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The conditions on the effective (de Sitter space) scalar potential that are required to obtain a suc-
cessful new-inflationary-Universe scenario are codified into a general prescription. These conditions
ensure that sufficient inflation, density fluctuations of an acceptable magnitude, and reheating to a
high enough temperature to produce the astrophysically observed baryon asymmetry result. Vfe ex-
ern. plify our prescription for a quartic potential and show that if the scalar field is a gauge singlet,
then it is possible to tune the parameters of the potential to satisfy the conditions we have
prescribed.

I. INTRQDUCTIGN

The new-inflationary-Universe scenario' based on
grand unified theories (GUT's) with Coleman-Weinberg
(CW)-type spontaneous symmetry breaking (SSB) has
proven to be an interesting failure as an attempt to resolve
the cosmological puzzles of large-scale homogeneity, iso-
tropy, near-critical expansion rate, small-scale inhomo-
geneity, the baryon asymmetry, and the glut of topologi-
cal defects (monopoles, domain walls, etc.) that plague the
standard hot big-bang model. In this scenario the
Universe in its very early history (t=10 sec, T=10'"
GeV) undergoes a strongly first-order phase transition in
which it supercools in the metastable, symmetric phase
(P =0 where P =the Higgs field responsible for the SSB of
the GUT). When the Universe has supercooled to a tem-
perature of the order of the Hawking temperature(:H/2m. , where —H=R/A =expansion rate), the meta-
stable phase becomes unstable, and tt very slowly begins to
evolve ("roll" ) toward the SSB vacuum (P=o). Owing to
the flatness of the CW potential near /=0 it takes many
Hubble times (H ') for P to increase significantly from
its initial value. During this "slow-rollover" period the
energy density of the Universe is dominated by the nearly
constant energy density of the Higgs field potential and
the cosmic-scale factor R grows exponentially (this is the
key element of the inflationary scenario). As P gets fur-
ther away from the origin, the potential steepens, and the
evolution of P quickens. The rapid time variation of P
(b, t «H ') near the SSB minimum leads to the conver-
sion of the coherent Higgs field energy into radiation by
quantum particle creation, thereby reheating the
Universe.

Although the notion of slow evolution from the sym-
metric to the SSB phase is an attractive approach for the
successful implementation of inflation, several serious
problems associated with using C%' potentials have been
discovered. For the usual range of coupling constants in a
CW GUT model, de Sitter-space-produced quantum fluc-

tuations in the scalar field P drive it across the flat region
of the potential too quickly, thereby preventing the slow
rollover necessary to achieve sufficient inflation. There
is also the problem of competing phases. In the CW
SU(5) model it is possible that the direction of steepest
descent near /=0 is not in the direction of the global,
SSB minimum [SU(3)&&SU(2)&&U(1)j, and so the transi-
tion may proceed through other metastable phases [e.g.,
SU(4)&&U(1)], resulting in disastrous consequences. Fi-
nally, the most severe problem is that the SU(5) CW GUT
leads to density perturbations that are far too large
(&p/p=10 —100) to be consistent with the observed
isotropy (b.T/T & 10 ) of the cosmic microwave back-
ground.

Other models have been investigated, but thus far they
too have had their difficulties. For example, the super-
symmetric geometric-hierarchy model of Dimopoulos and
Raby' which employs the VAtten reverse-hierarchy
scheme' with an Q'Raifeartaigh potential' avoids the
problem of excessively large density perturbations and dif-
ficulties associated with de Sitter-space quantum fluctua-
tions, but thus far it appears that these models cannot
reheat to a sufficiently high temperature to account for
the baryon asymmetry of the Universe. '

Because the inflationary scenario is so cosmologically
attractive, it is important to search for a field-theoretic
model that can successfully implement new inflation. To
this end, we have codified in this article a precise set of
rules which a completely general (e.g. , nonpolynomial) ef-
fective potential must satisfy in order to effect an untrou-
bled inflationary-Universe scenario. In the remainder of
this section we continue with preliminaries, then in Sec. II
we present our prescription. In Sec. III we apply our
prescription to a quartic polynomial potential. We finish
with some concluding remarks in Sec. IV.

A. Preliminaries

We will assume that the effective potential V(P) can be
expressed in terms of a single-parameter scalar field P,
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whose value at the global, SSB minimum' is iti=cr . [In
accord with this assumption, the Higgs field of interest
could either be a gauge-singlet field, or could have non-
trivial transformation properties under the gauge group
and be described by a fixed direction (in group space) and
magnitude P.] We also assume that at some point in time
P is beyond any barrier which may exist between the
metastable and true vacua and that within a region whose
physical size is of the order of the Hubble radius (=H '),
the average value of P is Pc (see Fig. 1). (Without loss of
generality we have taken 0&fp&cr. ) We will not be con-
cerned with the dynamics of how the scalar field made its
way to /=$0 (e.g., by loss of metastability of the false
vacuum, or by bubble nucleation), or whether the region
we are focusing on is the interior of a bubble or is a "fluc-
tuation region" produced in the course of spinodal decom-
position. '

The key equation for describing the semiclassical evolu-
tion of the scalar field from P =Pc to P= cr is

$+3HQ+I P+ V'(P) =0, (1)

where the field (t is normalized so that its kinetic term in
the Lagrangian is —,'(B&QB"P), and the expansion rate
(Hubble parameter) H—:R/R is determined by the usual
Friedmann equation

H'=( 8m/ 3mp'i)[V(P)+ —,'P2+p„] . (2)

Here

Plp1 =6 = 1.22)& 10' GeV

is the Planck mass, the overdot denotes d/dt, the prime
denotes i)/BP, and p„ is the energy density in radiation.
The I P term accounts for particle creation due to the
time variation of P and is only important when the time
variation of P is rapid compared to the expansion rate. '9

It is, of course, this particle creation which is responsible
for converting the coherent Higgs field energy ( —,

'
P + V)

into radiation, thereby reheating the Universe. The quan-
tity I = (lifetime of the scalar Higgs particle) is deter-

V

FIG. 1. The de Sitter-space effective scalar potential dis-
cussed throughout this article. We are interested in the evolu-
tion of P from P =Pii to P =o, the interval during which its evo-
lution is described by a semiclassical equation of Inotion, Eq. (1).
The details of how P evolved from / =0 to / =$0 (e.g. , by quan-
tum tunneling, thermal fluctuations, etc.) are not considered
here. In the interval [Pb, P, ] the motion of P is friction dom-
inated [i.e., the P term in Eq. (I) can be neglected], and P
evolves very slowly (time scale &M '}; see Sec. II for the pre-
cise definitions of Pb and P, .

mined by the fields which couple to P and the strength
with which they couple. The evolution of p„ is given
by7, 21

p„+Hp„—I P =0 . (3)

II. THE PRESCRIPTION

$/3HQ= V"/9H +( V'mpi/V) /48~ .
~ ~

Therefore, neglecting the P term is consistent when

I
V (P)I &9H

I
V'mpi/V

I
& (48m)'

(sa)

(5b)

(5c)

For most potentials V"=V'/P; in this case inequality (5c)
follows directly from inequality (5b). Thus in most in-
stances, condition (5c) is redundant and condition (5b)
alone suffices. Conditions (5b) and (Sc) also guarantee
that P /2 & V(P), so that during the slow-rollover phase
H =8m. V(P)/3mp& . During this phase the equation of
motion for (() can be written as

( —,P'+ V) = —3HQ'
dt

which implies that H [=8'(—,'P + V)/3m&i ] must be
strictly decreasing. If conditions (5b) and (5c) were satis-
fied all the way to P =o, then both P /2 ( & V) and V(P)
would vanish at P=cr [the vanishing of the cosmological
constant requires V(o ) =0], and so H(cr) would also van-
ish. On the other hand, V"(o.) must be &0, so at some
value of P & o, say, P =P„ inequalities (5b) and (5c) must
cease to be valid.

Denote the "fiat interval of V(P)" in which constraint
(5) is satisfied by Pb & P & P, (if there is more than one
such interval each must be analyzed in turn). Of course,
we cannot consider P & Pc,' so, if Pb is & Po, we must take
the interval to begin at /=$0. Neglecting the possibility
of more than one such interval, we can precisely define Pb
and/, by

Pb =max [iI)p minimum value of P for which

I
V"(P)

I
&9H and

I

V'm i/VI ((48m)' ],
P, = [ maximum value of P( & o.) for which

I
V"(P)

I
&9H and

I
V'mpi/V

I
&(48m. )'~ ]

(see Fig. 1). Slow rollover, then, occurs when PH [Pb,P, ]
and its motion is adequately described by Eq. (4). With
the preliminaries and definitions taken care of, we will
proceed to present our prescription for successful new in-
flation.

During the slow-rollover phase the P term is negligible
compared to the friction term in Eq. (1), and the motion
of P is "friction dominated. " When the P term is neglect-
ed Eq. (1) becomes

P = —V'(P)/3H (4)

(recall the I P term is not important during the slow-
rollover phase). Using expression (4) for (t) to compute P
it follows that



2164 PAUL J. STEINHARDT AND MICHAEL S. TURNER

(a) P, &o &fmpt, f=l.
The inflationary-Universe scenario does not necessarily

require an understanding of quantum gravity, and by
demanding that the minimum of the potential occur at a
value less than the order of the Planck scale, we hope to
avoid having to consider its effects. The "fudge factor" f
has been included because even if o. &mp~, masses and
vacuum energies need not necessarily exceed the Planck
scale if p is only weakly coupled to itself and other fields.
We expect for reasonable models that f will be at most of
order unity. The condition that cr & P, follows from our
earlier discussion and the definition of p, .

(b) AP:Pe P—b ) many H.
During the de Sitter phase (which the Universe enters

after many e-folds of supercooling) the Hawking tempera-
ture ( =H/2n. ) sets the scale for quantum fluctuations in
the scalar field p. If the interval over which the potential
is flat (hp) is not large compared to H, then quantum
fluctuations will drive P quickly across the flat part of the
potential, rendering the semiclassical description of p(t)
[cf. Eqs. (1) and (4)] invalid. Roughly speaking, since H
sets the scale of "quantum fuzziness" in p, we do not
want any of the details of our inflationary scenario (which
is semiclassical in nature) to involve the behavior of P
over a range of values as small as H.

More precisely, it has been shown that quantum zero-
point fluctuations in p grow as (p ) =H t/4', where t
is the time elapsed since the beginning of the de Sitter
phase. Consistency of our semiclassical treatment
demands that these quantum fluctuations not drive
across the interval [Pb, P, ] faster than P would have rolled
[according to the semiclassical equation of motion, Eq.
(1)]. To ensure that quantum fluctuations do not quickly
drive p across the interval [pb, p, ] it suffices that b,p
must be )%' (H/2m. ), where NH ' is the time required
for p to roll from pb to p, . In practice this constraint is
usually satisfied whenever the density perturbation con-
straint is, and so for convenience we shall take "many H"
to be 0 (10) H rather than (N'~ /2')H.

(c) f ' H dt = f ' 3H d p/V'(—p) =X) 60.
The growth of the cosmic scale factor R during infla-

tion is determined by

exp f Hdt

and most of the time required for P to go from Po to o.

elapses during the friction-dominated epoch. For a GUT
I

phase transition, Guth' argued that about 60 e-folds of
expansion were required to resolve the large-scale homo-
geneity and flatness puzzles. Constraint (c) is just that re-
quirement; however, let us examine the requirement in a
little more generality.

The basic idea is that a small, smooth patch is inflated
to encompass what will become the present observable
Universe (size =10 cm). The original physical size of
the smooth patch must be &O(H ')—the distance over
which a light signal can travel in an expansion time. Dur-
ing inflation it grows in size by a factor of

exp f H dt =e".
From the end of inflation (i.e., when p=o) until reheat-
ing, it may undergo additional growth (if reheating does
not occur rapidly). Assume that the energy density of the
coherent Higgs field [=—,

'
p + V(p)) is O(p ) when p=o.

As p oscillates about the SSB minimum, the Higgs field
stress energy behaves like nonrelativistic matter (p =0). '

Until reheating p~ red-shifts cc R; therefore, from the
end of inflation to reheating, R grows by a factor of
=(p/TRH) (TRH ——temperature to which the Universe
is eventually reheated). Thus at the epoch of reheating,
the smooth patch had a physical radius
& H 'e (p/TRH )

~ . If the evolution of the Universe
was approximately adiabatic from this epoch on, then the
size of our present observable Universe when T=TRH
was just =10 cm (3'/TRH) (or smaller by a factor of
y' if between then and now the entropy increased by a
factor y). Taking H '=mp~/p, , the requirement that
the smooth patch encompass what will become our ob-
servable Universe is

1V )55+ in[(p/10' GeV) ( TRH /10' GeV) '
y

' ],
(6)

which reduces to %=60 for p=TRH —10' GeV (a GUT
phase transition which reheats with 100% efficiency).
For 10" GeV&p&10' GeV and 10" GeV&T«&1
MeV, X only varies between 24 and 67. That is, the
amount of inflation necessary is very insensitive to the de-
tails (p, T~H, etc.) of the inflationary model.

Returning now to our constraint (c), for most potentials
this expression can be simplified considerably. If P~ is
the value of p in the interval [pb, p, ] at which V' attains
its minimum, then by expanding V' around
V'= V'(p )+ V"(p )(p p~ ), constraint —(c) becomes

—f 3II'dp/V') 3H, 'ln[1+Ap
~

V"(p )/V'(p )
~
]/~ V"(p )

~
&60,

4'b

where H, =H(P, ). If the potential is a polynomial with
no linear term, then the log factor is —1, and the con-
straint is further simplified:

%&3H, '/i V"(P )
i
&60. (8)

The more complicated expression, Eq. (7), contains some
fail-safe protections that eliminate more general potentials
which might satisfy Eq. (8), but which on closer inspec-
tion do not actually inflate enough. For example, cri-
terion (8) only involves V" and is insensitive to the pres-

ence of a large linear term in V(p). Such a term would,
of course, speed up the evolution of P, and could destroy
the slow rollover. The more complicated version of con-
straint (c), Eq. (7), is sensitive to such a term since a large
value of V' would cause the argument of the logarithm to
approach unity [in which case Eq. (7) would be difficult
to satisfy]. Finally, we mention one possible difficulty
with constraint (7)—the vanishing of V'(p~ ) and/or
V"(p ). If this occurs one can return to the integral
form of the constraint, or expand V' around a nearby
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=[3(n 2)Nt /(n ——1)] (10a)

=[3(n 2)Nt /(n —1)—] (10b)

where tE corresponds to the time when the scale l crosses
the horizon during inflation, t, corresponds to the end of
the slow-rollover phase (P=P, ), and Nt =H(t, tt)—
[Equation (10) is only valid for Nt »1, i.e., P «P, .] For
the scales of interest (10' —10 M~) NI =60, and so

value of the field, say, P'=P +H, so that the expression
in Eq. (7) is well defined. Since b,P & many H, the shift
from expanding around P to expanding around
should be insignificant.

(d) y,o 5 ——') O—4H'.
This constraint is imposed to ensure that the density

fluctuations that result from the de Sitter-space quantum
fluctuations in p have an amplitude (5p/p)H —5X10
when the mass scales relevant for galaxy formation, say,
10' Mo (galaxy) to 10' Mo (supercluster), reenter the hor-
izon. A scale-invariant spectrum of density perturbations
(the so-called Zel'dovich spectrum) is predicted in the
new-inflationary-Universe scenario' ' and is consistent
with present models of galaxy formation and the mea-
sured fluctuations in the microwave background on angu-
lar scales »1 if 5=1. Constraint (d) follows from the
fact that the density fluctuation on a comoving scale l
which results from the quantum fluctuations in P has an

amplitude

(5p/p)H-(H'/P)
~ ~,

when the scale reenters the horizon during the post-
inflationary Friedmann-Robertson-Walker (FRW)
phase. ' ' Here P and H are to be evaluated when the
scale in question, here specified by NI, crossed outside the
horizon [i.e., A~h„, ——R(t) Xl =physical size of the pertur-
bation =H '] during the inflationary epoch. The quanti-
ty Nt is the number of e-folds in R(t) between horizon
crossing and the end of inflation (P=a) for the comoving
scale l. In Appendix A we show that

NI —ln[p2TRHM/(MeV3 —Mo) ]/3

where TRH is the temperature to which the Universe is
reheated, and M is the mass within the comoving scale l.
The subscript 60 which appears in the expression for con-
straint (d) refers to the fact that P and H are to be
evaluated when the mass scales of interest today
(=10' —10 Mo) crossed the Hubble radius during infla-
tion. For these scales NI —60. Roughly speaking, during
inflation /=constant, so that we expect $6o-P„' however,
we have not found this to be a very accurate approxima-
tion in practice. As P increases, the potential steepens,
and so P also increases. Thus we expect $6o to be
less than P, . To investigate this quantitatively, consider
the case of a potential V(P) where for the friction-
dominated, slow-rollover phase V(P)=Vo aP" (n &2). —
Integrating Eq. (4), one finds that

0x, =0(tt)

$6o—[180(n —2)/(n —1)] '" " '" 'P, ; (11)

for n =3, 4, 5, and 6, p, is a factor of SX 10, 10, 700,
and 500 larger than $6o. That is, $6o—P, is not a very
good approximation. For a potential of this form
(V=Vo —aP"), H does not vary significantly during the
slow-rollover phase, and so (5p/p)H ~ P. Since P varies
with N~ the spectrum of perturbations is not exactly scale
invariant —see Appendix A for further discussion of this
point. In terms of P„ the density-perturbation constraint
(d) is

[180(n —2)/(n —1)]~" '~~~" ~5 '10 H (12

Or equivalently, this can be expressed as a constraint on
V'(P, ):

V'(P, ) =—3 X 10~[180(n —2)/(n —1)]~"—'~~~" —'~

X6-'II' . (12b)

Finally, let us finish our discussion of constraint (d) by
remarking that the choice of 5 can be rather important.
As we will see in our "worked" example in Sec. III, the
coefficient of the quartic term -5 (this seems to be a
rather general result; also, see Ref. 26), and so the
prescribed potential depends sensitively on the choice of 5.
As we have discussed in Ref. 23, 5=1 seems to be what is
required for galaxy formation.

(e) Reheating T~H.—min I(mptH ) (I m.pi)
When the scalar field P reaches P=o it begins to oscil-

late about the SSB minimum. Due to quantum-particle
creation [accounted for in Eq. (1) by the 1$ term], the
coherent Higgs-field energy (= —,P + V) is eventually
converted into radiation. ' ' It is straightforward to
show that this occurs in a time =I '

( =lifetime of the
Higgs boson associated with P). ' ' lf I'&H„ then the
reheating process takes less than an expansion time
(=H, '), and the coherent field energy is efficiently con-
verted to radiation, reheating the Universe to a tempera-
ture

TRH —(30pp/m g, )'i

=(45/4m g, )'~ (H, mp))'~ (13)

where, as usual, g~ counts the effective number of relativ-
istic degrees of freedom (1 for each bosonic degree of free-
dom, —, for each fermionic degree of freedom). For
TRH »10 GeV, one expects g, (TRH) & 100. The Higgs
field energy density at reheating (=p&) is given by its
value at P=P, (p~=3mp~ H, /Sm), since as P evolves
from P=P, to P=o the change in p~, dp~ 3HQ dt, is- ——
«pp, as dt is «H '. Taking V(P, )=0(p ), it follows
that TRH=(30/m g, )'~ p.

On the other hand, if I &H„ then the reheating process
takes longer than an expansion time. Until t=I ', the
field P oscillates about P =o. The energy density associat-
ed with these coherent field oscillations ( = —,

'
P + V)

dominates the energy density of the Universe and behaves
like nonrelativistic matter, ' with p~ cc R . [The
coherent field oscillations of P are essentially equivalent to
a very cold (T «m~) gas of Higgs bosons —a point to
which we shall return. ] During this epoch the scale factor



PAUL J. STEINHARDT AND MICHAEL S. TURNER 29

R(t) grows ~ t ~ .When t=I ' these oscillations are
damped (in a few expansion times), reheating the Universe
to a temperature

(14)

which is a factor of (I /H, )'~ smaller than in the rapid
(or "good") reheating case (I )H, ). If I «H„Tau can
be very low; for the Dimopoulos-Raby geometric-
hierarchy model: p=10' GeV and I /H, =10, result-
ing in TRtt —10 MeV (see Ref. 17).

The crucial constraints on the reheating temperature
are (1) big-bang nucleosynthesis —to achieve the usual
concordance of the predictions of primordial nucleosyn-
thesis with the observed abundances of the light ele-
ments (D, He, He, and Li) TR~ must be ) few MeV
and (2) baryogenesis —since any preinflationary baryon
asymmetry has been exponentially diluted, a new baryon
asymmetry, of magnitude ns /s =10 ' (see Ref. 24),
must be generated. The first consideration (TR~) few
MeV) implies that I must be ) 10 GeV. The second
consideration results in a potentially much more stringent
constraint which we shall now discuss in detail. %'e re-
mind the reader that solving the isotropy and homogenei-
ty problems does not stringently constrain TR&—in fact,
fewer e-folds of inflation are required when TRz is small-
er, cf. Eq. (6).

(f) Baryogenesis (ns /s =10 ).
If the reheat temperature is sufficiently high, then

baryogenesis can proceed as it does in the standard
cosmology, through the out-of-equilibrium decays of su-
perheavy bosons whose interactions violate B, C, and CP
conservation. Of the superheavy bosons whose decays can
lead to baryogenesis, the color triplet, isosinglet Higgs bo-
son [triplet component of the 5& in SU(S)] seems to be
the candidate superheavy boson which can be the
lightest —possibly as light as M=10' GeV. If baryo-
genesis is to proceed in the standard manner, then TR~
must be )M/10) 10 GeV (for further discussion and a
recent review of baryogenesis, see Ref. 25).

It has also been suggested that the baryon asymmetry
could be produced directly by the decay of the coherent
Higgs-field oscillations. ' ' If collective effects are not
important, then the Higgs-field oscillations can be treated
as a very cold (i.e., nonrelativistic) gas of Higgs particles
of mass m~ ——V"(o.), with a particle-number density of
n~ —p&/m~. Viewed this way, the reheating process is
then just the decay of these Higgs particles at
t=I '=lifetime of the Higgs boson. Consider the
baryon asymmetry produced directly in this process. If
the decay of each Higgs boson produces on average a net
baryon number e, then the net baryon number density
produced by Higgs decays is n~ —en~ —ep~/m~ (So long.
as TR~ is &&m~, this process is automatically out of
equilibrium, and reverse reactions can be ignored. ) As
usual, e is related to the branching ratio of P into channels
which have net baryon number, and the C, CP violation in
the B-nonconserving decay modes. For simplicity sup-
pose that only two decay channels have net baryon num-
ber, say, equal to B~ and B2, then e=(B~ —B2)(r~

TR~-10 ' e 'V"(o)'i

or, equivalently,

I mp&/V"(o )=10 e

(16a)

(16b)

where m& ——V"(cr). For e=10 and m~=10 GeV, a
reheating temperature of only 10 MeV is acceptable. For
the I3imopoulos-Raby model' ' m ~

—10 GeV and
TR@—10 MeV; however in the present version of the
model, e «10

To summarize, baryogenesis is potentially the most res-
trictive constraint on reheating. If the baryon asymmetry
is to be produced in the "standard way" then TRz must
be & 10 GeV, implying that p & 10 GeV and I & 1 GeV.
If it can be produced directly in Higgs decays, then the
constraint depends only upon TR~/m~, cf. Eq. (15), and
TRz as low as a few MeV can be tolerated.

(g) Sensible Particle Physics.
Lest we get carried away with cosinological considera-

tions, we should insist that the potential V(P) be part of a
model which leads to sensible particle physics
phenomenology.

III. A "WORKED" EXAMPLE

To illustrate the use of "our prescription" we will now
apply constraints (a)—(f) to an effective potential of the
form

V(p) = Vo ap pp +A.p— —
where a, P, A, , are assumed to be approximately constant
on the interval [Po,o). Without loss of generality P can
be taken to be & 0, and A, & 0 is required so that the poten-
tial is bounded. We will also assume that Po

——0, e.g., due
to high-temperature symmetry restoration, followed by
supercooling in a metastable symmetric phase. The SSB

—r~)(r~+r2), where r; (r;) is the branching ratio into
channel i (i). Since the C-, CP-violating effects involve
higher-order loop corrections (r

& r& —) & O(a) & 10
a=coupling strength of the particle exchanged in the
loop. Note that if the decay of P proceeds primarily
through channels which do not carry net baryon number,
then (r&+r2) «1 and so e ~ (r~+r2) &&1.

After reheating the entropy density s =2~ g~ TR~ /45.
Assuming that the P decays occur in a time & few expan-
sion times, the Higgs-field energy density p&

—n&m~ and
the energy density in radiation after reheating
p, =sr g, TR~ /30 are approximately equal. Using this
fact it follows that the baryon asymmetry generated in
this way is

n g /s =0.75e( TR~ /m ~ ) . (15)

If TRz is sufficiently low ( « 10' GeV), B
nonconserving processes will be ineffective (rates «H),
and this asymmetry will not be "washed-out, " or even
significantly diluted by subsequent scattering processes.

The crucial point regarding this scenario is that the
baryon asymmetry which can be produced depends upon
the ratio TRz/m~ and not TR~ itself. Given e, the reheat
temperature required for baryogenesis (n~/s=10 '

) is
only
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minimum of the potential is determined by V'(cr) =0 and
V"(cT))0, and Vo ls determined by the vanishing of the
cosmological constant of the true vacuum, i.e., V(o) =0.
Rather than considering this quartic potential in its most
generic form, we will consider two limiting cases: (i) the
case where the quadratic term is not important —the SSB
minimum is determined by P and A, , and P "rolls off" the
cubic term; (ii) the case where the cubic term is not
important —the SSB minimum is determined by a and k,
and P rolls off the quadratic term. The intermediate case,
where P rolls off a combination of the quadratic and cubic
terms should not be qualitatively different and only occu-
pies a tiny fraction of the "a-P phase space. "

Case (i): v=vo py'+—Xy4.
In this limit the SSB minimum and VQ are given by

cr =3P/4A, .

Vo ——27@ /256k, (19)

respectively. It then follows that the Hubble parameter
for /=go (

—=Ho) ~s just

Ho Sn Vo/3——mph —p /& mph (20)

For p «0. the A,p term can be neglected and V"=—6pp.
During the slow-rolling period when the motion of p is
friction dominated

I

V"
~

& 9H; this interval is evidently
QE[0,$, ], where V"(P, )=9H, , so that

$,=4P /3A, mp) (21)

Our constraints (a)—(f) then imply
(a) f~ & cr &fmp): P & 3Am p)/4.
(b) b,P=P, & many, say, 10H, P&713~2mp~
(c) For this potential Pb

——0; due to quantum fuzziness,
however, it does not make any sense to consider P & O(H).
The condition for sufficient inflation ( f H dt )60) im-
plies

P»30~ ~ m

Note that this constraint can be obtained either by actual-
ly integrating the equation of motion for P, or by the ap-
proximation

I Hdt=3H /~ V"(Qb=H)
~

cf. Eq. (8).
(d) $60—5 '10 H, or equivalently,

$,=85 '10 H,

P=45 '10 A.
~ mp( .

By combining (a) and (d) it follows that A, &4X 10 ' 5 .
For 5&10 (i.e., 5p/p(100 definitely our range of in-
terest) condition (d) guarantees that condition (b) is au-
tomatically satisfied. Bringing everything together we
find that conditions (a)—(d) are satisfied for the following
range of parameters:

o.=3 && 10 5 'A. ' mp], (22c)

where Ho ——5 X 10 A, mp~. [Or equivalently:
A, =(cT/mp~) 5 10 ', P=l,a, and cr &mp&. ] For 5=1 and
0 mp] 10 GeV we have A,=4X 10 ", P=3X 10
GeV, and HQ —10" GeV. Although we have neglected
the quadratic term in this case, it is straightforward to
show that it will not upset the successful implementation
of new inflation obtained for these parameters so long as

EX (HQ /40 (22d)

We have verified these analytic results by numerically in-
tegrating the equations of motion [Eqs. (1) and (2)] and
find good agreement.

(e), (f) The condition for good reheating (1 )H, ) im-
plies

I &25 X10 A, mph,

with a resulting reheat temperature of

TR„=45 'x lo'x'"mp,

=5 'X 10' (I,/4X 10 '
) GeV

is required to produce the observed baryon asymmetry
(n~ /s =10 '

) [cf. Eq. (16b)]. Note that V"(cT) '~

65 Q 10 Xvlp] is the mass of the "rolling Higgs field. "
Case (ii): V=VO —ctP +A,P .
In this limit the SSB minimum and Vo are given by

o. =a/2A, ,

Vp ——a /4A, , (24)

respectively. For the following analysis we will use o. and
X in favor of a and A, ; note V=A, (o —P ) . The Hubble
parameter is then given by

H'(y) =S~V(y)/3mp, '
=SR(P cr ) /,mp~-

=St~'/m»' (P«~) . (25)

For the case of good reheating TRH can easily be high
enough for primordial nucleosynthesis to proceed as usual
(A, need only be ) 10 ), and possibly high enough for
baryogenesis to proceed in the usual way (TRH ) 10' GeV
for A, &5 X 10 ).

For the case of "poor reheating" (I &H, ) the reheat
temperature is TRH —(I mp~)' [cf. Eq. (14)]. As before,
primordial nucleosynthesis requires that I & 10 GeV.
If the baryon asymmetry can be produced directly in the
decay of the coherent field oscillations, then

1 =10 e [V"(a)/mp~]

=4&10 e 5 k I
(A, /4X 10 '

) SX10 GeV

A, &4&10 ' 5

P=45 'X 10'A, '~2mp,

& 10 S~o (22b)

We have taken into account the dependence of 8 upon
P because for this potential the variation of H with P is
important.

(a), (b) The condition for a "slow-roll" is
~

V"
~
&9H,

which implies
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g )mp( /18. (26)

P, =o —mp)/6; (27)

i.e., P rolls very slowly from Ps ()Ho) to P„which is
essentially equal to cr [W. hen cr & mp~, we have one of the
rare cases where condition (Sc), as well as (5b), is impor-
tant in the determination of P„ taking both conditions
into account we find that P, =o —m &p/4. 3. The numeri-
cal difference between this and Eq. (27) is never very im-
portant; however, in constructing Table I we have used
this more accurate estimate for P, .]

The requirement that p, —pt, & many H is just

cr &30k'o , /mp) ~crjmp) (A, ' /30 .

(c) During the slow-rollover 3HP= —V' and

N(P) = f H(P)dt

=3o jmp& [1 n(P jP b) (Pja) +—(P~ jo) ] . (28)

In integrating the equation of motion we have taken into
account the variation of H with P. For P))Pb & Ho, Eq.
(28) can be simplified to

P( t)=Pbexp[(mp~/o ) N(P)/6] .

Physically, N(P} is the number of e-folds the cosmic scale
factor R(t) undergoes during the time it takes P to go
from PI, to P; for P «o, H(P)=HO —constant and
N(P )=Ho t.

During the journey of p from /=gab to p=p, R(t) un-
dergoes N=N(P, ) e folds of g-rowth. The values of P
and P 60 e-folds before P=P, are needed to compute
(5pjp)H on the scales which are of interest today. From
Eq. (29) it follows that

The end of the slow-rolling interval is determined by
~

V"(P, )
~
=9H, , which implies that

=o +mp) /12 —amp((1+mp( /16a )' /3 .

For o' )m p~ [which is the range of interest, cf. Eq. (26)],

(5t /S»}H- H—'(4x, )/4x,

=—3H'(P~, ) / V(P~, )

12V 2A, ( o/hatt 'p~ ) ( o/(5 ') [ 1 —(P /cr ) ]

(31a)

(31c)

For the scale of interest (Nt 60), $6p
X exp[ —10(mp&/cr) ], and if o. & 3m@~, $6o is substantially
less than P, (and o.) so that Eq. (31c}reduces to

(5pjp)H=12W2A, ' (o/mp]) exp[Ni(mp(/cr) /6]

(o. &3mp)) . (32)

[In this regime H(P& )=Ho and V'= —2ag~ —the varia-
l

tion of H with P can be ignored, and the quartic term can
be ignored when computing V'. Equation (32) could also
have been derived by direct substitution of Ho and 2agz,
into Eq. (31b).]

Computing (5p jp)H when o ))3mp& is not as straight-
forward. In this regime Eq. (30) is a poor approximation
to the solution for $6o in Eq. (28), and so we have directly
solved Eq. (28) fol $6p. Fot o'= 3' p& the error made in
computing (5pjp)It by using Eq. (30) for $6o is a factor of
1.7, increasing to an error of a factor of 30 for o.=30pl p].

Bringing together conditions (26), (28) and (32), we find
that successful inflation can be achieved for cr) mp~/3.
The prescribed values of a, X, a, and Ho are tabulated in
Table I. In order to ensure that the cubic term does not
interfere with the success of this potential we must also
have P&ko. We have also checked these analytic results
against numerical integrations of the equations of motion
and find good agreement.

As discussed in Sec. II [see discussion of constraint (e)],
the energy available for reheating the Universe is deter-
mined by the value of H at P=P, . For this potential H
varies significantly between /=0 and P=P„and so H, is
not accurately approximated by Ho. Substituting

P, =o —mp~/6 into Eq. (25), we find that H, =A,o .
[Note that H, /Ho -1/(8o /mp~ ).] Thus the maxi-
mum reheat temperature is

PJv, —P, xpe[ (mp~/o) Nt/6—], (30)

and P~, is related to ((}~, by the equation of motion for P
(P= —V'/3H). The density perturbation on the scale
which crossed outside the horizon Ni e-folds before P=P,
(when it reenters the horizon) is

TRH —(H, mp)) /

=(Xa' /mp, ')'"mp,

=(A, /10 ' )' (o/mp~)' 10' GeV . (33)

TABLE I. Prescribed parameters for the potential V= Vo —a/~+A, P4—:A, (P —o ) . Note that
a =2ko and a/Ho —(mp, /2o ) . To compute these parameters we have used Pb = 10Ho,

P, =cr mp~ /4 3, a—nd solve. d Eq. (28) for $60.

o/m»

0.5
1

2
3

10
30

2&& 10-~
5 X10-"
1~ 10-"
2X 10-"
3 &&

10-"
3 ~10—17

Hdt

70
120
330
740

8100
73000

Hp/5

10 GeV
5)& 10 GcV
5 &( 10' GeV
2)&10'~ GeV
6)& 10' GeV
2)& 10'4 GCV

TRH(max) =
(H, ~„)'"/6'"

1X10 GeV
2~10'4 GeV
4X 10' GeV
6X10" Gev

10' GeV
3X10" Gcv

'To calculate N, we have taken Pb =Ho [cf. Eq. (28)].
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For the case of poor reheating (I & H, =I,' o ) TRH is, as
before, =(I'mp))'~, and nucleosynthesis constrains I' to
be &10 GeV. If the baryon asymmetry can be pro-
duced directly in the decay of the coherent field oscilla-
tions, then we need

r=lo-2O~-'[ V"(~)/m „]
=c (A, /10 ' )(o./mp)) 10 ' GCV,

where as usual m~= V"(cr)' =(8A)'~ , cr is the mass of
the rolling Higgs field.

The potential we have just analyzed ( V= Vo —uP—PP +A,P ) is not necessarily an arbitrary potential; it
would, for example, represent the renormalizable effective
potential for a scalar field which is weakly coupled to or-
dinary matter. (Some consideration must be given to the
high-temperature effects which must push the Universe
towards / =0 in such a model so that a slow-rollover tran-
sition indeed takes place. This issue is considered in Ref.
29.) Fine tuning of the quartic self-coupling and of all the
dimensional parameters (with respect to the SSB scale o)
is obviously required, but this fine tuning may be "natur-
al" in certain contexts (e.g., supergravity or supersym-
metry theories). ' Because of the weak coupling of the ()t

field to ordinary matter, sufficient reheating may be a dif-
ficulty (as in the Dimopoulos-Raby model' ' ). Finally,
we warn the reader that it would not be correct to assume
that fine tuning a GUT Higgs potential according to this
prescription [Eqs. (22a)—(22d) or Table I], would result in
a successful inflationary model. In such a model radiative
corrections due to the gauge fields would have to be con-
sidered (if the scalar field is not a gauge singlet, or other-
wise couples to the gauge fields). Since those corrections
involve terms quartic in the scalar field, with coefficients
that depend logarithmically on (t, the analysis is quite dif-
ferent. (Recall, for our example we assumed constant
coefficients a, P, A, .) We have found that the radiative
corrections make it impossible to satisfy our prescription
for a successful inflationary scenario.

IV. CONCLUDING REMARKS

New inflation is an extremely attractive scenario for
resolving the handful of very fundamental cosmological
conundrums which plague the standard cosmology. Thus
far, the idea of a slow-rollover transition, ' which solves
in a very simple way the fundamental difficulty with
Guth's original inflationary picture: the "graceful return"
to the standard cosmology, has not been implemented
with complete success. ' In Sec. II we have discussed in
detail the set of constraints a scalar potential of a single
Higgs field must satisfy in order to give rise to a success-
ful inflationary model. We believe that the prescription
outlined in Sec. II will serve as a useful guide for develop-
ing successful inflationary-Universe models; in fact, this
set of rules has already proven useful in studying the effi-
cacy of certain supergravity potentials.

From our "worked" example it is clear that the con-
straints seem to require extreme fine tuning of parameters
(compared to the "typical choice" of parameters in a
GUT potential). If this fine tuning is indeed necessary,

there is the hope that it can eventually be understood as
being due to "new physics. " In fact, the constraints are
likely to be even tighter when the dynamics of the initial
phase (/ =0—+/=$0) of the transition are taken into con-
sideration. For example, high-temperature effects may
push the Universe into the stable phase before the transi-
tion even takes place. Also, if the transition is to be ini-
tiated by a Hawking-Moss-type nucleation event, then
the Universe must begin on the metastable-phase side of a
barrier that is small enough for the Hawking-Moss limit
to be applicable. ' ' There is also the question, which we
mentioned earlier, of competing phases —although the
SU(3) X SU(2) XU(1) SSB minimum may be the true vac-
uum, that does not guarantee that the Higgs field goes
directly to that minimum, and not through some other
metastable phase first.

There is a possible "loophole" in our set of
constraints —the assumption that the potential is a func-
tion of a single scalar field. Since the constraints seem to
be very restrictive (almost mutually exclusive), it may be
somewhat easier to achieve successful inflation with a po-
tential that involves several fields, with one being respon-
sible for slow rollover and another responsible for reheat-
ing. We are presently investigating this possibility.
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APPENDIX A: HOW SCALE INVARIANT IS
THE DENSITY PERTURBATION SPECTRUM

IN THE NEW-INFLATIONARY-UNIVERSE
SCENARIO?

Roughly speaking, quantum fluctuations in the scalar
field P give rise to a scale-invariant spectrum of density
perturbations after reheating. ' ' There is, however, a
logarithmic dependence of the spectrum on scale. In this
appendix we study the quantitative effect of this deviation
from exact scale invariance.

The density perturbation on a comoving scale I at the
tllllc of 11011ZQI1 cl'osslllg durlIlg tllc FRW cpoc11 after 111-

flation is given by [cf. Eq. (9)]

(op/p)a=(H2/y)
l ~,

where FE /P is evaluated at the time t =tt, when the scale
crossed outside the horizon during the inflationary epoch.
For a potential V which is approximately V=VO —aP"
during the slow-rollover phase we have [cf. Eq. (10)]

(A2)

where n &2, and N~ is the number of e-foldings from
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M(Nt ) =exp(3Nt )Mo, (A3)

where Mo is the mass within the horizon at the end of in-
flation. Using the fact that during the radiation-
dominated FR%' epoch the horizon mass is
MH —(t/sec) Mo and that the age of the Universe is
t =(T/MeV ) sec, it follows that Mo-(p TRH /
MeV ) 'Mo, so that

t=tt to the "end of inflation" (when P=o). (Note: if
I « H, the "end of inflation" is not reheating, but the be-
ginning of the coherent-field-oscillation phase. ) The
comoving mass contained within the comoving scale l is

(&P/P)H ~ exp[(mp~/rr)'N, /6], (A6)

and so

the deviation from scale invariance increases with decreas-
ing values of n, p, and TRH. For n =3, p = 10' GeV,
and TRH-1 MeV, the variation from M& ——10 Mo
( =present horizon mass) to M2 = 10' Mo ( =galactic
mass) is a factor of 1.60; while for n =3, p, = TRH ——10'
GeV, the variation is only a factor of 1.43.

For n =2 and o (3m') we have [cf. Eq. (32)]

Nt= ,
'

ln(p—, T„HM) . (A4) m p]2/18(12
(~P/P )H, M, /(&P/P )H, M, —(M 1—/M2 ) (A7)

Here V(/ =0)=p, p and TRH are measured in MeV, and
M is measured in solar masses.

Combining Eqs. (A2) and (A4) we have

(5P/P)H, M, /(&P/P)H, M

=[in(M(p TRH)/ln(M2p TRH)]'" "/'" '; (A5)

For o. mp], M~ ——10 Mo, and M2 ——10' Mo, the devi-
ation from scale invariance is a factor of 3.60. A devia-
tion of less than a factor of O(3) from exact scale invari-
ance is probably not significant. For n =2 and o »3mp~,
(5P/P)H is essentially independent of Nt [cf. Eq. (31)].
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