimates. The proof of
Theorem 1.1 is in Section 4.

2. Preliminaries

We first introduce Fermi coordinates in a boundary neighborhood. In these
local coordinates, we take the geodesic in the inner normal direction ν = ∂

∂xn

parameterized by arc length, and
(
x1, ..., xn−1

)
forms a local chart on the boundary

where xn = 0. The metric can be expressed as

g = gαβdx
αdxβ + (dxn)2 .

The Greek letters α, β, γ, ... stand for the tangential direction indices, 1 ≤ α, β, γ, ...
≤ n− 1, while the Latin letters i, j, k, ... stand for the full indices, 1 ≤ i, j, k, ... ≤ n
(see [4] and [1]).

We denote the functions, tensors and covariant differentiations with respect to
the induced metric on the boundary by a bar (e.g. Γ̄α

βγ , R̄αβ). Then the Christoffel
symbols on the boundary satisfy

Γ̄γ
αβ =

1

2
gγδ(

∂gαδ
∂xβ

+
∂gβδ
∂xα

− ∂gαβ
∂xδ

) = Γγ
αβ

and Γn
nn = 0, Γα

nn = 0, Γn
nα = 0.
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1130 YAN HE AND WEIMIN SHENG

Let us denote ∂
∂xi by ∂i. The boundary is called umbilic if the second fundamen-

tal form Lαβ = τgαβ, where τ is a function defined on ∂M . Since the boundary
∂M is connected, by the Schur Theorem, τ = const. A totally geodesic boundary
is umbilic with τ = 0.

Thus Γn
αβ |∂M = Lαβ = τgαβ and Γα

nβ|∂M = −Lαγg
γβ = −τδβα.

Under the conformal metric g̃ = e−2ug, the functions, tensors and the covariant
differentiations with respect to g̃ are denoted by a tilde (e.g. Ag̃, L̃αβ).

Let [g] be the set of metrics conformal to g. For g̃ = e−2ug ∈ [g], we consider
the equation

(2.1) F
(
λ(g̃−1Ag̃)

)
= f.

The Schouten tensor transforms according to the formula

Ag̃ = ∇2u+ du⊗ du− 1

2
|∇u|2g +Ag,

where ∇u and ∇2u denote the gradient and Hessian of u with respect to g. Con-
sequently, (2.1) is equivalent to

F
(
λ
(
g−1

[
∇2u+ du⊗ du− 1

2
|∇u|2g +Ag

]))
= f(x)e−2u.

Then the second fundamental form satisfies

L̃αβe
u =

∂u

∂ν
gαβ + Lαβ .

Note that the umbilicity is conformally invariant. When the boundary is umbilic,
the above formula becomes

τ̃ e−u =
∂u

∂ν
+ τ,

where L̃αβ = τ̃ g̃αβ .
Therefore, whereas the initial metric g on the manifold M is with totally geodesic

boundary ∂M , the boundary of the manifold M with conformal metric g̃ = e−2ug
is still totally geodesic if and only if ∂u

∂ν = 0.
Therefore, in order to prove Theorem 1.1, we need to find admissible solutions

of the following equation:

(2.2)

{
F
(
λ
(
g−1

[
∇2u+ du⊗ du− 1

2 |∇u|2g +Ag

]))
= f(x)e−2u in M,

∂u
∂ν = 0 on ∂M.

3. Deformation, C1
and C2

estimates

To prove the existence of a solution to the equation (2.2), we employ the following
deformation, which is defined in [7]:
(3.1)⎧⎪⎨
⎪⎩

F
(
λ
(
g−1

[
ς(1− ψ(t))g + ψ(t)Ag +∇2u+ du⊗ du− 1

2 |∇u|2g
]))

= ψ(t)f(x)e−2u + (1− t)(
∫
e−(n+1)u)2/n+1 in M,

∂u
∂ν = 0 on ∂M,

where ψ ∈ C1[0, 1] satisfies 0 ≤ ψ(t) ≤ 1, ψ(0) = 0, ψ(t) = 1 for t ≥ 1
2 , and

ς = (n�)−1vol(Mg)
2

n+1 , where F (1, · · · , 1) = n�.
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THE EIGENVALUES OF THE SCHOUTEN TENSOR 1131

Similarly to [7], at t = 1, (3.1) becomes (2.2), while at t = 0, it becomes{
F
(
λ
(
g−1

[
ςg +∇2u+ du⊗ du− 1

2 |∇u|2g
]))

= (
∫
e−(n+1)u)

2
n+1 in M,

∂u
∂ν = 0 on ∂M.

We can show that the above equation has a unique solution u(x) ≡ 0. In fact, it is
obvious that u ≡ 0 is a solution. Now we are going to prove its uniqueness.

At the maximum point x0 of u, no matter if x0 is an interior or a boundary
point, we always have that ∇u|x0

= 0 and ∇2u|x0
is nonpositive-definite. In fact

if x0 is an interior point, it is clear; if x0 is a boundary point, we have ∂u
∂ν |∂M = 0

by equation (3.1) and ∂u
∂xα |x0

= 0, where {xα}1≤α≤n−1 are local coordinates on the

boundary ∂M around x0. Therefore ∇2u|x0
is nonpositive-definite. Now at x0 we

have

vol(Mg)
2

n+1 = ς · n� = ςF (λ(g−1 · g))

≥ F
(
λ
(
g−1

[
ςg +∇2u+ du⊗ du− 1

2
|∇u|2g

]))

= (

∫
e−(n+1)u)

2
n+1 .

Similarly, at the minimum point of u, we can get ς · n� ≤ (
∫
e−(n+1)u)

2
n+1 . As a

result, we have vol(Mg)
2

n+1 = ς · n� = (
∫
e−(n+1)u)

2
n+1 .

By (C6), we know that F ≤ �σ1. Hence,

ς · n� = F
(
λ
(
g−1

[
ςg +∇2u+ du⊗ du− 1

2
|∇u|2g

]))

≤ � σ1

(
λ
(
g−1

[
ςg +∇2u+ du⊗ du− 1

2
|∇u|2g

]))

= �
(
nς +�u+ (1− n

2
)|∇u|2

)
.

Then

(
n

2
− 1)

∫
M

|∇u|2 ≤
∫
M

�u =

∫
∂M

∂u

∂ν
= 0,

and u ≡ const. = 0.
Thus the operator

Ψt[u] = F
(
λ
(
g−1

[
ς(1− ψ(t))g + ψ(t)Ag +∇2u+ du⊗ du− 1

2
|∇u|2g

]))

−ψ(t)f(x)e−2u − (1− t)(

∫
e−(n+1)u)

2
n+1

satisfies the Leray-Schauder degree deg(Ψ0,O0, 0) = 0 at t = 0, where the Leray-
Schauder degree is defined by [11] (see [2] for the boundary case) and O0 is a
neighborhood of the zero solution in {u ∈ C4,α(M) : ∂u

∂ν = 0 on ∂M}. Thus,
whereas we obtain the homotopy-invariance of the degree, we can derive that the
Leray-Schauder degree is nonzero at t = 1. This shows that equation (2.2) is solv-
able.

The C1 and C2 estimates of the solutions to (3.1) have been proved in [9]. We
may obtain

Lemma 3.1. For any fixed 0 < δ < 1, there is a constant C = C(δ, n, g, f) such
that any solution of (3.1) with t ∈ [0, 1− δ] satisfies ‖u‖C4,α ≤ C.
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1132 YAN HE AND WEIMIN SHENG

So without loss of generality, we may assume that uti tends to −∞ at ti → 1,
where uti is the solution of (3.1) at t = ti, which will be denoted by ui in what
follows. Thus equation (3.1) turns out to be

(3.2)

⎧⎪⎨
⎪⎩

F
(
λ
(
g−1

[
Ag +∇2u+ du⊗ du− 1

2 |∇u|2g
]))

= (1− t)o+ f(x)e−2u
in M,

∂u
∂ν = 0 on ∂M,

where u is assumed to be admissible and o ≥ 0 is a constant.
Furthermore, we can get a more exact estimate on the geodesic ball B(x, r) =

{y ∈ M | dist(x, y) < r} :

Lemma 3.2 ([9]). Let u ∈ C4(M) be a k-admissible solution of (3.1) in B(x, r)
and 0 ≤ r < 1. Then there is a constant C = C(n, g, f) such that

(3.3)
(
|∇2u|+ |∇u|2

)
(x′) ≤ C

(
r−2 + exp

(
−2 inf

B(x,2
√
10r)

u

))

for all x′ ∈ B(x, r).

4. Proof of Theorem 1.1

We call {uk} the blow-up sequence and x̄ ∈ M the blow-up point if uk(x0,k) →
−∞ as x0,k → x̄, where {x0,k} ⊂ M . Now let {uk} be a blow-up solution of (3.2)
with the blow-up point x̄.

First of all, we would like to prove that x̄ can be approximated by local minimum

points of uk. Let vk = e−(n−2)/2uk , denote vk(x0,k)
1

n−2 by R0,k and 1
1−e−1/2 by A0.

Lemma 4.1. In each geodesic ball B(x0,k, A0R
−1
0,k) ⊂ M we may find a local max-

imum point of vk, denoted by xk. Furthermore,

vk(xk) = sup

B(xk,vk(xk)
− 1

n−2 )

vk.

Proof. Let euk(x0,k) = ε0,k. We define a mapping:

U0,k : B(0, ε0,k−1/2) ⊂ Tx0,k
(M) → B(x0,k, ε0,k

1/2),

y �−→ expx0,k
(ε0,ky),

where the metric on the tangent space is ǧk = ε−2
0,kU∗

0,kg and B(0, ε0,k−1/2) is a

geodesic ball. Moreover, consider a sequence of functions μ0,k(y) = uk(U0,k(y)) −
log ε0,k. We may derive an equation that μ0,k(y) satisfies. In fact, we have⎧⎪⎪⎨

⎪⎪⎩
F
(
λ
(
ǧ−1
k

[
Aǧk +∇2μ0,k + dμ0,k ⊗ dμ0,k − 1

2 |∇μ0,k|2ǧk
]))

= ε20,k(1− t)o+ f(U0,k(y))e
−2μ0,k in B(0, ε−1/2

0,k ),
∂μ0,k

∂xn = 0 on B(0, ε0,k−1/2) ∩ {xn = 0},
where μ0,k is admissible and o is a nonnegative constant.

Let us begin with the easy case, uk (x) ≥ uk(x0,k)− 1 in B(x0,k, ε0,k
1/2). In this

case, 0 ≤ e−
n−2
2 μ0,k ≤ e

n−2
2 in B(0, ε0,k−1/2). Hence, μ0,k converges in C3 to μ∞

with 0 ≤ e−
n−2
2 μ∞ ≤ e

n−2
2 on R

n, and the limit function μ∞ satisfies

F
(
λ
(
δ−1

[
∇2u+ du⊗ du− 1

2
|∇u|2δ)

]))
= f(x̄)e−2u.
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Then by the Liouville Theorem [12], we know that 0 is the locally minimum point
of μ0,k. Rescaling back, we see that x0,k is the locally minimum point of uk in

B(x0,k, ε0,k
1/2).

The alternative case is that there exists x1,k ∈ B(x0,k, ε0,k
1/2) such that uk(x1,k)

< uk(x0,k) − 1. Then we may consider the lower bound of uk in B(x1,k, ε1,k
1/2),

where ε1,k = euk(x1,k) < e−1ε0,k. If uk ≥ uk(x1,k) − 1 in B(x1,k, ε1,k
1/2), then

μ1,k(y) = uk(U1,k(y))− log ε1,k > −1, where

U1,k : y → expx1,k
(ε1,ky)

and x1,k is a locally minimum point of uk.
Otherwise, we may repeat the previous proceedings with uk(xj,k) < uk(xj−1,k)−

1 (xj,k ∈ B(xj−1,k, εj−1,k
1/2)), εj,k = euk(xj,k) < e−1εj−1,k and μj,k(y)

= uk(Uj,k(y))− log εj,k, where

Uj,k : y → expxj,k
(εj,ky).

For any given k, as uk ∈ C∞ (M), there exists j(k) ∈ N, j (k) < ∞ such that
uk(xj(k),k) < uk(xj(k)−1,k) − 1 and uk ≥ uk(xj(k),k) − 1 in B(xj(k),k, εj(k),k

1/2).

Hence, we can find a locally minimum point of the uk in B(xj(k),k, εj(k),k
1/2) ⊂

B(x0,k, A0ε0,k
1/2). This completes the proof (see Lemma 3.2 in [15] for more de-

tails). �

Now we consider the rescaled sequence wk = uk − supM uk. Suppose x0
k is

the maximum point of uk. Since e−2 supukf(x0
k) = e−2uk(xk)f(x0

k) ≤ C(�uk +
Ag)(x

0
k) ≤ C, then x̄ = limxk is the blow-up point with respect to wk as well. It is

obvious that wk satisfies the equation⎧⎪⎨
⎪⎩

F
(
λ
(
g−1

[
Ag +∇2wk + dwk ⊗ dwk − 1

2 |∇wk|2g
]))

= (1− t)o+ f(x)e−2 supM uke−2wk in M,
∂wk

∂ν = 0 on ∂M,

where wk is admissible and o ≥ 0 is a constant.
By virtue of Lemma 4.1, we may assume that x̄ = lim xk, where {xk} are locally

minimum points of uk. Hence {xk} are also locally minimum points of wk and

wk(xk) = inf
B(xk,e

1
2
wk(xk))

wk.

Note that F satisfies (C1) − (C6) and the wk are Γ admissible, where Γ ⊂ Σ 1
n−2

.

Hence wk are subharmonic and satisfy

(4.1) W +
1

n− 2
σ1(W )g ≥ 0,

where W = ∇2wk + dwk ⊗ dwk − 1
2 |∇wk|2g+Ag. We need the idea of the minimal

radial functions of w in BR(x0) ([15]):

ŵ(x) = sup{w(y) : y ∈ ∂Br(x0), r = d(x, x0) ≤ R},

and we denote ∇2ŵ+ dŵ⊗ dŵ− 1
2 |∇ŵ|2g +Ag by Ŵ . Now we are ready to prove

the following.
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Propostion 4.2. Let uj be a blow-up sequence of solutions to (3.2). Then wj =
uj − supM uj converges in w1,p (for any 1 < p < n

n−1) to an admissible function
w. Moreover, if x̄ is a blow-up point of w, then near x̄,

(4.2) w(x) = 2 log d(x, x̄) + o(1),

where d(x, x̄) denotes the geodesic distance from x to x̄ with respect to the metric
g. Furthermore, each blow-up point is isolated.

Proof. Since a similar proposition on a manifold without boundary has appeared
in [15], we only focus on the differences.

Step 1. We may get admissible solutions on the doubled manifold. Glue two
copies of (M, g) together along the totally geodesic boundary and denote the dou-
bled manifold by M̌ . With the given smooth Riemannian metric g on M , there is
a standard metric ǧ on M̌ induced from g. When ∂M is totally geodesic in (M, g),
ǧ is C2,1 on M̌ (see [3]).

We can extend wk to a C2(M̌) function w̌k as follows: Near the boundary we
take Fermi coordinates, where w̌k is then defined as

w̌k(x1, · · · , xn) =

{
wk(x1, · · · , xn), xn ≥ 0,
wk(x1, · · · ,−xn), xn ≤ 0.

Since ∂wk

∂ν = 0, it is easy to verify by definition that w̌k ∈ C2(M̌). As a matter
of fact,

lim
xn→0+

∂w̌k

∂xn
(x1, · · · , xn) =

∂wk

∂xn
(x1, · · · , xn−1, 0)

= 0 = −∂wk

∂xn
(x1, · · · , xn−1, 0) = lim

xn→0−

∂w̌k

∂xn
(x1, · · · , xn)

and

lim
xn→0+

∂2w̌k

∂(xn)2
(x1, · · · , xn) = lim

xn→0−

∂2w̌k

∂(xn)2
(x1, · · · , xn).

Thus from the admissible property of wk we know that w̌k is also admissible and
satisfies (4.1).

Step 2. We can find convergent “minimal radial functions” on the doubled man-
ifold. Inequality (4.1) says that w̌k is subharmonic. From Corollary 2.1 in [15],
{w̌k} converges to a subharmonic function w̌ in W 1,p (for any 1 < p < n

n−1 ). By

Corollary 2.2 in [15], the corresponding minimal radial functions ̂̌wk also converge

to ̂̌w. Noting that the minimal radial functions depend only on the distance to the
center, by Corollary 2.1 and Corollary 2.2 in [15], we may obtain

(4.3) ̂̌w (r) = lim
k→∞

̂̌wk (r) ,

where
̂̌wk(r) = sup{w̌k(y) : y ∈ ∂Br(xk)}

and
̂̌w(r) = sup{w̌(y) : y ∈ ∂Br(x̄)}.

On the one hand, based on (4.3) and (4.1), we can get the following estimates:

(4.4) ̂̌w(x) ≤ 2 log d(x, x̄) + C.
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In fact, we may assume that ̂̌wk(r) = w̌k(xr) , xr = (0, · · · , 0, r), and |Ag| ≤ Cr/2.

The ̂̌wk are still admissible and satisfy inequality (4.1). Thus

0 ≤
(
(n− 2)Ŵnn +ΣiŴii

)
(xr)

≤ (n− 1)
(̂̌w′′

k + ( ̂̌w′
k)

2 − gnn
2

( ̂̌w′
k)

2 + Cr/2
)

+

n−1∑
i=1

(
(
1

r
+ C) ̂̌w′

k −
gii
2
( ̂̌w′

k)
2 + Cr/2

)

≤ (n− 1)

(
̂̌w′′
k +

1

r
̂̌w′
k + C( ̂̌w′

k + r)

)
,

where the last inequality comes from
∑

i gii ≥ n. Hence,

(
log(r ̂̌w′

k + r2)
)′

+ C ≥ 0.

By taking a limit we get (4.4).

On the other hand, let ̂̌vk = e−(n−2)/2̂w̌k . From �̂̌vk ≤ Ĉ̌vkr, we get

[rn−1̂̌v′k]′ ≤ Crn̂̌vk.
Thus, by a direct calculation, we know that

̂̌w(x) ≥ 2 log d(x, x̄) + o(1).

Therefore

(4.5) ̂̌w(x) = 2 log d(x, x̄) + o(1).

Then the comparison principle helps us to deduce (4.2) from (4.5). Roughly

speaking, since w̌ equals ̂̌w at some points, the comparison principle implies that
they are equal everywhere. That is,

w̌(x) = 2 log d(x, x̄) + o(1).

(For more details, one may consult section 3 of [15].) �

Proof of Theorem 1.1. As the proof of Proposition 4.2, we glue two copies of (M, g)
together. Denote the doubled manifold and functions by a “check” (e.g. M̌, w̌).
Since the Ricci curvature Rice−2w̌g is still nonnegative, by (4.5) and the Volume
Comparison Theorem, there is at most one end away from the blow-up points. The
metric e−2w̌g is in fact a Euclidean one (see section 7 of [6] for details); namely,
(M, g) is conformally equivalent to the unit half sphere, which contradicts the as-
sumption in Theorem 1.1. Therefore there is a unform L∞ bound for solutions. So
the set of solutions is compact. This completes the proof of Theorem 1.1. �

Acknowledgement

The first author would like to thank her advisor, Professor Kefeng Liu, for his
support and encouragement.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1136 YAN HE AND WEIMIN SHENG

References

1. S. Chen, Conformal deformation on manifolds with boundary, Geom. Funct. Anal., 19 (2009),
no. 4, 1029–1064. MR2570314

2. S. Chen, Boundary value problems for some fully nonlinear elliptic equations, Calc. Var.
Partial Differential Equations, 30 (2007), no. 1, 1–15. MR2333094 (2008e:35061)
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