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the date of receipt and acceptance should be inserted later

Abstract This paper provides a survey of the state-

of-the-art and future directions of one of the most im-

portant emerging technologies within Business Analyt-

ics (BA), namely Prescriptive Analytics (PSA). BA fo-

cuses on data-driven decision making and consists of
three phases: Descriptive, Predictive, and Prescriptive
Analytics. While Descriptive and Predictive Analytics

allow us to analyze past and predict future events, re-

spectively, these activities do not provide any direct

support for decision making. Here, PSA fills the gap

between data and decisions. We have observed an in-

creasing interest for in-DBMS PSA systems in both re-

search and industry. Thus, this paper aims to provide

a foundation for PSA as a separate field of study. To

do this, we first describe the different phases of BA.

We then survey classical analytics systems and iden-

tify their main limitations for supporting PSA, based

on which we introduce the criteria and methodology
used in our analysis. We next survey, categorize, and
discuss the state-of-the-art within emerging, so-called

PSA+, systems, followed by a presentation of the main

challenges and opportunities for next generation PSA

systems. Finally, the main findings are discussed and

directions for future research are outlined.

Keywords Business Intelligence · Database Systems ·

Data Analytics · Decision Support Systems

1 Introduction

Today’s world is fast becoming inextricably connected
to information technologies. Cloud services, smart ma-

D. Frazzetto, T.D. Nielsen, T. B. Pedersen, L. Šikšnys
Aalborg University
Department of Computer Science
E-mail: {davide, tdn, tbp, siksnys}@cs.aau.dk

chines, internet of things, mobile computing: these are

some of the top technological trends reported by Gart-

ner research in 2016 [33], showing how both business

enterprises and users are going through a process of dig-

italization of their activities, rapidly leading to a higher

data production rate. This massive production of data

poses new questions: how do we efficiently store and ma-

nipulate such data and, most of all, how do we generate

value from it? Data describes facts about the present

and the past. Thus, when collected and stored, data is

already dead, meaning that by itself it does not provide

any new understanding beyond those of the mere his-
torical facts [40]. If no efficient ways are found to make

use of the data we generate, the advantage of being able
to collect such data simply vanishes.

In a recent report [32], Gartner identifies Business

Analytics (BA) as a top priority on the chief informa-

tion officers’ agendas, by accounting for as much as 50%
of the planned investments, thereby largely surpassing
other technologies such as infrastructures and data cen-
ters, cloud computing, and service digitalization. BA is

a set of information technologies (IT) whose objective

is to drive business planning by utilizing data about

the past to gain new insights about the future [64]. For

years, advancements in BA have provided efficient ways
to store and analyze data: from simple spreadsheets
to advanced DBMSes with integrated analytics func-
tionality such as online analytical processing (OLAP),

data mining, machine learning, data visualization, etc

[44]. The evolution of the data itself, from its increasing

complexity to the velocity with which it is produced, to-

gether with the enterprises’ need for more effective data
analytics solutions, have been the key factors that trig-
gered the advancement of BA [40]. BA has so far estab-

lished a way to analyze the current status of an activity

and to predict the possible outcomes in the future. How-
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ever, to bring new value to the process, another step is

necessary: find and evaluate the best course of action

to achieve the business goal. From this perspective, it

is possible to recognize three phases of analytics within

BA, each with a different scope: Descriptive Analyt-

ics (DA), Predictive Analytics (PDA), and Prescriptive

Analytics (PSA). After answering the questions what

happened? (DA) and what will happen in the future?

(PDA), PSA answers how to make it happen?, allowing

users to plan and perform a sequence of actions to op-

timize the performance of a process. PSA is a new type

of data analytics [64], extending the capabilities of the

well-known DA and PDA, by enabling data-driven op-

timization for decision support and planning.

While the term Prescriptive Analytics itself is rela-

tively new, introduced by IBM [64] and trademarked by

Ayata only in 2010, the underlying fundamental con-

cepts and techniques have been around for years and

cannot be considered novel in themselves. Instead, the

novelty of PSA lies in the combination and integra-

tion of these concepts and techniques in a synergetic

way taking optimal advantage of hybrid data, business

rules, and mathematical/computational models. Thus,

PSA is an emerging and not yet established field. To

first evaluate how widespread the term prescriptive an-

alytics currently is in academia, we found (with Google
Scholar), that since 2010 only 67 published papers men-

tion prescriptive analytics in their title. Most of these
papers analyze problems and present PSA solutions for

a specific application domain, such as transportation

[112, 77], health care [104, 53], business process opti-

mization [39], car rental [45], supply chain [99], and

smart grids and energy management [88]. The most

comprehensive overview of PSA that we have found is

given by Soltanpoor et al. [97], where the authors define
the distinction between DA, PDA, and PSA, and pro-
pose an abstract architecture and a conceptual frame-
work for PSA, specifically for the field of educational

research. However, as our goal is to thoroughly explore

the current state-of-the-art of PSA, beyond the use of a

specific term, we broaden our survey to include papers

that, although not explicitly referring to PSA, propose
contributions towards PSA development. Here, we fo-
cus on the system aspect of PSA, i.e., technical/tool

contributions rather than specific solutions. Within this

scope, the paper provides the following contributions:

– Analyzing the current status of PSA technologies

and identifying challenges and opportunities for fu-

ture research on these. To do so, we begin by briefly

outlining the historical evolution of the broader area

of BA, following the steps that have lead from simple

reports to advanced analytics. We give an overview

of the three main phases of BA – namely DA, PDA,

and PSA, defining the objectives, and requirements

for each of them.
– Identifying the typical tasks and the different ap-

proaches that have been pursued for PSA. To de-

limit the scope of the paper, we focus on categoriz-

ing and comparing representative research papers

and software systems that propose steps to advance

data management systems towards PSA. By do-

ing so, we identify state-of-the-art in the field, the

trends in the development of PSA systems, and the

differences between the emerging approaches. For

this survey, we collect the papers presenting the sys-

tems that explicitly focus on (some of the) aspects
of PSA development. To our knowledge, no previ-

ous study has surveyed the state-of-the-art from the

point of view of PSA support.

– Defining the major challenges and opportunities

of PSA, together with an overview of the solutions

proposed by the state-of-the-art systems.

This paper is structured as follows. Section 2 de-

scribes the evolution of BA, followed by the identifi-

cation of the different BA phases and tasks. Section 3

gives an overview of the classical software systems used

in BA applications. Section 4 discusses evaluation cri-

teria of the new emerging systems as well as our survey

methodology. Based on these criteria and methodology,

Section 5 surveys, evaluates, and compares a number

of new emerging systems. Section 6 discusses remaining

challenges and opportunities, and Section 7 concludes

the paper.

2 The evolution and phases of Business
Analytics

In this section, we give an overview of BA to position

PSA in its proper context. To do this, we start by de-

scribing the evolution of BA and the characteristics of

BA systems, followed by the identification of the differ-

ent BA phases and tasks. Lastly, we give a real-world

use-case example of a PSA application.

2.1 Introduction to Business Analytics

The first appearance of the term Business Intelligence,
or Business Analytics (BA), can be traced back to 1958,
when Hans Peter Luhn published in an IBM journal the
article ”A Business Intelligence System” [63]. The au-

thor defined the term business as a ”[...] collection of

activities carried on for whatever purpose, be it science,

technology, commerce, industry, law, government, de-

fense, et cetera.”, and the term intelligence as ”[...]the
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Fig. 1: Key areas that contribute to BA.

ability to apprehend the interrelationships of presented

facts in such a way as to guide action towards a desired

goal[...]”. BA aims at providing sophisticated informa-

tion analysis and supporting managerial decisions by

making use of large amounts of data [17].

Considering the technological applications of data

analytics, the evolution of BA has spanned across mul-

tiple fields, from the appearance of a computerized

weather forecast system in 1950 and the release of Visi-

calc in 1979 (the first commercial spreadsheet software),

over to the widespread use of modern BA software
suites [44]. The classic BA setup is built around a (typi-
cally large) data warehouse [49], on which various oper-
ations are possible: from simple reports and Structured

Query Language (SQL) queries to slicing and dicing of

multidimensional data [19] and applying advanced data

mining algorithms [64]. The combination of data man-

agement and analytical tools makes it possible to sup-
port business level decision making. Therefore, BA can
be seen as the intersection of two main research areas—

decision support systems (DSSs) and data management

systems.

DSSs are computer technology solutions that are

used for supporting decision making and problem solv-

ing. Over the last three decades, research in DSS has

evolved from the early work that started around 1985

(see [13, 54, 26]), to modern solutions [82, 91] that com-

prehend (i) advanced DBMSes, (ii) mathematical mod-

eling functions, and (iii) user interfaces offering query-

ing and analysis tools as well as graphical visualization

capabilities. The evolution of DSS has been the fruit

of the research in different fields, e.g., computer sci-

ence, mathematics, and operations research, leading to

a combination of approaches belonging to different dis-
ciplines [92].

A crucial contribution to the evolution of DSSs has

been provided by the database community research,
specifically with the ’90s work in data warehousing,
OLAP, and data mining. The research in the database

field has contributed to the appearance of data-driven

DSSs, where the source and focus of the analysis have

shifted from the mathematical models, that were pre-
viously the main DSS tools, to the data, thanks to the

large quantity of information now being available. As

the amount of data that can be stored and processed

increases, so do the possibilities of utilizing such data

for analytical purposes.

We start now by first presenting the recognized
structure of BA. Then, we focus on the aspects most

relevant for PSA, including the typical tasks involved

and the application workflow.

2.2 The structure of Business Analytics

The consolidation of database solutions and data ware-

housing, and the diffusion of DSSs, have lead to BA

becoming an umbrella term that covers a broad range

of IT technologies [64, 44], among others: data manage-

ment, data warehousing, OLAP, statistics, data mining,

machine learning, operations research, data visualiza-
tion, etc (see Fig. 1). Because of this increase in the
number of tools, and therefore also in the number of
scenarios in which BA has found application, it is im-

possible to associate BA with a single field. Neverthe-

less, the following three core objectives of BA can be

identified [64]:

Hindsight: Gain understanding of the decision pro-

cess, to obtain a structured description and view of

the past and of the current state.

Insight: Utilize the past to predict future events.

Foresight: Combine knowledge about the past and the
future to drive decision-making and optimization of

the decision process.

Considering these objectives, it has been attempted

to divide BA into three phases— Descriptive Analyt-

ics (DA), Predictive Analytics (PDA), and Prescriptive

Analytics (PSA) [64, 94]:

DA: What happened? Involves techniques that provide
historical data analysis, typically based on data ag-

gregation and data mining.

PDA: What will happen? Involves techniques, typi-

cally based on machine learning, that aim at pro-

ducing predictions and forecasts.

PSA: How to make it happen? Involves techniques to
evaluate and find the best alternatives for a decision

process, given a (complex) set of objectives, require-

ments, and constraints.

The differences between DA, PDA, and PSA can

clearly be seen in the context of a typical generic
decision-making workflow, shown in Fig. 2. This in-

cludes a number of tasks carried out by human analysts,
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Fig. 2: The phases and tasks of a decision making work-

flow (adapted from [106, p. 5]).

using one or more BA tools. In this context, DA, PDA,

and PSA offer different levels of support to the user

(human analyst) for solving a complex decision making

problem. Here, a specific BA phase consists of a set of

tasks, for which the user is offered support, assistance,
or automation by a given BA tool. We now give a short
overview of the tasks in this workflow:

1. Collect and Consolidate Data

In this task, data on the decision process is col-
lected and stored, e.g., in DBMSes, data-sheets, dis-

tributed file systems, etc. Moreover, cleaning and

consolidating the data to eliminate errors and incon-

sistencies, or data mining to extract information and

features, are common operations within this task.

2. Make Decision-Based Predictions

Using techniques from machine learning (e.g. time

series forecasting, Markov models), the goal of this
task is to perform an exploratory analysis of the
events and trends that condition the decision pro-
cess by analyzing historical data (provided by Task

1 ). This task is an intermediate activity, which the

analyst can perform to obtain predictions about the
future of the decision process, which can in turn

be used to guide decision making in the subsequent

tasks.

3. Identify Alternative Decisions and Objectives

The first goal of this task is to identify the objec-

tive(s), rules, and constraints of the decision task.
To support this task, analysis of the decision pro-
cess is performed with techniques such as business

rule management and process mining [1, 110]. Af-

ter having specified the objective(s), the second goal
is to identify alternative decision options, together

with the respective cost/gain functions and associ-

ated constraints.

4. Model and Simulate Alternative Decisions

Next, the effect that the decision options will have
on the decision process has to be estimated. This
task is connected to Task 2, where prediction and

simulation models can be used to help simulate the

behavior of the system under different settings (deci-
sion alternatives). Generally, simulation models can
be either manually defined by the user (using pur-

pose oriented languages and software) or automati-
cally inferred from the available historical data.

5. Select an Optimal Decision

Selecting an optimal decision is what we refer to as

a prescription. With Task 2 we know how to model

the future, and Task 4 tells us how our actions will

affect the decision process. Therefore, it is possible

to utilize techniques such as optimization or game

theory to find an optimal course of action relative

to the objectives and decision options identified in

Task 3 and the events predicted in Task 2.

6. Perform Analysis

This is an intrinsically iterative workflow: after the

(prescribed) decision options have been realized, the
resulting process events are observed. Collecting the
data pertaining to these events can now trigger a
new iteration of the BA workflow, starting again

with Task 1. To understand the results of the pre-

scriptions and guide the workflow process, we can
analyze the effects of the changes on the decision

process using, for example, visualization tools or
business Key Performance Indicators (KPI).

Within the context of this workflow, DA, PDA, and

PSA are interdependent – DA is a sub-phase of PDA
and PDA is a sub-phase of PSA. Among these, PSA

offers the highest level of support within this workflow
and therefore has the highest value among the differ-
ent phases. Based on the described workflow, we will

provide more detailed descriptions of BA phases in the

next sections.

2.3 Descriptive Analytics

DA is the most widespread and established phase of

BA, as the vast majority of the tools currently used for

analytics falls within this phase. The focus in this phase

is on collecting, categorizing, and classifying data, as

well as on identifying and visualizing relevant patterns

in the data [64]. It is possible to recognize in the re-

search of the data management field some of the most

important technologies that have enabled advanced

data analytics, laying the basis for the development

of BA [51]. The introduction of data warehousing and

OLAP alongside the more traditional DBMSes opened
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new possibilities for sophisticated and easily accessible

data analytics (see [56, 68]). Furthermore, other tech-

niques that have become standard toolboxes for DA

applications are data visualization, dashboards, statis-

tical analysis, and data mining [76]. Methods such as

pattern matching and clustering are often a standard

starting point in the decision process, allowing the user

to extract, translate, and visualize the information con-
tained in the data in a more meaningful and simple way.

2.4 Predictive Analytics

DA tools lack the capability to perform predictions

about future events. PDA borrows many ideas and tech-

niques from machine learning, data mining, and statis-

tics [62, 81, 3, 24, 67], generally making use of large vol-

umes of historical data to extract and synthesize novel

information [36]. These techniques provide ways to, for

example, forecast the probability of certain events, find

patterns that may repeat in the future, and determine

relationships between events. PDA aims at providing

support for planning and decision making by modeling

the process not only in terms of what has happened in

the past, but also of what will happen in the future.

PDA has been applied in different BA contexts, e.g.,

marketing and financial services, health care, supply

chains, capacity planning, etc. [109, 93, 83]

2.5 Prescriptive Analytics

PSA has already been successfully applied in many in-

dustrial and research scenarios (see [37, 97, 104, 98])

and logically follows the path lead by the two previous

phases of BA: If the past has been understood (DA),

and predictions about the future are available (PDA),

then it is possible to actively suggest (prescribe) a best

option for adapting and shaping the plans according to

the predicted future. In comparison to the other phases

of BA, PSA allows decision-makers to not only identify

issues and opportunities (by looking into past, present,

or future), but also to directly prescribe the best de-

cision options according to certain objectives and to

evaluate their results.

Although, optimization techniques are already a

well established and largely adopted way of solving de-

cision problems, through the use of mathematical tools

(see [9, 10, 105]), it is the combination of predictions

and optimization that opens new possibilities for de-

cision support. Moreover, as PSA is often applied to

real-world cases with significant uncertainty, the opti-

mization heavily relies on the accuracy of the predic-

tions and, in some cases, the ability to quantify the

D
A
T
A

S
O
U
R
C
E

DESCRIPTIVE PREDICTIVE PRESCRIPTIVE

1

2 3

4

Fig. 3: Workflow for the shop keeper use case. Data

is collected (1), transformed, and stored in a database

(2). The future sales trends are predicted (3), and the

optimal storage management is (iteratively) prescribed

and applied (4).

uncertainty about the predictions. In such situations,

the optimization may explicitly take into account the

uncertainty inherent in the domain through the (com-

bined) use of statistical and simulation-based models
[40, 6].

To further elucidate and contrast the three BA

phases, we will in the following section exemplify the
phases wrt. a concrete use case.

2.6 A Prescriptive Analytics Use Case

Consider a shop keeper who needs to decide on which
items to keep in storage in order to maximize sales prof-
its. Fig. 3 outlines the workflow of this decision process.

The shop keeper has access to item characteristics as

well as previous sales and promotion data, which can be

exploited by a BA solution. The storage can hold a max-

imum of 70 items (for simplicity, we can assume that

each item occupies a single space unit), hence the BA

solution should prescribe an optimal storage manage-

ment strategy conditioned on this storage constraint.

The first task (1 and 2 in Fig. 3) consists in the col-

lection and integration of the disparate data sources.

For this particular example, the data sources may in-

clude both structured and unstructured information,

hence the data may have to be cleaned and processed.

These tasks are generally performed with DA tools,

which can also help find patterns and relationships in
the data.

PDA lays the bridge between data and the subse-

quent decision making (3 in Fig. 3). Here machine learn-

ing and data mining techniques may be used to predict

future sales of particular items based on item character-

istics and previous sales information. However, predict-

ing future events and sales does not in itself provide a

strategy for storage management. For this an additional

task is required.
PSA addresses this type of decision problem (4 in

Fig. 3). In our example, the optimization objective can
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be addressed by considering the predictions obtained
in the previous phase, analyzing the effects of the pos-

sible decisions, and updating the probability distribu-
tions over the sales to ultimately prescribe a storage
strategy that maximize the expected sales profits.

2.7 Discussion

So far, we have presented how DA, PDA, and PSA fits

in the BA field and how they are interlinked. Among

these, PSA has the highest potential value for users.

It is again important to note that the underlying tech-

niques used in PSA are not necessarily novel. Similar to

the way in which PDA was coined as a new term for al-

ready existing machine learning and statistical methods

applied in business analytics, PSA considers approaches

already in use in operations research [111] and norma-

tive decision support systems [13]. However, the value

of PSA as a new field of study lies in defining, clari-

fying, and integrating the entire BA workflow, and in
how PSA can be made easily available to its users in a

general and standardized way. Our definition of PSA is
given from a conceptual standpoint. However, in prac-
tice PSA is not yet an established phase of BA, and
therefore not yet as widespread as DA and PDA. To

further investigate the reason for this lack of standard-

ized PSA tools and applications, we will expand on this

discussion in the next chapter, where we will compare

different state-of-the-art PSA systems.

3 Classical Analytics Systems

In this section, we first give an overview of the classical
software systems utilized in both general BA and PSA

applications. Drawing on the characteristics and limi-
tations of these systems, we then in the next section
define a number of general criteria and properties for
evaluating new emerging PSA systems.

To begin, we review software systems that aim at
supporting (some of) the tasks described in Fig. 2. We

have selected the systems that are already in widespread

use in BA applications, defining them as classical sys-

tems for BA. This selection is not an exhaustive list of

the existing systems. Instead, it constitutes a represen-

tative list of software systems in a number of system
classes.

As seen in Table 1, we divide these classical systems

into two main groups: BA Tools, specialized software for

individual tasks and/or specific models and domains,

and BA Suites, composed of a set of tools for generic

BA applications. For the different classes of systems

within these groups, we identify levels to which users

are provided support by the system when performing
analytics tasks in the PSA workflow (Fig. 2). Further,
based on the analytical tasks supported, we also identify

the level of DA, PDA, and PSA support for the different

tools/suites as basic, intermediate, or advanced.

BA tools from different classes mentioned in Ta-
ble 1 have been used in BA scenarios for many years.

Among these, Excel [75] is one of the most widely used

spreadsheet-based BA tools for data analysis, report-

ing, and charting used in many typical DA cases. As it

offers very basic support for predictions and optimiza-

tions, the overall PDA and PSA support is fairly lim-
ited. Data mining and machine learning (ML) libraries
and tools, such as Weka [41], Mahout [81], and ML-

lib [74] offer graphical user interfaces (GUI) providing

support for exploratory and predictive machine learn-

ing algorithms integrated with some basic data man-

agement primitives. They are therefore suitable, and
actively used as stand-alone tools, for basic DA and
PDA activities. In this category, Hugin [65] provides
support for probabilistic graphical models (PGMs) en-

abling probabilistic inference and reasoning under un-

certainty, as well as models and methods for defin-

ing and solving decision problems. Existing online ML

cloud services such as Watson [43] and Azure ML [8] are
capable of handling much larger data volumes and in-
formation processing tasks. However, they are typically
used for DA and PDA applications, and the support for

PSA is fairly limited. On the other hand, mathemati-

cal optimization tools such as Gurobi [80], CPLEX [60],

and OptaPlanner [96] focus on mathematical program-

ming and thus offer dedicated languages and generic
high-performance solvers for different problem classes
such as linear programming and mixed integer pro-

gramming. Despite substantial support for optimiza-

tion, these tools alone are not suitable for exploratory

data analysis and predictive modeling, and they there-

fore need to be combined with other tools to provide full

DA, PDA, and PSA support. Computer algebra tools
such as Mathematica [2] and Mathcad [84] offer a rich
set of tools for manipulating mathematical expressions

in a way similar to the traditional manual computations

of mathematicians. Among other things, these tools of-

fer solvers for effectively solving systems of equations,

ordinary differential equations (ODEs), etc. However,

they lack general-purpose data management and pre-

dictive functionalities, as required for DA, PDA, and

PSA. Similarly, system modeling tools such as Dymola

and Simulink offer rich environments for analyzing and

optimizing complex systems composed of mathemat-

ical equations that describe the dynamic behavior of

a system. While these system modeling tools can be
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Table 1: Overview of traditional BA systems and their support levels for both individual descriptive (DS), predictive

(PS), and optimization (OS) tasks as well as full DA, PDA, and PSA (· - basic support; ⊙ - intermediate support;
⊙

- advanced support).

Group System Class Key Representative Systems DS PS OS DA PDA PSA

BA
Tools

Reporting and spreadsheet tools Excel, Google Sheets
⊙

· ·
⊙

· ·

Data Mining&ML libraries Spark MLlib, Mahout ·
⊙

· · · ·

Data Mining&ML GUI tools Weka, Hugin ⊙
⊙

· ⊙ ⊙ ·

Online ML cloud services Watson, Azure ML ⊙
⊙

· ⊙ ⊙ ·

Mathematical optimization tools Gurobi, CPLEX, OptaPlanner · ·
⊙

· · ·

Computer algebra tools Mathematica, Mathcad ⊙ ⊙
⊙

⊙ ⊙ ⊙

System modeling tools Dymola, Simulink ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

BA Suites
Statistical computing suites MATLAB, R, Julia

⊙ ⊙
⊙

⊙ ⊙
⊙

Statistical GUI suites SAS, SPSS
⊙ ⊙

⊙
⊙ ⊙

⊙

used in specialized DA, PDA, and PSA applications,

they do not offer support for data-driven (as opposed

to model-driven) exploratory analyses, predictions, and

optimizations.

Irrespectively of their differences in focus, these sys-
tems share a common characteristic: none of them offer

any substantial support for the tasks of the PSA work-
flow, requiring instead the use of multiple separate tools
or integrated BA suites.

BA suites provide access to multiple tools in a

single integrated environment, facilitating the devel-
opment of more complex DA, PDA, and PSA appli-
cations using a single eco-system. BA suites can typ-

ically provide functionality offered by individual BA
tools. For example, MATLAB [71] supplies a program-
ming environment and an engine targeting numerical

computing, where analytics components can be utilized

as toolboxes. In a similar way, software like SAS [90],

IBM SPSS/CPLEX [47], and Julia [7] are high perfor-

mance suites with integrated analytics more oriented

towards business applications. A non-exhaustive survey

and comparison of these systems is provided in [101].

In summary, the BA tools and BA suites do not

offer a convenient way of expressing and executing user-

defined PSA workflows (Fig. 2). The major limitations

are as follows:

– First, they typically support only procedural pro-

gramming languages with no declarative primitives

for expressing the PSA workflow tasks. While soft-

ware developers are familiar with procedural pro-

gramming, and often have a high level of exper-

tise with multiple programming languages, data an-

alysts often benefit from a declarative approach,
where the focus is on data analysis and not on al-
gorithmic specifications. For example, BA tools and

BA suites still require the use of multiple languages

and imperative constructs for expressing different

tasks of the PSA workflow, e.g., data collection and
prediction.

– Second, there is no native support of the PSA work-

flow of Fig. 2. Although BA tools and BA suites let

the user develop PSA applications, their design is

not directly focused on PSA applications. Therefore,

no specific support is provided to the user for these

types of use cases. As a result, the different tools
required for PSA have to be inter-connected manu-
ally in an ad-hoc fashion, resulting in less structured

and more time-consuming and error-prone specifica-

tions of PSA workflows. Furthermore, if new algo-

rithms or specialized models (e.g., energy flexibility

models [79, 78]) need to be used in the application,

the closed structure of the architectures might com-

pletely prevent this, or lead to the ad-hoc integra-

tion of new tools, e.g., by the connection of external

programs, to which the data has to be transferred

via an API.

– Third, the analytics computations are still performed

on a single node machine, and often far away from
where the data is stored. Hereby, BA tools and BA

suites often lack highly scalable distributed analyt-

ics algorithms, which minimize the overhead from

data exchanges and transformations while perform-

ing the analytics computations that are part of the

PSA workflow. As such, they do not optimize the

interleaved data management and analytics work-
flows, but instead use pre-defined code that makes
API calls for accessing common DBMSes.

In the next section, we outline the evaluation crite-

ria for a class of more recent emerging systems, denoted
as PSA+ systems, that aim to address (some of) these

limitations and thus enhance the overall support for

PSA applications.
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4 PSA+ criteria and methodology

In this section, we first define the PSA+ system evalu-

ation criteria, followed by our chosen survey methodol-

ogy.

4.1 PSA+ System Evaluation Criteria

We now propose a number of PSA+ system evaluation

criteria within the following three feature categories:

productivity features, technological features, and analyt-

ics features.

Productivity features First, we have identified

that a common thread among recent PSA+ systems

appears to be the focus on developer productivity. That

is, efforts are targeted towards increased usability while

also offering high-productivity features and providing a

common easy-to-use framework for data analytics. We

therefore intend to evaluate the contributions based on

the three criteria — workflow support, system extensi-

bility, and language integration, each taking the values

shown in Table 2.

Technological features Second, we have identi-

fied basic properties for characterizing the more tech-

nological side of the advancements proposed in the lit-

erature. This includes the following criteria: distributed

computation to characterize the potential for system

scalability, data independence to characterize data flow

optimization opportunities, and implementation inde-

pendence to characterize auto-selection of algorithms

and optimization opportunities.

Analytics features Lastly, we evaluate the levels

of support for DA, PDA, and PSA tasks. For this, we

define the following criteria: descriptive primitives, pre-
dictive primitives, and optimization primitives. These

criteria describe whether, for each of the phases of BA,

the fundamental analytics operations are supported na-

tively in the system.

In the following sections, we will describe the pro-
posed criteria and their properties in more detail.

4.2 Productivity features

Workflow support describes the capability of the sys-
tem to support the user in the entire decision process,

bringing the data and the results from one phase to

the next while assisting in the natural iterative pro-

cess of performing the analytics shown in Fig. 2. On

one end of the spectrum we identify algorithm-oriented

approaches, aiming at simplifying the development of

analytics algorithms by separating the algorithm defi-

nition from the underlying data representation. For ex-

ample, SystemML [35] proposes an algorithm-oriented

approach, supporting low level operations such as read-

ing/writing data, iterations, matrix operations, binary

operations, etc. Task-oriented approaches describe sys-

tems focusing on separating the analytics process from

the algorithmic level, by providing the user with sup-

port for specific analytics applications, such as predic-
tions or optimization. For example, MLBase [57] pro-
poses a task-oriented approach, supporting high-level

operations such as classification, features generation,
clustering, etc. Finally, process-oriented approaches use

high-level instructions and core optimization techniques
to support the user throughout the PSA workflow tasks,

from data to decisions.

System extensibility describes the possibility of

extending the system’s tool set/algorithms. Traditional

solutions often follow a closed-system approach, where

the user has no possibility of extending the system with
custom tools, or where the only possibility is the con-

nection to external programs. More advanced extensi-

ble systems instead provide interfaces for user exten-

sions within the system itself. This type of approach

allows the user to integrate custom algorithms within

the same core architecture while taking advantage of

the available eco-system of existing algorithms.
Language integration describes the effort to re-

duce the number of languages required for PSA applica-

tions. While traditional systems use multiple languages

for data management, analytics, and decision support,

recent developments attempt to integrate these tasks

in a single unified language, with the objective of re-

ducing the developing time and cost. For example, in
Tiresias [73], data management and manipulation are

performed via standard SQL, while optimization prob-
lem modeling and solving are supported via a Datalog-
based language. On the other hand, SolveDB [108] uses

a single SQL-based language for both data management

and optimization problem specification and solving. Im-

proved productivity from a single declarative language

is reported both for SolveDB [108] and for general Big

Data Analytics systems [70].

4.3 Technological features

Distributed computation describes whether the sys-
tem allows the analytics computation to be effectively

run in a distributed setting. The system language/in-

terface hides from the user the distributed execution of

algorithms, tasks, and processes.

Data independence describes whether the system

can run a user application correctly irrespective of the
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Table 2: Productivity Feature Categorization Criteria and Values

Productivity features Traditional (·) Modern (⊙) Advanced (
⊙

)
Workflow Support algorithm-oriented task-oriented process-oriented

System Extensibility closed system — extensible systems

Language Integration multiple languages — unified language

physical organization of data. In traditional DBMSes,
physical and logical data independence, as initially de-

fined [50], shields the user application from changes
to the physical organization of the data. Systems that
bring this property to the analytics functions satisfy
data independence. For example, SolveDB [108] fulfills

the property by making query and solver implementa-
tions immune to the physical data organization and the
data management optimizations performed.

Implementation independence determines whe-

ther the system decouples the high-level specification

of an analytics application from its physical imple-

mentation. When the property is satisfied, results are

correct and equivalent, independent of, e.g., the cho-

sen algorithm, operator implementation, and optimiza-

tion strategy. Standard DBMSes already guarantee this
property [50]. For example, in SystemML [35], the prop-
erty is fulfilled via distributed/centralized determinis-

tic operations, of which the algorithms are composed.

In MADlib [42], this property is not guaranteed, as the

algorithms are user-defined.

4.4 Analytics features

Descriptive Primitives appear in traditional DBMSes

and provide the user with basic primitives for data ma-

nipulation/operations. The primitives are known by the

system in order to generate execution plans for the op-

erations. The user is provided with primitive operations

that allow the implementation of BA tasks, algorithms,

or processes. The operational semantics resulting from

the standard primitives allows the system to reason

about equivalences and cost of alternative execution

strategies. Descriptive primitives refer to, for example,

relational algebra, or built-in aggregation functions such

as GROUP BY or COUNT, OLAP operations, etc.

Predictive primitives define whether the system
is equipped with special primitives to manipulate pre-

dictive algorithms and models. For predictive algo-

rithms, this includes primitives for linear algebra, ma-

trix operations, statistical functions, whereas for predic-

tive tasks, this includes specific model functions, such

as fit, predict, etc. The operational semantics of pre-

dictive primitives allows the system to evaluate execu-
tion plans for the operations supported by the prim-

itives. An example of a system supporting predictive

primitives is F2DB [30], with declarative primitives for

time series forecasting in SQL, e.g. SELECT c AS OF

time-interval.

Optimization primitives defines whether the sys-

tem is equipped with operations to specify and manip-

ulate optimization models (problems), such as specify-

ing objective variables, loss functions, objective func-

tions, constraints, etc. Similar to descriptive and pre-

dictive primitives, the known semantics of the optimiza-
tion primitives makes meta-optimization of the exe-

cution plan of the primitives possible. An example of

a system offering optimization primitives is SolveDB

[108], where SOLVESELECT t(x) AS (...) MINIMIZE

(SELECT sum(x) FROM t)..., defines decision variables
and the objective function of an optimization problem

in SQL.
We next describe our literature survey methodol-

ogy, which will form the basis for Section 5, where we

present our categorization of the relevant literature, de-

scribe the different categories in detail, and classify the

selected systems according to the criteria given in Sec-

tion 4.1.

4.5 Survey Methodology and Categorization

As already discussed in Section 1, the number of papers

and systems focusing directly on PSA is limited. In our

review, we therefore survey recent literature that, while

not necessarily mentioning PSA explicitly, indirectly

contributes to enhancing user PSA applications. First,

we performed simple searches using Google Scholar to

provide an overview of the existing work in PSA and to

identify conferences, researchers in the field, and rele-

vant keywords, e.g., recurring terms, common research

topics, etc. Our research produced an initial pool of

papers that have been used as a foundation for an ex-
haustive iterative structured search. In each iteration,
we selected new papers deemed relevant to our PSA sur-
vey, adding them to our paper pool until the selection

process converged to a point in which no more (rele-

vant) papers could be found. The selection of papers

was determined by the following criteria:

– Papers including the identified keywords.
– Papers whose title and abstract refers to the PSA

characteristics defined in Section 4.1.
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Table 3: Summary of the PSA+ system comparison. WS - workflow support; SE - system extensibility; LI - lan-

guage integration; DC - distributed computation; DI - data independence; II - implementation independence; DP -

descriptive primitives; PP - predictive primitives; OP - optimization primitives.

System WS SE LI DC DI II DP PP OP
E
m
er
g
in
g
P
S
A

S
y
st
em

s

A
n
lt
cl
.
F
rm

w
s MLBase [57] ⊙

⊙
· ✓ ✓ ✓ ✓ ✓ ✗

SystemML [35] ·
⊙

· ✓ ✓ ✓ ✓ ✓ ✗

Tupleware [23] ⊙
⊙

· ✓ ✗ ✓ ✗ ✗ ✗

MADlib [42] ⊙
⊙ ⊙

✓ ✗ ✗ ✗ ✗ ✗

Bismarck [28] · ·
⊙

✗ ✗ ✗ ✗ ✗ ✓

P
R

D
B
M
S
es LongView [3] ⊙ ·

⊙
✗ ✓ ✓ ✓ ✓ ✗

SciDB [15] ·
⊙

· ✓ ✓ ✓ ✓ ✓ ✗

BayesDB [69] ⊙ ·
⊙

✗ ✓ ✓ ✓ ✓ ✗

F2DB [30] ⊙
⊙ ⊙

✗ ✓ ✓ ✓ ✓ ✗

O
P

D
B
M
S
es Tiresias [73] ⊙ · · ✗ ✓ ✓ ✓ ✗ ✓

LogicBlox [4] ⊙ · · ✗ ✓ ✓ ✓ ✗ ✓

PaQL [16] ⊙ ·
⊙

✗ ✓ ✓ ✓ ✗ ✓

SolveDB [108] ⊙
⊙ ⊙

✗ ✓ ✓ ✓ ✗ ✓

– Papers referenced by the papers in the current paper

pool.

– Papers citing the papers in the current paper pool
(citations found using Google Scholar).

– The publication history of each paper’s author in
the current paper pool.

– All conference proceedings or journal issues pub-
lished after 2010 (included) in which the papers in

the paper pool have been found. The 8 most com-

mon outlets were ACM SIGMOD, PVLDB, IEEE

ICDE, TKDE, CIDR, DOLAP, Decision Support

Systems, and Journal of Machine Learning Research.

Finally, we selected the systems proposed by the

papers from the collected literature based on two con-

straints: (1) systems presented in papers published after

2010 (included), and (2) systems proposing advance-

ments or directly addressing the aforementioned prob-
lems (see Section 3) of limited language support, lack

of high-productivity features, and lack of PSA workflow

optimizations. Only systems meeting both constraints

were selected.

5 Emerging PSA+ Systems

In this section, we survey, evaluate, and compare a num-

ber of PSA+ systems based on our system evaluation

criteria and methodology.

5.1 Summary of Emerging PSA+ Systems

Table 3 gives an overview of the thirteen systems we

have evaluated, and shows how the systems compare ac-
cording to the different criteria specified in Section 4. In
general, these contributions range from PSA-oriented

architecture proposals over user programming/interac-

tion interfaces to newly designed DBMSes for improved

PSA applications. We have also found that the two

main trends among all the contributions appear to be

1) strengthening the connection between analytics and

data management and 2) declarative approaches for

data analytics. In fact, all the emerging PSA+ systems

in Table 3 aim at integrating the DBMS with analytics

framework technologies.

By looking at the contributions and focus points

of the presented software systems and papers, we have

synthesized a system taxonomy and grouped the sys-

tems according to this taxonomy. As seen in Fig. 4, we

recognize a single root, denoted DBMS & Analytics, en-

compassing the efforts of integrating DBMS and analyt-
ics framework functionalities. This root has two main
system branches: analytical frameworks and analytical

DBMSes. Analytical frameworks denotes a class of sys-

tems that aim at unifying analytics tools with a data
management layer in order to make the PSA process

more efficient and developer-productivity oriented. The
frameworks aim at providing high-level specifications of

analytics tasks or algorithms and provide a tighter con-

nection between the data and analytics layers. Broader

surveys of the systems in this category are available
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Predictive DBMS
● F2DB
● BayesDB

Predictive DBMS
● F2DB
● BayesDB

How-To DBMS
● Tiresias
● SolveDB
● LogicBlox

Predictive DBMS
● F2DB
● BayesDB

Model-based
● MauveDB
● MLBase
● LongView

SMART DBMS

SMART DBMS SMART DBMS

SMART DBMSAnalytics

Analytical 
Frameworks

Analytical 
DBMSes

Library-Based

● Tupleware
● Madlib
● Bismarck

Language-Based

● SystemML
● MLBase

Optimization DBMSes
● Tiresias
● LogicBlox
● PaQL
● SolveDB

Prediction DBMSes
● Longview
● SciDB
● BayesDB
● F2DB

DBMS &

Fig. 4: Taxonomy of the PSA+ systems

[12, 59] (out of the scope of this paper). In this cat-

egory, two sub-branches have already been identified
[42]: Language-based and Library-based. In the other

top branch, analytical DBMSes propose DBMS archi-

tectures integrating analytics functionality and BA sup-

port directly within the DBMS. This is achieved by

extending the DBMS architecture, query language, and

optimization techniques for in-DBMS analytics. On the

one hand, we find systems proposing the idea of predic-
tive DBMSes, by focusing on extending DBMSes with

predictive algorithms and machine learning focused lan-

guages. On the other hand, we have identified optimiza-

tion DBMSes, systems aiming at integrating DBMSes

with optimization solving capabilities.
We now survey the emerging PSA+ systems in these

categories.

5.2 Language-based Analytical frameworks

Language-based analytical frameworks focus on high-

level declarative programming languages to increase de-

veloper productivity. To support such languages, the

frameworks deliver a data processing infrastructure for
analytics processing. Examples of this category are Sys-

temML [35] and MLBase [57].
SystemML provides a framework for the develop-

ment of machine learning algorithms for both single

node and distributed computation (MapReduce and

Spark). SystemML introduces a declarative machine

learning language (DML) with the objective of pro-

viding a framework that abstracts away the low-level

details of distributed machine learning algorithms from

the user. The solution proposed by SystemML follows

an algorithm-oriented workflow approach, where the

declarative support focuses on hiding the Map Reduce

details from the user. DML allows the user to define

machine learning algorithms based on descriptive prim-

itives and predictive primitives, and iterative numeri-

cal optimization procedures [35]. By making the Map

Reduce details transparent, DML allows the developer

to perform distributed data analytics within a unified

language framework. This approach satisfies both data

independence and implementation independence, by ex-

posing only the abstract data types frame, matrix, and

scalar without their physical data structures [12].

In the same category of Language-based frame-

works, a different approach is presented by MLBase.

Similarly to SystemML, MLBase provides a framework

for DA and PDA distributed machine learning tech-

niques on a Map Reduce architecture. However, con-

trary to SystemML’s algorithm-oriented approach, ML-

Base introduces a syntax to specify task-oriented work-
flows [12]. This approach provides the user with high

level descriptive primitives and predictive primitives,
in order to define standard analytics tasks such as

classify or predict. By hiding both Map Reduce

and algorithmic specification details in the underlying

system, and with annotated algorithm characteristics

and deterministic results, MLBase also satisfies the data

independence and implementation independence prop-
erties. The translation from high-level tasks to map-

reduce operations is aided by techniques for selecting

the choice of learning algorithm and by having the

runtime execution optimized for the data-processing of

these tasks [57].

The two approaches, algorithm-oriented and task-

oriented, show both advantages and disadvantages. On

the one hand, both approaches satisfy data indepen-

dence and implementation independence by providing

the user with high-level primitives for a simplified speci-

fication of the analytics algorithms. On the other hand,

the task of manually defining analytics algorithms is
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often viable only to programmers, thus limiting the im-

pact of algorithm-oriented systems. Task-oriented sys-
tems provide a more coarse-grained scope, lowering the

flexibility in exchange for developer productivity.

An example of a task-oriented approach is given by

the simple PSA problem introduced in Section 2.6. For

this problem, MLBase (for example) can be utilized to

predict the probability with which the items will be sold
in the future, guiding the shopkeeper to keep only the
most probable ones. The shop possesses historical data

related to the sales they have made in the past months.

This data is organized in their DBMS, under the ta-

ble sales-facts. In MLBase, the prediction task can
be solved by declaratively calling a prediction function,

which will find the best prediction model for the dataset

to determine if an item will be sold or not. The code in

Listing 1 shows an example of the specification for this

problem in the MLBase language. While the variable

X holds the model features from the DB (selected from
the columns 2 to 10 with the load operation) and y the

prediction labels (extracted from the first column, again

with the load operation), doPredict selects and fits a

model for predicting sales, saving the model and the re-

sults summary in the fn-model and summary variables.

Using this approach, the prediction problem becomes a

sequence of tasks.

Listing 1: Example of MLBase program for forecasting

shop sales

1 var X = load("sales -facts" ,2 to 10)

2 var y = load("sales -facts" ,1)

3 var (fn -model , summary )= doPredict(X,y)

5.3 Library-based analytical frameworks

The second category of analytical frameworks is Libra-

ry-based frameworks, exemplified by MADlib [42], Bis-

marck [28], and TupleWare [23]. Library-based frame-

works share the goal of providing a set of analyt-
ics blocks/tools, mainly focused on DA/PDA, together
with library support for the user development process.

MADlib is an open source library that collects a

suite of SQL-based in-DBMS algorithms for DA and
PDA, for both centralized and distributed computa-

tion architectures. MADlib follows a task-oriented ap-

proach, by introducingUser Defined Aggregates (UDAs)
that can be utilized by the user as standard SQL ag-
gregation functions, such as SUM or COUNT. UDAs can

take advantage of the execution capabilities (e.g. mul-
tithreading, multiple nodes) of the DBMS, without re-
quiring to modify the DBMS code to integrate them.

MADlib gives the user the possibility to extend the

system with additional UDAs. To do this, MADlib pro-

vides an abstraction layer to facilitate the specification

of UDAs, and to encapsulate DBMS-specific logic inside
the abstraction layer. By integrating the methods as
SQL aggregate functions, MADlib succeeds at combin-

ing data management and data analytics tasks within

the same unified language environment.

Tupleware proposes an approach similar to the one
followed by MADlib, focusing on Map Reduce im-

plementations for small clusters. Tupleware proposes

a task-oriented approach, where the authors describe

an architecture for automatic compilation of user de-

fined function (UDF) workflows for in-DBMS analyt-

ics methods. Tupleware presents an extensible system,

supported by the possibility of developing the UDFs us-

ing generic programming languages. The architecture is

based on the LLVM [61] compiler, providing a language-

agnostic front-end to allow the user to choose from dif-

ferent programming languages and to optimize UDF
workflows at code generation [22]. However, both Tuple-
ware and MADlib fail at satisfying the data and imple-

mentation independence properties as the UDAs/UDFs

are implemented against custom data structures, and
the operational semantics of UDAs/UDFs are by defini-

tion unknown in the system and not based on standard

system primitives.

A different point of view is given by Feng et al. [28]

with their Bismarck architecture. In their work, the au-

thors advocate that the key bottleneck in the race for

analytical DBMSes is that each new data analytics tool

requires several expensive ad-hoc steps every time it is
installed in a new DBMS. This is caused by a lack of
unification in data management architectures and al-
gorithms. Common analytics tasks can be defined as

convex programming problems [14], e.g., the learning

task of machine learning algorithms often reduces to

minimizing an error function while fitting a set of pa-

rameters to the model. The paper suggests that, since a
number of statistical methods already fall into this cat-
egory (e.g. support vector machines, logistic regression,

and localized matrix factorization), the goal should be

to unify the algorithmic diversities under the same the-

oretical framework. Thus, the Bismarck architecture at-

tempts to unify in-DBMS analytics, providing a single

level of abstraction for the definition of general purpose
optimization UDFs, by following an algorithm-oriented

approach via optimization primitives.

On the one hand, the paper does not directly ad-
dress PSA, and further research has to be conducted to
verify that the broad range of algorithms and models

required by PSA use cases fall into the convex program-

ming problem category. On the other hand, the vision

of designing a framework facilitating analytics exten-

sions is a promising approach, which would allow both
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more control over the analytics process and easier im-

plementation and use of the algorithms. Nevertheless,

similar to the other UDF based systems described so

far, Bismarck does not satisfy the property of data inde-

pendence and the Hogwild!-style [12, 86] model updates

deny the implementation independence property.
To conclude, the systems belonging to the analyt-

ical frameworks category present several advantages,

proposing extensible and efficient frameworks with in-

tegrated DBMS and analytics capabilities, easy UDF

implementation and declarative languages for querying

the models and the data. Task-oriented approaches also

give the user an interface for easy implementation of the
analytics workflow as high-level functions that can be

combined to fulfill the analytics process, thereby pos-

sibly reducing the development of user PSA workflows

to a combination of UDFs. Nevertheless, the systems

in this category mostly focus on the preliminary tasks

of DA and PDA, and do therefore not extend to the

entire PSA workflow. Moreover, some of the systems

do not satisfy the properties of data independence and

implementation independence.

5.4 Predictive DBMSes

The systems in this branch propose extensions to well-
known DBMSes with functionality addressing predic-
tive tasks. While the approaches discussed in Section

5.2 provide analytical frameworks that can be used

on top of existing data management layers, predictive

DBMSes focus on integrating the analytical tools di-

rectly into relational DBMSes. Representatives of this

type of approach are Longview [3], SciDB [15], BayesDB

[69], and F2DB [30].

To start with an example, we consider again the

shopkeeper problem. The query in Listing 2 is written

in Bayesian Query Language (an extension of SQL), the

language used in BayesDB. The query can be used to

predict which items will most probably be sold. INFER
(line 1) is used to declare a prediction query, as a gener-

alization of the SELECT command, in which the results,

the sold items, will be predicted in inferred-sales

(line 2) by the use of the command PREDICT. In line 3,

CONFIDENCE obtains the prediction confidence for each
predicted sale, saved in inferred-sales-confidence.

The SQL language gives the possibility to easily spec-

ify constraints on the predictions (line 5), where the

prediction can be narrowed to items sold in the shops

in Ohio. The resulting view, now containing the pre-

dicted data, can then be queried by the user via stan-

dard SQL queries to extract the results. As the reader

can see, the code in Listing 2 can be used to solve the

predictive phase of the problem, while the prescription

(the optimization of the storage) still requires manual

specification by the user.

Listing 2: Example of Bayesian Query Language (BQL)

for predicting sales

1 INFER orderdate

2 PREDICT sales AS inferred -sales

3 CONFIDENCE inferred -sales -confidence

4 FROM sales -facts

5 WHERE state = 'Ohio '

In general, the systems belonging to the predictive

DBMSes category present similar characteristics. The

main goal of these systems is to integrate PDA tech-

niques within a relational DBMS. The systems offer

a wide range of common machine learning techniques,

from clustering to classification and forecasting. As al-

ready noted in [58], the main contributions can be

categorized in terms of model management, providing

support for querying and model maintenance, feature

engineering, algorithm selection, and parameter tun-

ing. The systems support techniques for transparently

selecting, processing, and maintaining the forecasting

models, thus the choice and use of the forecasting mod-

els can be kept hidden to the user. With the design
of new predictive query languages, these systems allow

the end-user to easily apply PDA tools with a declara-

tive and task-oriented approach. Moreover, the exten-

sion of the SQL language allows for seamless unification

between the data processing and predictive tasks. The
properties of data independence and implementation in-

dependence are satisfied by the underlying DBMS, and
by the use of a standardized workflow architecture for
model creation, maintenance, and usage. The systems
present both descriptive primitives, inherited from the

DBMS, and predictive primitives, by providing predic-

tive task operations as first-class citizens in the DBMS.

Among the presented systems, F2DB takes a nar-

rower approach, focusing on integrating time-series fore-
casting within a DBMS [29]. The authors of F2DB ar-
gue that, in PDA applications and decision making in

general, one of the key statistical methods is time se-

ries forecasting, and that a deeper integration of these

techniques will contribute to improving efficiency and

usability in such use cases. F2DB allows for in-DBMS

time series forecasting, with an integrated SQL-based

language to define the forecasting queries. F2DB also

provides the user with an extensible interface for inte-

grating new algorithms.

5.5 Optimization DBMSes

Predictive DBMSes cover both DA and PDA, provid-

ing efficient and easy-to-use solutions for these phases.
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Nevertheless, predictions are only an intermediate step

in the PSA workflow, and the optimization phase is not

directly integrated into the workflow of the predictive

DBMSes. Alternatively, in optimization DBMSes, we

have grouped systems that specifically address mathe-

matical optimization tasks. This group includes PaQL

[16], Tiresias [73], SolveDB [108], and LogicBlox [4] as

representatives of DBMSes with integrated optimiza-
tion problem solving capabilities. These systems pro-
vide the user with optimization primitives for linear

programming (LP), mixed integer programming (MIP)
[20], constraint programming (CP), global optimiza-
tion, scheduling, etc. In this area, we have recognized
two high-level approaches, based on the type of lan-

guage provided to the user: (1) Datalog-based opti-

mization DBMSes and (2), SQL-based optimization

DBMSes. While both approaches aim at providing the

user with declarative query languages, the choice be-

tween SQL and Datalog leads to either an extended

SQL with PSA methods, or to the inclusion into the

DBMS of a separate analytics-oriented language, in this

case, Datalog.

Tiresias belongs to the class of Datalog-based op-

timization DBMSes by providing a system that can

be interfaced with any relational DBMS1. In the shop

sales scenario, a possible query could, for example, be
which items should be kept in storage in order to max-

imize the profit? This is done by utilizing hypothetical

tables, which form, together with the traditional DB

tables, a Hypothetical DB (HDB). Hypothetical tables

present the same schema of the traditional tables, with

the addition of hypothetical columns that define the

objective variables to optimize. Tiresias offers a new

language based on Datalog, TiQL, with which it is pos-

sible to specify the hypothetical tables, the constraints,
and the minimization/maximization objective. Recall-
ing the storage optimization problem described before,

the code in Listing 3 shows such an approach.

The program is divided into three parts, HTABLE

specifies the hypothetical tables, RULES the optimiza-

tion constraints, and MAXIMIZE/MINIMIZE the objec-
tive function. Intuitively, HItemFacts will be initial-

ized as a hypothetical table, where qnt? (quantity) is

non-deterministically set by the DBMS to comply with

user-defined constraints. After having defined the spec-

ifications for the optimization problem in the section

RULES, the system translates them into a mixed integer

programming (MIP) problem, with the objective given
in MAXIMIZE. The program is then handed to a MIP

solver, which will output a solution that will be used to

populate the HDB.

1 At the time of publication [73], Tiresias has been tested
only with PostgreSQL

Listing 3: Example of TiQL program for the storage

optimization problem.

1 HTABLE:

2 HItemFacts(item , profit , qnt?) :-

KEY(item ,price)

3 RULES:

4 HItemFacts(item , price , qnt?) :-

ItemFacts(item , price , qnt)

5 [SUM(qnt?) <= 70] :-

HItemFacts(item , price , qnt?)

6 MAXIMIZE(SUM(profit*qnt ?))

Similarly to the other declarative approaches de-

scribed so far, the user does not directly specify op-

timization solving details. Besides the constraints and

objective functions, it is the DBMS that selects a spe-

cific LP/MIP solver, applies the solving algorithm, and

records a solution for the optimization problem by up-

dating the hypothetical columns of the tables in the
HDB. While in the case of predictive DBMSes it was

not possible to solve optimization problems, but only

to find which items would most probably be sold in the

future (as illustrated in Listing 2), Tiresias disregards

the prediction phase and targets only the optimization

task.

LogicBlox proposes another platform for integrat-

ing DA, PDA, and PSA in the same DBMS architec-

ture. The intention is to expand the notion of database

systems to include features found in programming lan-

guages, statistical systems, and mathematical optimiza-

tion. LogicBlox extends DBMSes in a similar way as
Tiresias, also introducing a new Datalog based lan-
guage, LogiQL, aimed at describing how-to queries.
However, LogicBlox also supports forecasting techni-

ques natively in the system. These are implemented as

a collection of built-in machine learning algorithms and

can be accessed via the creation of statistical relational

models. These models are obtained by extensions of
LogiQL supporting the modeling of Markov Logic Net-

works [87] and Probabilistic Soft Logic (PSL) [34]. PSL

models are specified via the use of soft constraints, rules

similar to regular optimization constraints but holding

continuous values instead of a binary acceptance con-

dition.

Considering again the storage optimization prob-

lem, an example of the solution obtained with Log-

icBlox is shown in Listing 4. Here, the first part of

the code (lines 1-9) specifies the problem of maximiz-
ing the profit under the storage space limit. LogiQL
uses Datalog-like constraints, where in lines [1-5] the

user defines the predicates that will be used in the op-

timization problem, such as how to calculate the profit

for an item (line 1) or for all the items (line 5). Line

6 specifies the constraint of the storage space. Finally,

line 8 describes the prescription problem by defining
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Stock as a free variable, which the system is respon-

sible for populating while respecting the constraints in
line 6 and the objective function in line 9.

Additionally, as LogicBlox allows for predictive mod-

eling, it is possible to forecast the probability with
which the items will be sold in the future, in order

to optimize the storage in advance. In this case, the

store could consider that a user will buy a promoted

item (w1), or an item in the same category of what she
has already purchased (w2), and will not buy an item

too similar to what has already been purchased (w3).
Under this formalism, Maximum-A-Posteriori (MAP)

inference can be used for finding the most likely possi-

ble world under the specified constraints. After having

populated the tables with the predicted data, the op-

timization problem is again solvable as a how-to query

similar to the one described in lines 1-9.

Listing 4: Example of a LogiQL program for an opti-
mization storage problem (adapted from the original

paper [4])

// BASE PREDICATES

1 profitItem[i]=v → Item(i),float(v)

3 Stock[i]=v → Item(i), float(v)

4 totalShelf []+= Stock[i]

5 totalProfit []+= profitItem[i]* Stock[i]

// RULES

6 totalShelf [] = u → u ≤ 70

// PRESCRIPTION CONSTRAINTS

8 lang:solve:variable(Stock)

9 lang:solve:max(totalProfit)

// PREDICTION CONSTRAINTS

w1:Customer(c),Promoted(i) → Purchase(c,i)

w2:Customer(c),Purchased(j),SameCategory(i,j)→
Purchase(c,i)

w1:Customer(c),Purchased(i),Similar(i,j)→

!Purchase(c,i)

The Datalog-based optimization DBMSes we have

described focus on integrating in-DBMS optimization

solving capabilities within a relational DBMS. Even

though LogicBlox also allows for soft constraint pro-

gramming to enable the user to specify prediction tasks,

compared to the predictive DBMSes the support for

PDA is limited by the number of problem classes that

can be specified in the LogiQL language. Although, the

Datalog extensions offer a declarative and task-oriented

approach to the user, they fail, however, at unifying

data processing and data analytics, as they require the

combination of SQL and a Datalog based language. Fi-

nally, the systems do not yet support extensibility of

the tools implemented in the architecture.

On the other branch of the tree, SQL-based opti-

mization DBMSes propose to unify both data man-

agement and analytics layers under the same language,

by extending standard SQL with additional constructs.

Among these, PaQL [16] proposes a system for solving

integer linear programming problems by adopting so-

called package queries. Standard database queries fol-

low the principle that each result tuple must satisfy a

given set of constraints. However, PaQL advocates that,

as many problems require a collection of result tuples

to be evaluated over the constraints, rather than indi-
vidual tuples, it is more efficient to handle the result
set collectively as packages, i.e. a set of result tuples

that describe the possible worlds which could solve the

problem. PaQL thus offers a declarative language, based

on SQL, to specify package queries, and a DBMS inte-
grated system to solve such queries.

An example is shown in Listing 5, where we reuse
the storage optimization example. Intuitively, the PACK-

AGE keyword describes that the result of the query

will be the set of tuples from the schema itemFacts,

that collectively satisfy the constraint defined in SUCH

THAT and according to the objective in MINIMIZE. As

in Tiresias, PaQL does not directly support the pre-

diction task, thus the code in Listing 5 only solves the

optimization part of the problem. While it is shown

how PaQL query approximation techniques can scale

to large datasets [16], the class of problems that can be

handled is limited to integer linear programming.

Listing 5: Example of PaQL program for a storage prob-

lem

1 select PACKAGE(I) as P

2 from itemFacts r

3 SUCH THAT sum(stock) <= 70 and

4 MINIMIZE sum(profit*stock)

In the same category of SQL-based optimization

DBMSes, SolveDB [108, 95] offers a more general frame-

work for solving optimization problems using an exten-

sible infrastructure for integrating solvers for different

classes of problems directly within a relational DBMS.

SolveDB sees every prediction and decision problem as

an instance of a special optimization problem, solvable

within the framework. This is achieved with an interface

for the use and extension of optimization problem solver

modules, similar to what is provided by the analytics

framework described in Section 5.2, and an SQL-based

syntax for defining optimization problems.

Solver modules can be accessed by the user via a
special SQL clause SOLVESELECT, which can potentially

be embedded into more complex nested SELECT SQL

queries. These solvers include pre-implemented opti-

mization solvers from libraries such as GLPK [66] or

CBC [21], or user-defined solvers (UDSs), installed in

the DBMS as extensions. The extension interface can

also be used to add predictive algorithms as UDSs, mak-
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ing use of the optimization machinery already provided

in SolveDB to train the models’ parameters. The speci-

fication of a PSA application thus reduces to a combina-

tion of optimization problems for which the user defines

the objectives, constraints, and which of the installed

solvers to apply.
As an example, to apply SolveDB to the same stor-

age problem described above, we present a possible so-

lution in Listing 6. The optimization query is specified

by the clause SOLVESELECT x IN, that defines x as a

database table column with free variables that has to

be populated according to the constraints in SUBJECTTO

and the objective function in MAXIMIZE. The constraint
specification consists of a series of SELECT statements

in which the allowed values are specified. In the exam-

ple, the query will use stock as a free variable, whereby

the quantity of items will be chosen by the optimization

solver. The only constraint is specified in line 5, where

the sum of the items in stockmust not exceed the max-
imum value of 70. The objective function is given in line

4, where the aggregation function SUM(profit*stock)

calculates the profit of the items selected to be in stor-

age. Finally, line 6 defines which solver module should

be used for solving the resulting optimization problem,

in this case solverlp.

Listing 6: Example of SolveDB program for solving the

storage problem

1 SOLVESELECT stock in r as

2 (select itemID ,profit ,null:: integer as stock

3 from ItemFacts)

4 MAXIMIZE (select sum(profit*stock) from r)

5 SUBJECTTO (select sum(stock )<=70 from r)

6 USING solverlp ()

The same query can also be specified as in List-

ing 7, where the logic is instead hard-coded in the

storageSolver extension, that can be installed by the

user in the DBMS. This approach can be useful for

more experienced users who want to use custom algo-

rithms, to add domain knowledge for specific cases, and

to encode predictive algorithms directly in the solver.

Listing 7: Example of use of a SolveDB user-defined
solver for the storage problem

1 SOLVESELECT stock IN r AS

2 (select itemID ,stock from ItemFacts)

3 USING storageSolver ()

To conclude, all the optimization DBMSes we have

presented exploit the natural declarative characteris-

tics of relational DBMSes for analytics purposes, thus

satisfying both data independence and implementation

independence. These systems offer a unified and declar-

ative approach to the query language by extending

the standard SQL for solving optimization problems.

The language syntax, and the underlying optimization

techniques, enable the user to follow a task-oriented

approach to the specification of optimization problem

workflows. SolveDB also offers a generic interface for

extending various types of solvers, which enables the

specification of a wide range of optimization tasks and,

by the use of UDSs, also predictive tasks. Nevertheless,

optimization DBMSes have been designed mainly for
optimization problem-solving. While they excel in this

scenario, PSA applications require the solution of more

intermediate tasks currently lacking in the available op-

timization DBMSes, thus not providing the user with

support for carrying-out the full PSA process.

5.6 Discussion

In our evaluation, we have first identified traditional
(classical) systems that have been used for many years

for developing DA, PDA, and PSA applications. We
have found that there exist many BA tools that typi-

cally target one (or a few) tasks within the full work-

flow of a typical PSA application. BA suites integrate

functionalities of such individual BA tools into a single

eco-environment, offering better end-to-end support for

user applications, in particular DA and PDA. Despite

the growing importance of DBMSes in decision mak-
ing and business applications [3], the BA Tools and

BA Suites we have reviewed do not yet natively in-

tegrate data management technologies, forcing the user
to utilize multiple software systems and multiple (often
procedural, closed) languages. This causes user errors,

poor developer productivity, reduced overall execution

performance, and lack of user guidance throughout the

PSA workflow. These traditional software systems use

DBMSes only as a back-end data server, missing the ad-

vantages of a tight coupling between data and analyt-

ics for an improved overall performance and usability.

Some commercial DBMSes (Oracle [100], SQL server

[102], DB2 [46]) include simple analytics extensions, but

they provide limited or no support for PSA.
There have, however, been attempts at providing

much richer support for user PSA (and PDA) applica-

tions. We have provided a comparison of such PSA+

systems that aims at providing support for user PSA

applications by focusing on the aforementioned limi-

tations of the classical systems. These are evaluated
based on the criteria given in Section 4.1. As seen in
our survey, the database community has already pro-

posed new architectures to support solutions with in-

tegrated DBMS and analytics framework functionali-

ties. Among these, analytical DBMSes and analytical

frameworks improve user PSA applications by provid-

ing easier access to the required tools through a unified
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high-level languages aimed at increasing developer pro-

ductivity. We have identified some important trends in
this field, such as declarative approaches for PDA and

PSA. Further, we have found that a few systems, de-

scribed as analytical DBMSes, have combined a number

of analytics tools inside the DBMS back-end itself, to be
able to optimize mixed data management and analytics

workloads while offering overall improved performance
and a unified language for data management and an-
alytics. However, as these systems were not originally

designed for the totality of PSA, they are still far from

being easily applied in PSA scenarios. Thus, a more

integrated approach for PSA is needed.

Furthermore, we have seen how the analytics pro-

cess has undergone a paradigm shift, where declarative

languages have taken the place of traditional procedu-

ral approaches. All the emerging PSA+ systems we have
described in Table 3 support a declarative paradigm, as

the difficulty encountered by the end-users in designing

algorithms and applications via traditional procedural

languages has already been recognized as one of the

major issues in the diffusion of PSA systems [11]. Nev-

ertheless, while the different authors agree on having a

declarative paradigm, there is no consensus about the
concrete use of declarative approaches.

The first choice regards which type of declarative

language best supports PSA applications. Among the
selected systems, we have identified two main approaches,
Datalog-based and SQL-based systems. Specifically, SQL-

based optimization DBMSes attempt to integrate ad-

vanced analytics with traditional query processing, and

at the same time to leverage the well-known SQL syntax

for data operations. We see the argument for language

unification as a compelling idea towards the simplifica-

tion of PSA applications.

Second, the scope of PSA declarative paradigms is

yet to be fully defined. Some of the analytical frame-

works and analytical DBMSes we have reviewed pro-

pose the argument of task-oriented approaches. Oth-
ers also allow the users to extend the system/frame-

works with UDFs, providing ways to solve analytics ap-

plications as collections of domain-specific tools. Nev-

ertheless, we find that the task-oriented declarative

paradigms provided by most of the systems reviewed

do not yet match the needs of PSA applications. When

targeting specific predictive or optimization tasks, the
systems successfully provide the user with declarative
methods to specify the application workflow. However,

in the case of full PSA applications, when multiple tasks

from different BA phases have to be combined, the pro-

grammer lacks PSA process-oriented support for spe-
cific processes. In this case, the user has to fall back to

procedurally defining each of the phases of the work-

flow. We will discuss the specific challenges and op-

portunities for developing the next generation PSA+

systems more extensively in the next section.

6 Challenges and Opportunities

In this section, we summarize our findings and, based on

the PSA system problems presented in Section 3, iden-

tify the three major challenges in developing the next

generation of systems for PSA applications. For these

challenges, we also describe opportunities available for

PSA researchers and system engineers.

6.1 PSA Language Challenge

In general, declarative languages have been a huge suc-

cess in data management and analytics, ranging from

simple SQL/MDX (Multidimensional Expressions used

for OLAP) to declarative data mining and machine
learning languages [11, 12]). We thus believe that a pos-
sible solution to some of the current PSA limitations

consists in making PSA more declarative, especially for

data engineers and PSA application developers; these

groups of advanced users should, however, also be of-

fered procedural and/or imperative constructs for spec-

ifying computations. The difference between procedu-

ral and declarative approaches is easily exemplified by

comparing data retrieval before and after the introduc-

tion of SQL. In the pre-SQL DBMS era, developers had

to program the complex data access procedures them-

selves, e.g., in CODASYL or hierarchical databases.

With SQL, this has been both simplified and highly

optimized. In comparison, most PSA tasks still need to

be defined in a pre-SQL fashion [72].

While yet another analytics language is not a goal

in itself, the advantages are imminent. For example,

a PSA analytics language based on SQL could easily

be integrated into existing DBMSes. It will thus find a

large user base, without the need for BA developers to

learn a completely new syntax. The PSA+ systems (an-

alytical DBMSes) we have reviewed demonstrate these

advantages.

An equally important gap between an ideal PSA

language and currently employed analytics languages is

discussed in Section 5: although the languages of cur-

rent systems may follow a declarative paradigm, the full

PSA workflow is not supported. For example, predictive

DBMSes give the possibility of easily defining forecast-

ing tasks, while optimization DBMSes can effectively

solve optimization problems. However, to combine the

two phases, which is needed in a full PSA application,

the systems force users to follow a procedural approach,
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severely diminishing the advantages of the declarative

languages. A powerful declarative unified language for

the entire PSA workflow would enable a more effective,

faster, and easier development of PSA applications. We

thus define this as our first challenge:

– Challenge 1 - How to develop effective lan-

guages for PSA applications? PSA systems need

prescriptive-oriented languages with enough gener-

ality and expressivity to support the full variety of

PSA tasks.

A candidate language addressing this challenge should

ensure an appropriate balance of language constructs

as well as declarative and imperative primitives to cater

the full range of users, ranging from analysts to PSA ap-

plication and algorithm developers. At the same time,

the language should support a wide range of relevant

PSA application domains, while also offering data and

implementation independence so that performance op-
timization is possible across the full PSA workflow. Fur-

thermore, a number of advanced PSA language features

should also be available to ensure an appropriate degree

of support in the development process: First, hybrid

data (structured, semi-, and un-structured) has been
identified as one of the key pillars for PSA success [5],

hence native language support for this type of data
should be considered. The language should thus offer
effective specialized primitives for accessing, manipu-

lating, analyzing/mining, fusing, and integrating into

PSA workflows a wide range of data types (e.g., docu-

ments, images, videos, JSON, graphs), similar to what

document stores [18] do for data management alone.

Second, native support and treatment of (AI/pre-

diction/simulation/optimization)models should be con-
sidered. Such models need to be managed as first-class

citizens like the data itself. The language should offer ef-

fective model specification, manipulation (composition,

decomposition), analysis, and processing primitives for

a variety of model types for e.g., prediction and opti-

mization. These primitives could be inter-mixed with

standard data management operations, giving the user

increased flexibility when dealing with these models.

Some of the reviewed systems, including Matlab [71],

R/SystemML [35], and SolveDB [108], offer such prim-

itives to some degree.

Third, direct language support for what-if scenar-

ios and/or time travel capabilities is crucial. What-if

primitives would offer analysts an effective way of creat-

ing, analyzing, and comparing analytical results in case

of hypothetical changes in input data and/or models

without having to redefine the complete workflow. One

reviewed system, Tiresias [73], offers limited support

for such hypothetical scenarios. Further, time travel-

ing primitives [55] enable effective evaluation of PSA

workflows in the context of both historical data and
predicted states/observations. Thus, users could con-
veniently travel forward and backward in time, while

comparing DA, PDA, and PSA query results using both

historical data and predicted/expected observations.

Lastly, new advanced types of queries that benefit
from integrated descriptive, predictive, and prescriptive

functionality, such as package queries [16] or advanced

exploratory queries [52], should also be considered.

Of the above four contributions to increased lan-

guage support, the first and third appear as the lowest

hanging fruits from a conceptual point of view. There

already exists previous work on how to deal with hy-

brid data, what-if scenarios, and time-travel in more

restricted data management-only scenarios. It thus ap-

pears likely that one could make progress by initially in-

vestigating how to best integrate these proposals within

the concepts and constructs provided by the emerging

PSA+ systems. On the other hand, support for more
advanced queries and native model support have seen

less earlier work and represent bigger conceptual steps.
We have here considered the challenge of language

functionality alone, but will look at the implementa-

tion and optimization of such languages in Section 6.2

below.

6.2 PSA System Optimization Challenges

Traditional BA applications have evolved around a

myriad of technologies, growing into a complex soft-

ware stack composed of many distinct tools [38]. While

these technologies are highly optimized for their indi-
vidual purposes, the structure and the nature of the
complete PSA workflow is typically not exploited. This

often leads to labor-intensive, cumbersome, poor per-

forming ad-hoc solutions, which are typically based on

a single DBMS manually coupled with one or multi-

ple analytical packages. As discussed in Section 5.6,

to address these problems recent developments aim at
marrying traditional data management and analytics
to optimize and execute the whole PSA workflow in a

single common run-time (back-end) system. This raises

a challenge as well as opportunities:

– Challenge 2 - How to optimize PSA work-

flows in a unified (PSA+) data management
and analytics system? The aim is to offer the best

result quality in the shortest execution time, where

performance and result quality are complementary

objectives.

In the context of this challenge, there are a number

of opportunities for database researchers and practi-
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tioners. First, techniques for optimizing user-specified

targets, while offering the most effective use of com-

putational and network resources, are important, espe-

cially in a distributed setting with parallel execution of

PSA workloads. In this setting, the aim is to find the

most effective distribution and placement of data and

analytics algorithms for an arbitrary user-given PSA

workflow. When performance is desired, query execu-
tion/optimization techniques based on automatic ana-
lytical task partitioning, parameter tuning, data sam-

pling, and progressive execution with fail-safe state

snapshotting can significantly reduce execution time

of CPU-intensive workloads. For input-output (IO) in-

tensive workloads, more traditional optimization tech-

niques based on pipelining and streaming of analytical

task input/output become relevant. When the accuracy

of the results is key, optimization techniques involving

more elaborate auto-selection of algorithms, test-runs,

and/or ensemble processing become prominent. Fur-

thermore, in continuous on-line PSA applications, addi-

tional optimization based on result caching and warm-

starting is possible.

Second, native support for models (treated as white-

boxes/first-class citizens) offers a number of optimiza-

tion possibilities. For instance, automatic on-the-fly

synthesis (compilation) of model management algo-

rithms becomes possible. Such algorithms make the

processing of a specific model instance much faster on
a given hardware platform. An example of this opti-
mization is the solver synthesis for symbolic non-linear
optimization models. Further, optimization techniques

based on automatic model partitioning [108], composi-

tion/decomposition [29], aggregation [48, 103], or ap-

proximation [107] become possible.

Lastly, additional PSA workflow optimization tech-
niques based on analytical query rewriting, indexing,

materialization, and use of new hardware (main mem-

ory, NVM, multicore, GPUs) are potentially feasible.

In terms of difficulty, this challenge is conceptu-

ally relatively easy, since the (optimization) problem

is both well-specified and measurable. Thus, the chal-

lenge lies more in designing methods and techniques
for these more complex workflows and queries. Opti-
mization based on native model support is probably

the hardest, but also the most interesting.

6.3 PSA User Productivity Challenge

Decades of research in PSA-related fields, e.g., statisti-

cal analysis, data mining, and machine learning, have

lead to a multitude of methods and tools for BA, many

of which are based on sophisticated algorithms and

complex mathematics [89, 36, 85]. The focus of these

disciplines has mostly been on efficient and scalable al-

gorithms, rather than studying the inner relationship
between these methods and how to make them avail-
able to the users in the most accessible way [11].

Having access to more techniques does not neces-
sarily translate into better applications for the end-
users, but often only increases complexity and confu-
sion among the developers. In a typical PSA scenario,

developers will end up choosing either well-known off-
the-shelf algorithms that are not tailored for their spe-
cific tasks, leading to sub-optimal solutions, or more

recent techniques for which the risk of misuse is higher.

Furthermore, PSA applications often involve analyti-

cal tasks that require picking the right tools, inputs,

and parameters for improving performance. Again, if

not performed in a rigorous and well-informed man-
ner, these practices can lead to misinterpretations of
required inputs, parameters, and results [25, 27]. While

picking and fine-tuning the right techniques is complex

in itself, things get even worse when different tools for

different PSA phases need to be integrated, often re-

sulting in long development cycles and low program-

mer productivity. A challenge is thus how to achieve

the best user productivity in PSA systems while ensur-

ing efficient and correct use of techniques. We identify

this as our third challenge:

– Challenge 3 - How to achieve high user pro-

ductivity when developing PSA applications?

PSA systems should offer effective tools and user

support for all levels and tasks in the PSA develop-

ment process, while ensuring that the best techniques

and practices are chosen and used correctly.

In the context of this challenge, there are a number

of opportunities for system architects, developers, and

system usability experts (UX). First, end-to-end PSA

eco-systems with comprehensive tool packages ranging

from scalable (big)data stores, over advanced query pro-

cessing and AI engines (supporting the aforementioned

language features), to flexible integrated development
environments (IDEs) and dashboards, need to be de-
veloped and customized to support the most typical

PSA scenarios and application domains. For the most

common PSA (sub-)tasks, models, and queries, tem-

plates and wizards need to be prepared and exposed
to the users, e.g., via GUI-based process-, model-, and

query-builders. Where possible, problem and data spe-
cific (GUI-based) model and algorithm advisors/recom-
menders should be provided. Furthermore, such PSA

systems should also offer support for developing on-

line PSA applications (e.g., for energy flexibility man-

agement [31]), which are becoming quite common. In

these applications, process measurements (and other
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data) are collected automatically, continuously, and in

(near) real-time (e.g., via sensors) and then immedi-

ately used in the next decision making cycle. Among

the reviewed systems, only BI suites such as Matlab [71]

and SAS [90] offer similar capabilities, but they lack a

tight data management integration.
This challenge is perhaps the hardest of the three,

since it does not concern (relatively) simple language

constructs or (objectively measurable) system perfor-

mance. Instead, it concerns the aspect of user produc-

tivity which is both quite fuzzy, inherently subjective

with different users having different preferences, and

lastly very hard to measure. Thus, solving this chal-

lenge will require many trial-and-error iterations of de-

signing tool support and having diverse users applying

them in different scenarios.

7 Conclusion and Future Work

In this paper, we surveyed developments and trends

in an emerging sub-field of BA, called prescriptive an-

alytics. We have presented an overview of the evolu-

tion of BA, from the traditional Descriptive Analytics

(DA) and Predictive Analytics (PDA), to the more re-

cent Prescriptive Analytics (PSA). As part of the sur-

vey, we described the typical decision making workflow

used in BA applications, and identified tasks that are

relevant for a particular type of analytics along with

the technology requirements. We provided an overview

of both established and emerging technologies that of-

fer user support in the different phases of the PSA de-

velopment process. Three major limitations of the ex-

isting established systems were identified (limited lan-

guage support, lack of high-productivity features, and

lack of PSA workflow optimizations), together with a

number of criteria for evaluating more recent emerging

systems (denote as PSA+): Workflow Support, System

Extensibility, Language Integration and on the prop-

erties of Distributed Computation, Data Independence,

Implementation Independence, and Descriptive, Predic-

tive and Optimization primitives. Finally, we surveyed,

evaluated, and compared a number of recent PSA+ sys-

tems in the areas of analytical frameworks and analyt-

ical DBMSes (including prediction DBMSes and Opti-

mization DBMSes).

In general, the emerging PSA+ systems we have sur-
veyed attempt to solve the aforementioned limitations

by combining specialized analytics tools with generic

data management tools. These integrated systems of-

ten demonstrate the ability to outperform more ad-hoc

implementations based on a number of highly special-

ized analytics tools. We argue that, for successful PSA

applications, the focus of the research in the coming

years should be on a continued effort at combining an-

alytics and data management tools, while offering new
languages and language primitives, user productivity
features, as well as mixed workflow optimizations en-

compasing the full PSA process. These observations

have been condensed and presented as three distinct

challenges: How to develop effective languages for PSA

applications?, How to optimize PSA workflows in a uni-

fied data management and analytics system?, and How

to achieve high user productivity when developing PSA

applications?.

To conclude, PSA is not yet an established field.

While the tasks and methods that characterize PSA ap-

plications have already been used in BA and decision

making, the discipline is, compared to the more estab-

lished DA and PDA, still only affirming its separate

identity. However, if future research is done along the
presented directions, we will soon experience a wider
adoption and use of PSA applications, together with a

more well understood and established PSA field.
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42. Hellerstein, J.M., Ré, C., Schoppmann, F., Wang,
D.Z., Fratkin, E., Gorajek, A., Ng, K.S., Welton,

C., Feng, X., Li, K., Kumar, A.: The madlib an-

alytics library or MAD skills, the SQL. PVLDB

5(12), 1700–1711 (2012)

43. High, R.: The era of cognitive systems: An inside

look at ibm watson and how it works. IBM Cor-

poration, Redbooks (2012)

44. Holsapple, C.W., Lee-Post, A., Pakath, R.: A uni-

fied foundation for business analytics. Decision

Support Systems 64, 130–141 (2014)

45. Hupfeld, D., Maccioni, R., Sesemann, R., Ravaz-

zolo, D.: Fleet asset capacity analysis and rev-

enue management optimization using advanced

prescriptive analytics. Journal of Revenue and

Pricing Management 15(6), 516–522 (2016)
46. IBM: Ibm db2 database - database software - ibm

analytics. https://www.ibm.com/analytics/us/en/db2/

(2018). (Accessed on 03/22/2018)

47. IBM: Prescriptive analytics — ibm analyt-

ics. https://www.ibm.com/analytics/data-science/

prescriptive-analytics (2018). (Accessed on

03/22/2018)
48. iknys, L., Valsomatzis, E., Hose, K., Pedersen,

T.B.: Aggregating and disaggregating flexibility

objects. TKDE 27(11), 2893–2906 (2015)

49. Inmon, W.H.: Building the data warehouse. John

wiley & sons (2005)
50. Jardine, D.A.: The ANSI/SPARC DBMS Model;

Proceedings of the Second Share Working Confer-

ence on Data Base Management Systems, Mon-

treal, Canada, April 26-30, 1976. Elsevier Science

Inc. (1977)

51. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis,

P.: Fundamentals of data warehouses. Springer
Science & Business Media (2013)

52. Kalinin, A., Cetintemel, U., Zdonik, S.: Search-

light: Enabling integrated search and exploration
over large multidimensional data. Proc. VLDB

Endow. 8(10), 1094–1105 (2015)

53. Kaur, J., Mann, K.S.: Ai based healthcare plat-

form for real time, predictive and prescriptive an-
alytics using reactive programming. In: Journal
of Physics: Conference Series, vol. 933, p. 012010
(2018)

54. Keen, P.G., Morton, M.S.S.: Decision support
systems: an organizational perspective, vol. 35.
Addison-Wesley Reading, MA (1978)

55. Khalefa, M.E., Fischer, U., Pedersen, T.B.,

Lehner, W.: Model-based integration of past & fu-
ture in timetravel. Proc. of the VLDB Endowment

5(12), 1974–1977 (2012)

56. Kimball, R., Ross, M.: The data warehouse
toolkit: the complete guide to dimensional mod-

eling. John Wiley & Sons (2011)

57. Kraska, T., Talwalkar, A., Duchi, J.C., Griffith,

R., Franklin, M.J., Jordan, M.I.: Mlbase: A dis-

tributed machine-learning system. In: Proc. of

CIDR (2013)
58. Kumar, A., McCann, R., Naughton, J., Patel,

J.M., Babros, T.E., Hunt, R.J., Koski, K., Strik-

werda, J.C., Wade, B.A., Arnold, R.B., et al.: A

survey of the existing landscape of ml systems.

UW-Madison CS Tech. Rep. TR1827 (2015)
59. Kumar, A., McCann, R., Naughton, J.F., Patel,

J.M.: Model selection management systems: The

next frontier of advanced analytics. SIGMOD

Record 44(4), 17–22 (2015)

60. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: Ibm
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