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1 Introduction and overview

There has been tremendous progress in recent years in the calculation and understanding

of perturbative scattering amplitudes in quantum field theory. The scope of these insights

and the powerful new computational tools that have resulted include many unexpected

connections to modern developments in mathematics, e.g. [1–6]. Most of these discoveries

have been fueled by direct computation — pushing the limits of our theoretical reach (often

for toy models) to uncover unanticipated, simplifying structures in the formulae that result,

and using these insights to build more powerful tools. The lessons learned through such

investigations include the (BCFW) on-shell recursion relations at tree- and loop-level, [7, 8]

and [9]; the discovery of a hidden dual conformal invariance [10–12] as well as the duality

to Wilson loops and correlation functions [13–20]; the connection to Grassmannian geome-

try [21–27] and the amplituhedron [28–39]; various bootstrap methods [40–51]; the twistor
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string [52, 53] and its generalization to the scattering equation formalism [54–68]; to Q-

cuts [69–71], and so on. For a broad overview of some of these developments, see e.g. [72–79].

This progress has been fueled by very concrete computational targets often guided by

specific physical questions. Beyond improving our predictive reach for e.g. collider physics

applications, such computations are often critical to theoretical investigations. These in-

clude the ultraviolet properties of quantum gravity [80–83] and the (mathematical) struc-

tures behind the functions and numbers that result from perturbation theory [84–94]. More

generally, these efforts are often motivated by the enormous discrepancy between the diffi-

culty of computations in field theory and the profound simplicities of the predictions that

ultimately result. Some of these simplicities, such as finiteness and the logarithmic be-

havior of loop integrands are known to be in tension with the ways we normally represent

amplitudes (see e.g. [81, 82, 95–100]). Exposing such tension through direct computation

can be very illuminating, often leading to new insights into what we hope will contribute

to a better understanding of the foundations of quantum field theory.

Of all the methods used to push the limits of our computational reach into perturba-

tion theory, the most generally applicable is also perhaps the most universal: generalized

unitarity (see e.g. [101–108]). The basic idea is very simple. Because loop integrands are

rational functions, they should be determinable by their residues. And because the space

of loop integrands — viewed as rational functions — is always finite-dimensional, we can

expand any amplitude into a complete basis of such functions:

AL
n =

∑

k

ck Ik . (1.1)

(The size of this basis depends on the spacetime dimension and the power counting of the

quantum field theory in question.) Given any complete basis {Ik}, the coefficients ck of

any loop amplitude AL
n in (1.1) can then be determined by linear algebra via the criterion

that residues match field theory.

This approach is quite general: it can be used to find a representation of any per-

turbative amplitude in any quantum field theory expanded into a canonical basis of fixed

integrals.1 For recent applications of the unitarity method as well as integrand based reduc-

tion algorithms, see e.g. [109–116]. Among the most important advantages of this approach

(relative to the Feynman expansion, for example) is that the coefficients appearing in such

an expansion, determined by cuts of loop amplitudes, are expressed in terms of on-shell

functions — manifestly gauge invariant functions of observable states defining the theory.

The main problem with the traditional approach of generalized unitarity, however, is

that it is not prescriptive: it requires an arbitrary choice of the basis of integrands and

sufficient computer power to solve the linear algebra problem of matching field theory

on all cuts. These issues rapidly become computationally prohibitive. More importantly

however, as with any such problem in linear algebra, the form of the solution that results

depends strongly on the choice of basis. Some bases are better than others.

1There are subtleties for amplitudes that are not fully ‘cut constructible’; but these can always be

addressed (e.g. via dimensional regularization, see e.g. [104]), and will not concern us here.
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This work is motivated by the desire to choose a ‘good’ basis of loop integrands — one

for which each term supports a unique, defining cut of field theory.2 In such a basis, no

linear algebra is required: the coefficient of each integrand is simply the corresponding field

theory cut (a specific on-shell function). If each coefficient ck is a single on-shell function, we

will say that the representation in (1.1) is prescriptive; and we refer to the method followed

to construct such a representation as prescriptive unitarity. This general strategy was intro-

duced in ref. [118] and used in ref. [119] to construct closed-form representations of all two

loop amplitudes in planar, maximally supersymmetric (N =4) Yang-Mills theory (SYM). In

the only-slightly schematic formalism used in this work, that result can be recast as follows,

AL=2
n =

∑

L

fL (1.2)

where each coefficient, fL, represents a single field theory residue.

In this work, we describe how prescriptive unitarity can be applied to the case of planar

SYM as our primary illustrative example. In particular, we show how this strategy can be

used to construct an explicit, prescriptive representation for all n-point NkMHV scattering

amplitudes through three loops:

AL=3
n =

∑

W

fW +
∑

L

fL , (1.3)

where every coefficient of every integral is a single, specific field-theory cut.

We should emphasize that our choice to apply these ideas to this particularly simple

quantum field theory is motivated mostly by brevity in illustration; we expect that such

representations exist in general. This optimism, however, requires testing through explicit

construction — at higher orders of perturbation and for more general theories. As we

will see below, even for this simple quantum field theory, the existence of a three loop

prescriptive basis of integrands is rather non-trivial. Therefore, this work represents a

concrete test that prescriptive representations exist.

This work is organized as follows. In section 2 we review the basic ingredients of gener-

alized unitarity and introduce the prescriptive unitarity approach to the (re)construction of

loop amplitudes at the integrand-level. After briefly describing the cuts of loop amplitudes

and integrands in section 2.1, we discuss the traditional representation of one loop ampli-

tudes via unitarity in section 2.2. In section 2.3 we illustrate the prescriptive reformulation

2Of course, Cauchy’s theorem does not allow a rational function to have only a single residue. In general,

the integrands in our basis will contribute on many field theory cuts; however, the prescriptive nature is

reflected in the fact that there is some cut (chosen from a ‘spanning set’ of cuts [117]) for each integrand

not shared by any other — thereby fixing the integrand’s coefficient.
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of unitarity, describing in detail how such a representation of all two loop amplitudes in

planar SYM can be found. The representation we construct in section 2.3 is different from

that presented in ref. [119]. This is both for the sake of conceptual clarity (in order to

make it more analogous to our three loop result) and also for brevity. Most importantly,

we have decided to ignore making the exponentiation of infrared divergences manifest at

the integrand-level. Finally, in section 2.4 we outline how the prescriptive approach could

be applied to more general quantum field theories.

In section 3 we use the prescriptive approach to construct a closed-form representation

for all three loop amplitude integrands in planar SYM. The construction of the basis is

described in section 3.1, and the choices of cuts (and coefficients) involved in defining this

basis are illustrated and described in section 3.2. The complete description of the terms

appearing in our representation of three loop amplitudes is given in appendix A. We con-

clude section 3 with a general discussion of this representation in section 3.3. In section 4

we revisit one loop (prescriptive) unitarity for theories with general power counting in four

dimensions before outlining the prospects for future work in section 5.

Throughout this work, we have actively endeavored to keep our expressions free of

any unnecessary reference to a particular choice of kinematical variables — namely, in the

representation of loop integrands and their residues. Because of this, however, some of our

work may appear unfamiliar even to the most expert of readers. We hope, however, that

the examples and illustrations used in our review are sufficiently clear to make both our

result and the more general strategy more accessible.

2 From generalized to prescriptive unitarity

The basic idea of generalized unitarity is very simple: because Feynman diagrams are

rational functions prior to loop integration, the loop integrands of arbitrary scattering

amplitudes are rational functions of the external and internal momenta; being rational

functions, they are expandable into a complete basis of functions, with coefficients deter-

mined by residues (or ‘poles’). Schematically, suppose {Ik} forms a complete basis of L

loop integrands (appropriate for a particular field theory), then an arbitrary scattering

amplitude integrand, AL
n , can be represented:

AL
n =

∑

k

ck Ik . (2.1)

The coefficients in this expansion, ck, are determined by the criterion that the right hand

side matches field theory on all residues (of arbitrary co-dimension). Depending on the

choice of basis {Ik}, the coefficients ck in (2.1) may be individual residues or arbitrarily

complicated linear combinations thereof. A representation of the form (2.1) will be called

prescriptive if every coefficient ck is a single field-theory cut.

Before describing representations of the form (2.1) in more detail, it is worth taking a

moment to explain why such a representation would be advantageous. The primary rea-

sons are two-fold. First, although integrated amplitudes can be horrendously complicated

transcendental functions, the residues of amplitude integrands are always gauge-invariant
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algebraic functions of physical observables constructed from tree amplitudes (and enjoy-

ing all the symmetries of tree-level S-matrices). Thus, regardless of the complex linear

combinations of cuts that may appear in the coefficients upon solving the constraints, the

terms involved are (relatively) easy to compute, with complexity similar to that of tree

amplitudes. Secondly, once a choice of basis is fixed, each integral may be integrated and

tabulated irrespective of any particular quantum field theory (provided the basis is suffi-

ciently general). And because loop integration remains considerably harder than integrand

construction, it is extremely convenient to reuse integrals for many different computations

or reduce them to a smaller set of master integrals, see e.g. [120–123] and references therein.

While we are not using integral reduction in this work, we are simplifying the work required

to find integrand-level representations, after which integration-by-parts identities could be

exploited. For related work trying to identify certain master integrands that are nonzero

upon integration, see e.g. [116, 124–126].

2.1 The generalized unitarity approach to integrand construction

In order to be more precise about the ingredients involved in representing an amplitude

according to (2.1), it will be useful to define some basic notation and conventions. The

kinds of integrands in which we will be interested consist of some number of ordinary

Feynman propagators, of the form 1/(ℓi−p)
2 where ℓi is one of the L loop momenta, and p

is some combination of external/internal momenta, with numerators given as polynomials

in ℓi constructed out of Lorentz invariants. The degree of the numerator polynomials is

dictated by the field theory in question.

We will have more to say about the numerators soon, but for now let us introduce

the notation used for the denominators. The integrals in which we are interested will

have denominators corresponding to some scalar Feynman diagram — with each factor of

the form (ℓ−p)2. For reasons of notational simplicity (and kinematic agnosticism), we will

write these propagators according to the edges of a Feynman graph: using ‘(ℓ, a)’ to denote

the squared momentum flowing through edge ‘a’ of the graph. For example, a one loop

integrand involving five propagators (a ‘pentagon’) would be written:

≡ N(ℓ)

(ℓ, a)(ℓ, b)(ℓ, c)(ℓ, d)(ℓ, e)
, (2.2)

where N(ℓ) is some polynomial in ℓ. For plane graphs, every edge can be unambiguously

labelled by the Poincaré-dual faces which they connect; and each face can unambiguously

labelled by external or internal momenta. Thus, we may use the same labels for edges

as for external legs or internal momenta. Our convention will be that (ℓ, a) denotes the

‘external’ propagator3 preceding the external leg a clockwise around the graph, and (ℓi, ℓj)

3By external, we simply mean the Feynman propagator of a loop momentum which is on the exterior of

the graph.
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denotes an ‘internal’ propagator between loop momenta ℓi, ℓj . Thus, the edges in (2.2)

would correspond to a graph with external legs labelled:

⇔ ⇔ (2.3)

Throughout this work, we will label leg ranges spanning an arbitrary (but non-empty)

length using the notation of the figure on the left in (2.3). Later on, we will also make use

of dashed wedges to indicate ranges of legs that may possibly be empty.

Although we have endeavored to keep our formulae kinematically agnostic, it is worth

mentioning how natural this notation is when integrands are expressed in dual momentum

coordinates. These coordinates are linearly related to ordinary momenta, but make mo-

mentum conservation (and translational invariance) manifest. Specifically, we could choose

to express the ath external momentum as pa≡xa+1−xa (with xn+1≃x1 being understood);

the points xa are called ‘dual momentum coordinates’. Differences in these coordinates

then represent sums of consecutive momenta, xb−xa=pa+pa+1+ . . .+pb−1, so that:

(a, b) = (b, a) ≡ (xb−xa)
2 = (pa + pa+1 + . . .+ pb−1)

2 . (2.4)

For planar integrands in these coordinates, each loop momentum would be assigned a

dual coordinate xℓi , so that all propagators explicitly take the form (ℓ, a)≡ (xℓ−xa)
2 or

(ℓi, ℓj)≡(xℓi −xℓj )
2.

2.1.1 On-shell functions: the cuts of loop amplitudes

Given a basis of loop integrands, the criterion used to fix the coefficients ck in (2.1) is that

the residues of the right hand side match field theory. We presume the reader understands

how to compute the (multidimensional) residues (see e.g. [127]) of explicit, rational inte-

grands. For a precise definition of cut integrals, see the recent work [128]. The residues

of field theory amplitudes should also be familiar, but are worth reviewing — if only to

clarify notation that will be used throughout this work.

The residues of a scattering amplitude are those functions obtained from an off-shell

(e.g. Feynman) loop integrand by setting some subset of internal particles on-shell. If

starting from the Feynman expansion, it is not hard to see that the set of all Feynman

graphs sharing some subset of internal propagators will span entire lower loop amplitudes at

the vertices.4 Thus, the residues of loop amplitudes correspond to graphs with amplitudes

at each vertex separated by on-shell, internal states. Functions corresponding to such

graphs are called on-shell functions, and they have played a key role in many of the recent

developments in our understanding of scattering amplitudes.

4This is strictly true for theories with any amount of supersymmetry; for more general theories, this

statement requires at least two propagators be cut.
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On-shell functions can be defined (and computed) in many ways — using many kine-

matical choices which may simplify their form for particular theories (in particular di-

mensions, etc.). Even though they have been most prominently featured in the realm of

supersymmetric theories [21, 129–133] (see e.g. [134, 135] for some exceptions), they can

generally be defined from first principles without reference to (off-shell) loop integrands

in any quantum field theory. When represented as a graph Γ of amplitudes at vertices

indexed by v, connected by edges indexed by i (representing on-shell, but internal physical

states), the corresponding on-shell function fΓ can be defined simply by:

fΓ ≡
∏

i

(

∑

states

∫

dd−1LIPSi

)

∏

v

Av . (2.5)

This definition follows immediately from locality and unitarity. In (2.5), ‘dLIPS’ denotes

the measure over the ‘Lorentz invariant phase space’ of each on-shell, internal particle, and

the summation over ‘states’ means over all non-kinematical quantum labels distinguish-

ing particles in the theory — helicity, colour, etc. We hope that the reader appreciates

that (2.5) has been written in so as to make clear that these objects are definable in

arbitrary numbers of dimensions.

For many of the on-shell functions important to this work, the phase space integrations

in (2.5) are not entirely localized by the momentum conservation at the vertices; when

this happens, fΓ becomes an (unspecified) integral over on-shell degrees of freedom. The

integrand of fΓ is thus some generally algebraic (often rational) function of both external

and internal, always on-shell degrees of freedom.

As discussed above, on-shell functions may be equivalently defined as the iterated

residues of off-shell loop amplitudes obtained by putting each edge in the diagram on-

shell. On-shell functions defined in this way (as residues of loop amplitudes) appeared

first historically in the context of generalized unitarity. While we prefer the first-principles

definition (2.5), this historical view is useful to bear in mind. For example, considering

on-shell functions as residues makes it easy to count how many ‘internal’ degrees of freedom

exist for a given diagram: an L-loop diagram with nI internal edges corresponds to a co-

dimension nI residue of a (d×L)-dimensional form — resulting in a function of (d×L−nI)

remaining degrees of freedom. In this work we will mostly be concerned with d = 4-

dimensional quantum field theories.

Among the most important of all on-shell functions is the ‘unitarity’ cut:

≡
1

x1x2
AL(ℓ

a(~x), pa, . . . , − ℓ
c(~x))AR(ℓ

c(~x), pc, . . . , − ℓ
a(~x)) , (2.6)

where ℓa, ℓc are the on-shell momenta flowing through the corresponding edges — obtained

as solutions to (ℓ, a) = (ℓ, c) = 0 and expressed in terms of the 2 remaining degrees of

freedom, ~x≡ (x1, x2). From this trivial (if essential) starting point, all one-loop on-shell
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functions can be obtained by taking iterated residues — e.g.,

Res
(ℓ,b)=0

( )

= . (2.7)

Here, the pole in (ℓ, b) must arise from one of the amplitudes in (2.6), and the resulting

on-shell function has one internal degree of freedom — now denoted simply by ‘x’. If one

further residue is taken, the result is an on-shell function without any internal degrees of

freedom — a ‘leading singularity’ (in four dimensions):

Res
(ℓ,d)=0





















= ≡ f i
abcd . (2.8)

Although the on-shell function on the right-hand side (2.8) has no internal degrees of

freedom, it carries a label ‘i’ to distinguish between the two “quad-cut” solutions, denoted

‘Qi
abcd’, to the four simultaneous on-shell conditions:

(ℓ∗, a) = (ℓ∗, b) = (ℓ∗, c) = (ℓ∗, d) = 0 for ℓ∗∈{Q1
abcd, Q

2
abcd} . (2.9)

The reason for making such a distinction is that the on-shell functions for the two solutions

(which are now basically just products of tree amplitudes, evaluated on ℓ∗) are related by

parity but are generally distinct: most of the time, f1
abcd 6= f2

abcd. The details of their

functional form will not be important to us. However, that there are two solutions to

cutting four propagators in four dimensions and that the resulting on-shell functions are

generally distinct will be very useful facts to bear in mind.

Although we will use (planar) SYM as the primary example throughout this work, we

would like to emphasize that the precise form taken for the on-shell functions in this theory

will play essentially no role whatsoever. Indeed, most of our analysis would be valid for

any particular (four-dimensional) quantum field theory. If every on-shell function in this

work were reinterpreted as those of non-supersymmetric Yang-Mills, for example, virtually

all of our results would remain valid: our formulae would represent important and correct

— merely incomplete — contributions to loop amplitude integrands in pure Yang-Mills.

For those readers interested in a more concrete understanding of the on-shell functions

used in this work for planar SYM, we refer the reader to more thorough discussions in

the literature (see e.g. [21, 136] or the appendices of [119]), and to the computer packages

described in refs. [137–139].

Before moving on, we should clarify some of the terminology that is often used to de-

scribe on-shell functions. For this work, we consider ‘residues’ and ‘cuts’ to be interchange-

able. Residues with maximal co-dimension (which may involve d×L internal propagators, or

– 8 –
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simply d×L cut conditions among fewer propagators) have no internal degrees of freedom.

These on-shell functions will play an important role for us; they are called ‘leading singular-

ities ’ [106]. Residues for which the number of cut conditions exceeds the number of internal

propagators are called composite. (Composite residues, however, will not be very important

to our present work.) Residues which depend on some number of internal degrees of freedom

— such as the unitarity cut (2.6) — may occasionally be called ‘sub-leading’ singularities.

Closely related to (sub-)leading singularities are the so-called ‘maximal cuts’ [105]

(see also [140]). Maximal cuts are those residues which cut the maximum number of

internal propagators of an amplitude; this number depends on multiplicity, but can be

substantially less than d×L. As such, maximal cuts often correspond to what we call sub-

leading singularities — which could potentially be a source of confusion. We choose not to

use the language of maximal- and (next-to)k-maximal cuts, however, because the counting

of the number of internal degrees of freedom of a given residue is much more important to

us than the number of propagators involved (or the multiplicity of an amplitude).

2.2 Generalized unitarity at one loop

In this subsection, we briefly review (traditional) generalized unitarity at one loop [101–

103]. This will provide a convenient excuse to introduce some essential aspects about inte-

grand reduction, and illustrate the differences with the prescriptive approach we describe

here. For the sake of clarity and concreteness, let us restrict ourselves to four-dimensional

quantum field theories.

Let us review some classical results about integrand reduction in four dimensions. The

space of squared propagators is easily seen to be six-dimensional: any such factor can

always be expanded into a “näıve” basis of Lorentz-invariant monomials:

(ℓ, Y ) ≡ (ℓ− pY )
2 ∈ span

{

1, ℓ·k1, ℓ·k2, ℓ·k3, ℓ·k4, ℓ
2
}

“näıve” basis for inverse propagators

. (2.10)

Here, ki represent any spanning set of four-dimensional momenta. There are various ways

to make this counting manifest — for example, using momentum twistors [141] or projective

coordinates (see e.g. [142]); but for our purposes, the obvious counting in (2.10) will suffice.

We restrict our discussion to general kinematics and will not exploit any linear dependencies

that may arise for low-point kinematics (when n≤d), [109, 143].

The fact that inverse propagators (in four dimensions) span a six-dimensional space

has some immediate consequences independent of any particular quantum field theory. One

fairly trivial consequence of (2.10) is that any polynomial of degree less than three in loop

momenta can be expressed alternatively in a six-dimensional space of inverse propagators

— including the identity polynomial. In particular, this means that — regardless of the

(field-theory-determined) power counting of numerators, any integrand with six or more

propagators can be expanded in terms of those involving five or fewer: simply choose six

of the inverse propagators to expand ‘1’ in the numerator, resulting in terms with strictly

fewer propagators. This can be done recursively for any integral until all terms have at most

five propagators. This reduction procedure was first described by Passarino and Veltman

in ref. [109]. This generalizes trivially at higher loop orders to imply that any integrand
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involving six or more external propagators is reducible into those involving five or fewer.

(We will see below that this statement can be strengthened for planar theories.)

Let us now discuss the forms taken for loop-dependent numerators of four-dimensional

integrands. As we have seen, all Lorentz-invariant monomials can be expanded in a six-

dimensional basis of inverse propagators; this implies that we may without any loss of gener-

ality consider only numerators constructed as products of inverse propagators. It is not hard

to see that the space of r powers of inverse propagators spans a space whose rank is given by:

rank of r-fold products of inverse propagators:

(

r + 3

4

)

+

(

r + 4

4

)

. (2.11)

This counting follows from the fact that these functions correspond to symmetric, traceless

products of 6’s of SO6. (For this work, the most important instances of (2.11) are for

r=1,2 — polynomials with 6 and 20 degrees of freedom, respectively.)

From the discussion above, it should be clear that all one loop amplitude integrands in

any four-dimensional quantum field theory can be expanded in terms of integrals involving

at most five propagators. In order to fully specify a basis of integrals in (2.1), however, we

must also know the highest power of loop momentum that can appear in numerators. This

is determined by the ultraviolet behavior of the theory in question.

For the sake of illustration, let us consider the case of (maximally) supersymmetric

Yang-Mills theory (SYM). Amplitudes in this theory scale as ∼ 1/(ℓ2)4 at large loop mo-

mentum, so that any integral involving five propagators as in (2.2) should have a numerator

of the form (ℓ, Y ) — a six-dimensional space of possible numerators. This suggests that

for any n-point amplitude we can construct a complete basis of integrands in terms of
(

n
5

)

pentagon integrals with 6 degrees of freedom each, and
(

n
4

)

box integrals with 1 degree

of freedom each (their overall normalization). Such a basis of integrands would indeed be

complete — but considerably over -complete.

One way to see that this set of integrals forms an over-complete basis is to choose

a convenient basis for the numerators of each pentagon integral. Consider the pentagon

drawn in (2.2). Its numerator has 6 degrees of freedom; a natural choice of basis for these

would involve the 5 relevant inverse propagators, together with the dual of these 5 —

generated by the six-dimensional ǫ-tensor:5

(ℓ, Y ) ≡ (ℓ− pY )
2 ∈ span

{

non-contact

ǫ(ℓ, a, b, c, d, e),
contact

(ℓ, a), (ℓ, b), (ℓ, c), (ℓ, d), (ℓ, e)
}

“parity” basis for inverse propagators — five external

. (2.12)

In this basis, 5 of the 6 degrees of freedom of each pentagon directly give rise to box

integrals — without any loop dependence in their numerators. These are called ‘contact

terms’ of the original pentagon; and we see that the 6 degrees of freedom of any pentagon

integral cleanly separate into 5 contact terms, and only 1 non-contact degree of freedom.

This is responsible for (most) of the redundancy in our näıve basis of
(

n
5

)

pentagons with

general numerators and
(

n
4

)

scalar boxes with loop-independent numerators.

5The tensor ǫ(ℓ,a,b,c,d,e) can be expanded in terms of inverse propagators (involving additional (complex)

momenta), but its actual form will not be important for us here.
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The decomposition of pentagon numerators according to (2.12) is called the “parity”

basis because it naturally separates all integrands into scalar box integrals (symmetric

under parity), and parity-odd pentagon integrals. Because the ǫ-tensor in (2.12) changes

sign under parity, these integrals vanish upon integration (on the parity-even Feynman

contour of loop momenta). As such, they are irrelevant to integrated amplitudes and their

role in representing loop integrands is consequently, often neglected.

Before we can discuss how amplitudes in SYM are represented according to (2.1) using

this basis of integrals, we must first observe that it is still over-complete! To correctly

count the total degrees of freedom required to expand any integral, imagine first combining

all terms over a common denominator built from all n propagators. The power counting

discussed above implies that the amplitude must have (n−4) powers of inverse propagators

in the numerator, implying a total number of degrees of freedom given by (2.11) with

r = (n−4). And so, while parity-odd pentagons and scalar boxes do form a basis, they

represent
(

n
5

)

+
(

n
4

)

degrees of freedom, which exceeds the correct number,
(

n
4

)

+
(

n−1
4

)

, for

n≥ 6. Indeed, we can see from this counting that the parity-odd pentagons satisfy
(

n−1
5

)

integrand-level relations, which must be eliminated in order for us to uniquely fix the

coefficients of the chosen, independent subset of pentagons.

The upshot of the preceding discussion is that we know that there exists a representa-

tion of one loop integrands in SYM of the form:

An =
∑

cabcde Iabcde +
∑

cabcd Iabcd , (2.13)

where the first terms include some choice of independent parity-odd pentagon integrals.

This choice obviously affects the complexity of the coefficients that arise, but has no impact

on the coefficients of the scalar boxes — for the simple reason that only these terms survive

upon integration, and therefore cannot depend on the choice of basis for the parity-odd

pentagons. Thus, if we were only concerned with integrated amplitudes, the representation

simplifies considerably:
∫

d4ℓ An =
∑

cabcd

∫

d4ℓ Iabcd . (2.14)

Because this expression is independent of the choice of basis for the parity-odd pentagons,

it certainly appears prescriptive. Indeed, the coefficients of the scalar box integrals are

(deceptively) simple:

cabcd =
∑

i=1,2

f i
abcd where f i

abcd ≡ (2.15)

where f i
abcd are on-shell functions corresponding to cutting the obvious four propagators,

which are summed over the two (parity-conjugate) leading singularities with the topology

of a given box.
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The fact that the coefficients of the scalar boxes take this simple form is not hard

to prove by considering the co-dimension four residues of the amplitudes and box inte-

grals in the basis. But this simplicity hides a great deal of underlying structure that is

easily overlooked. For example, not all co-dimension four residues of amplitudes involve

four propagators: there are also the so-called ‘composite’ residues involving only three

propagators separated by two massless legs:

= supported on box integrals via (2.16)

These residues are supported where the loop momentum becomes both soft and collinear

(to some external leg), and exist within the range of the Feynman contour (for ℓ∈R
3,1); as

such, they are precisely responsible for the infrared divergences of loop amplitudes. The fact

that the representation (2.14) gets these non-manifestly-matched residues of field theory

correct follows from the completeness of our basis and the fact that parity-odd pentagons

always vanish on these parity-even residues. But as indicated in (2.16), these residues of

field theory are simply tree amplitudes; as such, the fact that the box expansion (2.14)

reproduces these cuts is how the tree-level BCFW recursion relations were originally dis-

covered [7] (only later proven in ref. [8]). In what follows, we will not make use of composite

residues in our work mostly because they exist only for integrals involving massless legs

— which would require us to deal with the various cases of possible leg distributions dif-

ferently. See the end of section 2.3 for a more thorough discussion of the advantages and

disadvantages of making these residues (responsible for infrared divergences) manifest.

What we have described so far is a more thorough version of how generalized unitarity

is usually described at one loop. The representation (2.13) does not meet our requirement

for being prescriptive for the simple reason that the coefficients are not individual residues.

Despite the fact that the integral level statement in (2.14) is very nearly prescriptive, there

is no way to avoid choosing a basis of parity-odd pentagons in (2.13), and the mess of linear

algebra resulting in their coefficients.

This story can in fact be recast in a prescriptive way, but doing so requires several

complications unnecessary beyond one loop (if we insist on maintaining the manifest power

counting of SYM). After describing the prescriptive approach to amplitudes at two and

three loops, it will be much easier to understand prescriptive unitarity at one loop. Thus,

we postpone a more general discussion of one loop prescriptive unitarity until section 4,

where we will see that weakening the limits on the power counting of the theory will allow

us to better describe SYM at one loop.

2.3 Prescriptive unitarity at two loops (redux)

In the past, increasing the loop order or the number of legs often led to computational

challenges. Some of the early results started with the computation of integrands for fixed

number of legs, [144], which were later extended to arbitrary multiplicity, [9, 119, 145,
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146]. In pure Yang-Mills, explicit results for all plus amplitudes up to six points are also

available [147–151], see also work on numerical unitarity methods at two loops [108].

Surprisingly enough, matching two loop amplitudes in planar SYM at the integrand-

level according to unitarity (even prescriptively) turns out to be simpler than at one loop.

To see this, let us first describe the analog to Passarino-Veltman reduction [109] relevant to

amplitudes in (planar) SYM. Without any loss of generality, we may consider all integrals

to include at least one internal propagator (multiplying by (ℓ1, ℓ2)/(ℓ1, ℓ2) if necessary).

Power counting now requires that any integrand in a purported basis must involve at

least three external propagators per loop (four propagators total per loop). How many

external propagators are allowed before integrand reduction implies dependencies? For

reasons that we will soon demonstrate, it turns out the answer is four, resulting in a

(possibly over-)complete basis from the following topologies:















, ,















⊂





























. (2.17)

The first of these topologies has no loop dependence and only 1 degree of freedom in the

numerator, the second has 6 degrees of freedom, and the third has 6×6. In order for us to

see that no integrands involving more external propagators are required, it will be helpful

to first describe the degrees of freedom of these integrands.

Consider first the ‘pentabox’ integral — the second topology in (2.17). This integral’s

numerator must involve a single inverse propagator. It will be useful to describe these 6

degrees of freedom in terms of contact/non-contact parts. Obviously, the contact terms

are captured by the four relevant inverse propagators, leaving two non-contact degrees of

freedom. These orthogonal degrees of freedom are naturally captured by two quad-cuts —

the points in loop momentum space determined by putting the four external propagators

on shell. Denoting the four external propagators of the pentagon-part of the pentabox

integral by {(ℓ, a), . . . , (ℓ, d)}, a natural basis for numerators would be given by:

(ℓ, Y ) ≡ (ℓ− pY )
2 ∈ span

{

non-contact

(ℓ,Q1
abcd), (ℓ,Q

2
abcd),

contact

(ℓ, a), (ℓ, b), (ℓ, c), (ℓ, d)
}

“chiral pentagon” basis for inverse propagators — four external

. (2.18)

Thus, the general numerator of a pentabox can be described as consisting of exactly 2

non-contact degrees of freedom, and 4 contact terms — each having the topology of a

double-box (the first picture in (2.17)).

Using the same basis for inverse propagators for each pentagon, it is easy to see that

the 62 degrees of freedom of a double-pentagon — the last topology in (2.17) — can

be decomposed according to 62 = (2+4)2. Although we could envision all the topologies

in (2.17) as arising as contact terms of the double-pentagon, it turns out to be much smarter

to discuss each topology as being defined modulo its contact-term degrees of freedom. Thus,

a double-box has a single degree of freedom; a pentabox has 2 degrees of freedom (modulo

contact terms); and a double-pentagon has 4 degrees of freedom (modulo contact terms).

In what follows, we will define our basis using all the degrees of freedom for each topology
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(which would seem like a very over-complete basis), with an important role played by the

non-contact degrees of freedom of each. Thus, we may reformulate our basis according to,














, ,















, (2.19)

where an index i, j∈{1, 2} denotes the non-contact degrees of freedom for each term.

We are now ready to see that any integrand involving more than four external propaga-

tors for either loop momentum is reducible into the topologies given in (2.19). Suppose that

one of the loops involved five external propagators. Its 20 degrees of freedom could then

be spanned by
(

5
1

)

single contact terms with 2 (non-contact) degrees of freedom each, and
(

5
2

)

double-contact terms with 1 degree of freedom each (their normalization). Thus, any

integrand involving more than four external propagators is expandable into those in (2.19).

Before moving on, we should be clear that our present basis of two loop integrands

(relevant to planar SYM) in (2.19) is certainly over-complete. This is because, for example,

while we consider there to be two pentaboxes (indexed by i, counting the non-contact

terms), we are going to allow them to be defined by all their 6 degrees of freedom of a general

numerator consistent with power counting — including their contact terms. We will see

below that these integrands, as they appear in the basis for our prescriptive representation,

will have rules to specify all six of their degrees of freedom. This may seem to be a rather

poor choice of basis, it being initially over-complete; however, these additional degrees of

freedom will be critical to allowing us to construct a strictly diagonal basis for cuts — a

basis of integrands for which each term matches a specific field theory residue unique to that

integrand. Once such a basis has been constructed, its non-over-completeness is guaranteed.

2.3.1 Choosing a diagonalized basis of integrands/cuts

Let us now describe how to fully determine each integrand in our basis (2.19) according to

field theory cuts. The first of the integrals, the double-boxes, are the simplest but arguably

the least trivial. They are simple because each double-box has only a single degree of

freedom, and so we need only determine its normalization; they are the least trivial because

they do not have (in the general case) any residues with maximal co-dimension. (When

one or more of the middle leg ranges are empty, the integrals do have support on maximal

co-dimension residues, but we choose here to ignore this potential simplicity in favor of a

more generally valid approach.)

The fact that double-box integrals do not generally support residues with maximal

co-dimension is not in fact very problematic: we merely need to match field theory on a

less-than-maximal co-dimension residue. For example, let us choose to consider the co-

dimension six residue of the integral that puts all six of the external propagators on-shell.

We may parameterize the two-dimensional space of loop momenta along this residue by

‘(x, y)’ — one parameter per loop. The residue of the six propagators is easy to take: it

produces a simple Jacobian,6 together with the internal propagator, 1/(ℓ1(x), ℓ2(y)), left

6This Jacobian appears on both sides of (2.1), and so is not actually relevant to the coefficients.
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as a function of the remaining degrees of freedom:

(2.20)

The corresponding residue of field theory is similarly easy to evaluate, it also being a

function of two internal degrees of freedom. We will represent this as:

(2.21)

A closed formula for this on-shell function (expressed using momentum twistors) was pro-

vided in ref. [119]; but a more general way to express it (independent of kinematical pref-

erences) would be to start with a double-bubble — analogous to (2.6) above — and take

two residues cutting the outermost amplitudes.

This function represents the ‘correct result’ for this two parameter function of the loop

momenta, and so we must match field theory everywhere as a function of (x, y). This can

be done by simply matching field theory at an arbitrary (but fixed) point (x∗, y∗). (These

points can always be chosen so that the now-normalized basis integrand is dual-conformally-

invariant, but dual-conformal-invariance is not something required by our approach.) Thus,

we can match field theory at least at some arbitrarily chosen point (x∗, y∗) along this co-

dimension six residue of the integrand using the terms:

An =
∑









×









+ . . . , (2.22)

To be completely clear, the scalar double-box integrands have been normalized (fixing their

one degree of freedom) at some particular point (x, y) to match the corresponding ((x, y)-

dependent) point in field theory. We could include these labels in the figure denoting the

integrand in our basis, but have left them off for notational simplicity. Also, the labels

x, y in the on-shell function should really be understood as x∗, y∗ — where these particular

points are fixed, but chosen arbitrarily.

The attentive reader will notice that these cuts, (2.21), would also have support from

the other integrals in our basis (2.19). And so it would seem that we are in danger of

spoiling the correctness of the terms (2.22) on the cuts (2.21) once we include the other

integrals in our basis. This potential problem is easily solved by using the contact term

degrees of freedom of the higher integrands in our basis to ensure that all the other integrals

vanish on these cuts. Just to be clear, it is not possible to make these higher integrands

vanish everywhere on the lower cuts, but only at the specified points, (x∗, y∗) etc., along

the lower cuts. Let us now describe how this works in detail.
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Consider now the pentaboxes in our basis of integrands (2.19). Each of these has

exactly two non-contact, and four contact degrees of freedom. Can these integrals be used

to match field theory cuts not matched already by the terms in (2.22)? And can we do so

without spoiling those already matched, (2.21)? The answer to both questions is yes. Let

us consider each in turn.

Pentabox integrals have more external propagators than the double-boxes, and there-

fore support field theory cuts involving more external propagators. We could use co-

dimension seven cuts to match field theory in a way similar to what we did above, but (un-

like the double-boxes), pentabox integrals always support ‘leading singularities’ — residues

of maximal co-dimension (eight) — for the simple reason that they involve eight total prop-

agators. Whenever leading singularities are supported, they are better cuts to use — if

only because they do not require any arbitrary choice of points such as (x∗, y∗) on which to

evaluate cuts of integrands and their on-shell function coefficients. Thus, the pentaboxes

can be used to match (some of the) leading singularities of field theory:

↔ (2.23)

When trying to match field theory on these cuts, there may seem to be a problem. On

the one hand, the equations for cutting eight propagators has four distinct solutions (two

per loop, labeled by (i, j)), and field theory residues evaluated at these points in loop-

momentum space are generally distinct. On the other hand, there are only two non-contact

degrees of freedom for the numerator of the pentabox. At best, we can match two of the

four residues of field theory. (All 4 of the contact term degrees of freedom vanish on these

cuts by virtue of the fact that all of the contact terms involve fewer external propagators.)

The resolution of this problem is in fact simple: it is simply unnecessary to manifestly

match every field theory residue. So long as we have a complete basis of integrands, and

the coefficient of every integral in the basis is uniquely fixed by some residue, completeness

of the basis ensures that all other residues will also be matched. Thus, we merely need

to choose two of the four pentabox leading singularities to match manifestly using the 2

non-contact-term degrees of freedom. Let us therefore declare that we fix the (non-contact-

term) degrees of freedom of the pentaboxes in order to precisely match field theory on the

‘j=1’ residues of field theory in (2.23):

(2.24)

The above discussion has allowed us to uniquely specify the non-contact-term degrees

of freedom of every pentabox integral, matching field theory on the (subset of) pentabox
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leading singularities in (2.24). This can be done irrespective of the contact term degrees

of freedom, as none of these terms have support on the residues (2.24). Thus, we have a

four-dimensional space of ‘ambiguities’ for the possible numerators of the pentaboxes which

leave in tact the correctness of the pentabox residues. The attentive reader should already

understand how these degrees of freedom should be eliminated: following our general com-

ments on prescriptive unitarity, these contact term degrees of freedom are eliminated in

such a way that we must ensure that the pentabox integrals vanish on the already-matched

points in loop-momentum space. Because each contact term of the pentabox corresponds to

a double-box integral, and each of these have been used to match field theory at arbitrarily

chosen points (x, y), we now require that the pentabox integrals vanish at these points.

These are homogeneous equations which are easy to solve analytically: one merely eval-

uates the non-contact-term numerators on the residues being used to define the contact-

term integrals, and subtract. (Without this subtraction, our basis would be essentially

upper-triangular in form, and so this subtraction represents the only ‘linear algebra’ in-

volved in our construction.) For example, if the four external propagators of the pentabox

are labeled a, . . . , d, so that we may expand the numerator into the “chiral” basis given

in (2.18), then we simply define the total pentabox integral’s numerator to be given by:

N i(ℓ) ≡ (ℓ, Y i)−
∑

λ∈{a, b, c, d}

(ℓ(x∗), Y i)(ℓ, λ)

(ℓ(x∗), λ)
. (2.25)

Here, (ℓ, Y i) is one of the non-contact-term (“chiral”) numerators (generally Y i is one of

Qi
abcd as in (2.18), but normalized to match a particular cut in (2.24)); and x∗ is whatever

point is used to define the double-box integrals in the basis — which need not be the

same for every double-box. This is analogous to Gram-Schmidt orthogonalization. We are

only being somewhat schematic here because any more concreteness would require some

reference to formulae for (ℓ, Y i) (requiring in turn the need to introduce notation using some

kinematic scheme — about which we desire to remain agnostic), and also a specific rule

for specifying the points (x∗, y∗) which are truly arbitrary. For a more concrete discussion,

we refer the reader to ref. [119].

Thus, we have now fully specified all pentabox integrands in our basis, and the coeffi-

cient of each is uniquely fixed by a single field theory residue.

All that remains for us to do is choose which double-pentagons to include in our

basis. As before, this can be done rather simply. Each double-pentagon has 4 non-contact

degrees of freedom, and — conveniently this time — has precisely four leading singularities

not shared by any other integrals in our basis: the so-called ‘kissing boxes’. Thus, we

may uniquely determine the non-contact degrees of freedom of the double-pentagons by

ensuring that they match field theory on the four cuts:

↔ (2.26)
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As before, the contact-terms for these integrals are fully determined by the requirement

that these integrals vanish on all the cuts already matched by lower integrals. It is easy

to see that exactly the right number of contact-term topologies exist to eliminate all these

degrees of freedom.

Having started with an over-complete basis of integrals, and defined each integrand

uniquely to match field theory on a specific cut and to vanish on all other cuts used to

define other integrals, we have achieved a truly diagonal basis. That this basis is not over-

complete follows from the fact that each integrand has a unique field theory coefficient

(because every other integral in the basis has been explicitly constructed to vanish there).

Thus, we have found prescriptive representation of all two loop amplitude integrands in

planar SYM. Schematically, we may write,

AL=2
n =

∑

L

fL (2.27)

where the ‘ladder’ integrands are chosen from our basis (2.19), constructed in the way

described above, and each coefficient fL is a single on-shell function:

∈















, ,















fL ∈



























, ,



























(2.28)

Readers familiar with the earlier work in ref. [119] will notice that the representation

of two loop amplitudes described here is considerably more compact (and arguably more

straightforward). There are several reasons for this.

The primary distinction between the representation of two loop amplitudes in (2.27)

and that described in ref. [119] is that here we have made no use of composite residues

such as (2.16). Because these residues are entirely responsible for the infrared divergences

of scattering amplitudes which are known to exponentiate according to the BDS ansatz

described in ref. [152], it is well-motivated to make this exponentiation manifest in an

integrand-level representation. This was achieved in the formulation described in ref. [119],

but at the cost of distinguishing the terms in (2.27) according to the possible masslessness of

the external leg ranges of the integrals, and using different cuts/coefficients for the different

cases — namely, using composite residues for the massless cases, and those similar to what

we described above whenever composite residues would not exist.

Our choice here to not make such distinctions is primarily pedagogical: breaking the

basis of integrals into more cases requires a degree of unessential complication and a longer
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discussion. At three loops, choosing not to exploit composite residues leads to a consid-

erably more compact formulation, but it is worth mentioning that we have been unable

to make the exponentiation of infrared divergences manifest at three loops even if these

distinctions had been made. As such, it is not merely the interest of brevity that motivates

our choice to ignore any possible composite residues that may exist. Refining our repre-

sentation of three loops to make the exponentiation of infrared divergences manifest would

be an interesting exercise, but must be left for future research.

2.4 Generalities of a prescriptive approach to unitarity

We hope that the discussions above at one and two loops were sufficiently clear to illustrate

the prescriptive approach to unitarity. In this section, we outline how this can be formulated

for amplitudes in a truly general quantum field theory — without reference to planarity,

supersymmetry, spacetime dimension, or even the masslessness of particles. We return to

the case of one loop prescriptive unitarity in section 4 in order to better illustrate how

these methods work for theories with worse ultraviolet behavior than SYM.

The first step is to construct a complete basis of (local) loop integrands, with numer-

ators dictated by the power counting of the field theory in question. After an analogue of

Passarino-Veltman reduction [109], an over-complete basis of integrands may be identified.

From such a basis of integrands, a prescriptive representation for any amplitude would be

found by the following procedure:

1. draw all integrand topologies, dividing every numerator’s degrees of freedom into

non-contact terms and contact terms;

2. for each integrand, starting with those involving the fewest external propagators,

specify an independent subset of field theory residues involving all external propaga-

tors, and use these to define its non-contact term degrees of freedom;

3. fix each integrand’s contact terms by the requirement that the integral vanish on all

the residues used to define integrals with fewer propagators.

This procedure may be followed regardless of the power counting of the theory, its

spacetime dimension, etc. The only annoyance that may arise is that the size of the basis

may grow rapidly — requiring a correspondingly large number of cuts (some which may

have identical topologies, but evaluated multiple points along their internal degrees of

freedom).

If the last step in this procedure above were ignored — so that the cuts which define

each integral did not exactly correspond to a single field theory residue — then the actual

coefficients could be easily found by linear algebra. In this case, what we have described

would asymptotically amount to what was described by OPP in ref. [110] (where the coef-

ficients of integrals represent the difference between the right answer and all coefficients of

the higher-level integrals which pollute each cut in question). This distinction is perhaps

better illustrated by example, and we refer the reader to a more thorough description of

prescriptive unitarity at one loop in section 4.
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In order to find a truly prescriptive representation, it is the last step that is the most

important. And it may not even be possible to satisfy. If care is not taken in the selection

of cuts used to define the lower integrals, the requirement that higher integrals vanish on all

cuts below may not be possible. This will happen whenever the cuts being used to define

‘lower’ integrals outnumber the contact term degrees of freedom of integrals above. The

easiest way to illustrate this potential problem is through concrete examples that first arise

at three loops. Because of this, we refer the reader to section 3.2.3 for a more thorough

discussion.

Even without seeing the details of what can go wrong, we should emphasize that this

potential tension is a very real one: no matter how cleverly cuts are chosen, it is not possible

to avoid näıvely over-constraining the contact terms of some integrals at three loops. In

the representation we describe in the next section, this seemingly over-constrained problem

is in fact solvable, but such a solution was not guaranteed. As such, our result at three

loops represents a non-trivial test that the prescriptive representations exist.

What would it mean for the prescriptive approach not to work? This would happen if

it were not possible to satisfy the requirement that some integrals’ contact terms vanish on

the all (supported) cuts used to define lower integrals. This would not be a fundamental

problem, per se, as the integrand basis being generated would still be complete; and as such,

there would surely exist a solution to generalized unitarity resulting in some representation

for amplitudes of the form (2.1). The problem is that the representation that results would

not be prescriptive. Why? Because, if higher integrals could not be made to vanish on some

cut purportedly being used to define a lower integral, then this cut would have contributions

from more than one integral in the basis. The basis would not be diagonal in cuts. As

such, the coefficient of the lower integral would need to be the difference between the “right

answer in field theory” and the sum of all the coefficients of higher integrals that pollute

this cut. If there were only one such complication, this would not substantially complicate

matters; if there were many, then the problem would revert to more complicated linear

algebra — ubiquitous in a non-prescriptive approach.

Because of this tension, it would be very interesting to see if prescriptive represen-

tations exist more generally — at higher orders of perturbation, for non-planar theories,

for theories with less supersymmetry, etc. Even if prescriptive representations were not

possible, however, we expect that the prescriptive approach described here would lead to

a substantial improvement in the linear algebra involved in finding integrand-level repre-

sentations of amplitudes.

3 Prescriptive representation of all three loop amplitudes

Let us now apply the prescriptive approach to construct a closed-form representation of

all n-point NkMHV amplitudes in planar SYM at three loops. Until now, the only cases

known (for arbitrary multiplicity) were the three loop MHV integrands found in [9, 119].
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In this section, we construct representations valid for all amplitudes,

AL=3
n =

∑

W

fW +
∑

L

fL , (3.1)

where the integrals span all contact-term topologies of those drawn above, and the non-

contact terms of each are fully determined to match specific field theory cuts fW and fL.

As indicated in (3.1), the possible integrands come in two principle topologies which we

will call ‘wheels’ and ‘ladders’, respectively. In the next subsection, we will demonstrate

that this corresponds to a complete basis for three loop integrands, and we give a complete

enumeration of the contact-term topologies (relative to what is drawn in (3.1)) that appear

in our basis. In the following subsection we illustrate the cuts which define our basis (and

the field theory coefficients); complete details are provided in appendix A. General aspects

of (3.1) are discussed in section 3.3.

3.1 Constructing a diagonal integrand basis for three loop integrals

As outlined in section 2.4, the first step in applying prescriptive unitarity is to construct a

complete basis of integrals (relevant to a particular quantum field theory). At two loops,

we saw that all integrals (with the correct power counting for SYM) could be expanded into

those involving at most four external propagators — generally, double-pentagon integrals

and contact terms thereof.

At three loops, the same rule applies: any integral involving more than four external

propagators is expandable into those with fewer. For (single-loop-momentum) factors of

integrands involving a single internal propagator, the argument is the same at two loops.

New at three loops is the possibility that one loop involves two internal propagators. The

fact that a heptagon involving five external and two internal propagators (with numera-

tors spanning a 50-dimensional space according to (2.11)) can be decomposed into those

involving at most four external propagators is similarly obvious (in terms of counting), and

easy to verify by counting. See table 2 for more general counting. This fact demonstrates

that general integrands with the wheel topology (the first terms in (3.1)) can involve at

most four external propagators per loop, and that the ladder integrals drawn in (3.1) are

actually reducible into:

⊂



























,



























.
(3.2)

One may wonder why we have excluded ‘wedge-type’ integrals of the ladder topology

— those involving four external propagators on one side of the middle loop. We do not
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list these because, without any loss of generality, they can always be considered as wheel

integrals (by multiplying and dividing by the additional propagator). Thus, the integrals

appearing in (3.2) together with the wheel in (3.1) represents a (considerably over-)complete

basis of integrands at three loops.

The second step in the procedure is to divide all the numerators for integrands in our

basis into contact/non-contact-term degrees of freedom. In this partitioning, the only new

cases to consider (relative to two loops) are the hexagons and pentagons involving two

internal propagators. Let us describe the pentagons first. As should be familiar, the power

counting of SYM dictates that these integrals involve numerators constructible as single

inverse propagators. The division of this basis into contact/non-contact terms is obvious:

if the three external propagators are labeled a, b, c, then we should use a basis of the form:

(ℓ, Y ) ≡ (ℓ− pY )
2 ∈ span

{

non-contact

(ℓ, Z1), (ℓ, Z2), (ℓ, Z3),
contact

(ℓ, a), (ℓ, b), (ℓ, c)
}

“3+2” basis for inverse propagators — three external

. (3.3)

Here, the non-contact terms are somewhat schematic — they correspond to arbitrary in-

verse propagators (ℓ, ZI) which span the three-dimensional space orthogonal to the three

contact terms. The form of these numerators is not important, but the counting is. Thus,

a pentagon integral involving three external and two internal propagators has 3+3 de-

grees of freedom — counting non-contact and contact terms, respectively. When indi-

cating the three non-contact term degrees of freedom, we will use capital Roman letters

I, J,K∈{1, 2, 3} (letters corresponding to the different loops).

The final novelty to be discussed at three loops is the possibility of a hexagon involving

four external and two internal propagators. This case turns out to be considerably simpler.

Again, the power counting of SYM dictates that these integrals must involve 20 degrees

of freedom, constructed as two-fold products of inverse propagators. A natural basis for

these numerators is as follows:

(ℓ, Y )(ℓ,W ) ∈ span











non-contact

(ℓ,Q1
abcd)

2, (ℓ,Q2
abcd)

2,
contact

(ℓ, a)(ℓ, ZI
bcd), (ℓ, b)(ℓ, Z

I
acd),

(ℓ, c)(ℓ, ZI
abd), (ℓ, d)(ℓ, Z

I
abc), (ℓ, a)(ℓ, b), (ℓ, a)(ℓ, c),

(ℓ, a)(ℓ, d), (ℓ, b)(ℓ, c), (ℓ, b)(ℓ, d), (ℓ, c)(ℓ, d)











“chiral hexagon” basis for two inverse propagators — four external

. (3.4)

Thus, hexagons have 2 non-contact- and 18 contact-term degrees of freedom. Because

they have only 2 non-contact terms, we will distinguish them by lower-case Roman letters

i, j, k∈{1, 2} (again, the letters used to distinguish the loop momenta).

We are now ready to enumerate all the possible topologies required in our basis, and

count the non-contact term degrees of freedom of each. This is given in table 1. The cuts

used to define these integrals (and hence their field theory coefficients) are described in

appendix A.

For the sake of clarity, each integral topology drawn in table 1 represents the collection

of all integrals with distinct, cyclically-ordered leg distributions. (Loop momentum labels

are always symmetrized.) For most integrals, asymmetry in the diagram is compensated

by rotational invariance in sum — for example, the reflected images of L2 or L3 are already
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‘wheel’ integrals Wi

W1 W2

W3 W4

W5 W6

W7 W8

W9 W10

‘ladder’ integrals Li

L1 L2

L3 L4

L5 L6

L7 L8

L9 L10

L11 L12

Table 1. The integral topologies which form a complete basis for three loop amplitudes in planar

SYM. Here, {i, j, k}∈{1, 2} and {I, J,K}∈{1, 2, 3} label non-contact degrees of freedom for general

numerators, explicitly matching the on-shell functions in appendix A.
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accounted for. However, some reflected integrals should be considered implicit: namely,

the reflected images of: W6, L6, and L9 — for which the defining cuts related by symmetry

to those drawn in appendix A.

3.2 Illustrations of integrand-defining cuts and coefficients

As mentioned above, the full list of cuts used to define each integral in our basis in table 1

together with the coefficient of each is described in appendix A. In this section we merely

illustrate some examples of these defining cuts and corresponding coefficients. We start

with the most obvious and then discuss some truly arbitrary choices made before addressing

some of the more subtle issues that are involved.

These subtleties arise because some of the cuts necessarily or potentially used to define

the wheel-topology integrals have support as contact terms of the ladder-topology integrals.

We will see that some of this overlapping support is necessary and important, but also has

the potential to spoil the diagonalizability of our basis. Indeed, we will see that for exactly

one of the integrals in our basis, W5, this cross-talk between topologies poses a critical

and unavoidable tension that, if unresolved, could spoil the existence of any prescriptive

representation. For this reason, this integral’s defining cuts will be described in some detail,

making clear how this tension arises and how it is resolved.

3.2.1 Obvious or arbitrary choices for cuts and coefficients

Analogous to the double-pentagon integrals at two loops, some of the integrals in our basis

are defined by entirely obvious cuts. This is the case for the top-level integrals in our basis:

W10, L11 and L12,



































, ,



































. (3.5)

Each of these integrals have precisely twelve external propagators, giving rise to leading

singularities indexed by {i, j, k}∈{1, 2} indicating the two solutions to each one-loop box:



































, ,



































. (3.6)

In each case, the 23 leading singularities can be used to define the corresponding integral’s

23 non-contact degrees of freedom in its numerator.
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Let us now consider a case where some choices of cuts must be made, but where this

choice is completely arbitrary. Among the simplest examples where such a choice is required

happens for the wheel integral W9. In this case, there are only eleven external propagators,

and so some internal propagator must also be cut to give a leading singularity. There are

two potential topologies of these residues, depending on which internal propagator is cut:7



































,



































. (3.7)

There are therefore 2×23 natural leading singularities to match, but only 12 (non-contact)

degrees of freedom in the numerator. Thus, it is simply not possible to construct a numer-

ator for W9 for which each of the leading singularities (3.7) are matched identically.

This situation is analogous to the case of the pentabox leading singularities and in-

tegrals at two loops (see section 2.3.1). And the solution is the same: it simply does not

matter which choice of cuts is used to match field theory — the non-manifestly matched

cut(s) will always follow from completeness of our basis. Thus, we have simply chosen to

fix k=1 for the second topology in (3.7), matching the 12 leading singularities,



































,



































. (3.8)

It is worth seeing how the ‘missing’ leading singularities are matched indirectly through

7The third propagator cannot be cut in a leading singularity as it would require more than four con-

straints to be imposed on a single loop momentum.
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a residue theorem. In this case, the residue theorem is:

∂





































= 0 (3.9)

=
∑

k



































+ + +



































Fixing the solutions (i, j) of the two quadruple cuts, we start from the one-parametric

function depicted in the first line of (3.9) and sum over all allowed factorization channels

(including the different solutions labeled by k). This is simply a manifestation of Cauchy’s

theorem. Notice that the first term in the summand (3.9) includes the both the ‘missing’

k = 2 cuts and the ‘matched’ k = 1 residues of our choice (3.8), and every other residue

appearing in this theorem has been matched explicitly. Thus, this identity directly allows

us to express the unmatched cut in terms of those we have matched.

Of course, in order for this to work, every integrand supporting the other cuts must

have support on the unmatched cut:

(3.10)

Interestingly, once the non-contact degrees of freedom of W9 have been fixed according to

the choice (3.8), every one of these integrals automatically contributes (with a minus sign)

on the unmatched cut; and similarly, once the contact terms of W10 and L12 have been fixed

by the requirement that these integrals vanish on the cuts in (3.8), these integrals automat-

ically have support on the unmatched cuts (3.10) as well. Thus, every term required in the

residue theorem (3.9) does contribute support on the non-manifestly-matched cuts, with

the requisite signs in order to exactly match field theory on the non-manifestly-matched

residue (3.10).

Such residue theorems are fun to illustrate, but the fact that some residue theorem

ensures that any non-manifestly-matched cut of field theory works follows automatically

from completeness. Hence, we will spare the reader the (somewhat tedious) exercise of

describing how this works in every particular case that follows.
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3.2.2 Somewhat carefully chosen cuts and coefficients

No wheel integral has support on a cut used to define a ladder; but the converse is not

true. In fact, we have already seen this in action: the cuts used to define integral W9 have

support from L12; and the requirement that L12 vanish on these cuts precisely accounts

for all its wedge-type contact-term degrees of freedom.

This happens frequently, but requires a minimal degree of care. This is perhaps best

illustrated by example. Consider the wheel integral W2. It has 3 (non-contact) degrees of

freedom that must be fixed. Cutting all propagators of the diagram results in 2×2 cuts:

⊂



























,



























(3.11)

Here, the blue and white three-point vertices represent MHV and MHV amplitudes, re-

spectively. The choice we make in appendix A is perhaps the obvious one: simply choose

3 of the 4 possible cuts in (3.11),



























,



























. (3.12)

Although this choice works, it is worth illustrating an alternative choice that may

appear acceptable but that would in fact have been problematic. As far as the non-contact

degrees of freedom of W2 are concerned, any three independent cuts involving all external

propagators would suffice. What would have been wrong with the following choice:

instead of ? (3.13)

The cut on the left in (3.13) does indeed determine the remaining non-contact degree of

freedom of W2 as well as that on the right. As far as the wheel integrals are concerned, any

wheel with support on one will have support on the other; and so, this choice has no effect

on the constraints imposed for the contact terms of higher wheel integrals. The problem,

however, is that some ladder integrals have support on the left-hand cut in (3.13), but not

on the right-hand choice. Moreover, it is easy to see that there do not exist contact-term

degrees of freedom for ladder integrals capable of making these vanish on the left-hand cut

in (3.13). This means that first choice would spoil the diagonalizability of our basis.
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A similar situation arises for the wheel W1: it has a single degree of freedom, and it may

have seemed convenient to fix this along a cut with the topology of three ‘kissing’ bubbles:

(3.14)

Choosing arbitrary points (~x, ~y, ~z) along this residue could indeed be used to define the sin-

gle degree of freedom in the numerator of W1. However, this cut topology has support from

many ladder integrals — which cannot be made to simultaneously vanish on these cuts; it

would over-constrain the contact-term degrees of freedom of the ladders — for example L2.

Thus, we cannot choose to define W1 by the cut (3.14). In order to avoid over-constraining

the contact-term degrees of freedom of the ladder integrals, it is necessary for us to ensure

that the cut used to define W1 has no support on any of the ladders. This is only achieved

if all the internal propagators of W1 are cut when defining its normalization and coefficient.

Cutting every propagator of W1 results in 2 possible solutions (each parameterized by

three internal degrees of freedom (x, y, z) which must be chosen arbitrarily), distinguished

by the MHV-degree of the internal, three-point amplitude. The choice between which of

these two cuts should be used to define W1 and its coefficient is arbitrary, but must be

made. We have chosen the former:

(3.15)

The general rule to avoid these potential problems should now be obvious: cut as many

internal propagators as possible to define as many non-contact degrees of freedom of any

integral — making sure that the number of cuts used with a given topology do not exceed

the degrees of freedom of any potential contact terms from higher integrals (especially with

different non-contact topologies). Thus, whenever a cut used to define a wheel integral that

has support from (the contact terms of) ladder integrals, the number of cuts should not

exceed the degrees of freedom of the overlapping contact terms.

It is relatively easy to verify that the defining cuts of wheel integrals with support from

ladder integral contact-terms given in appendix A exactly accounts for the right counting,

with exactly one unavoidable exception. This exception, the resolution of the resulting

tension, and its potential implications for (the viability of) prescriptive unitarity more

generally are discussed presently.
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3.2.3 Very carefully chosen cuts: magic needed, magic found

As mentioned above, cutting as many internal propagators as possible to define the wheel

integrals works quite well, with one important exception. While easy to overlook, its

potential implications beyond three loops (and for more general theories) warrants a more

thorough discussion.

The exceptional case is for the wheel W5 consisting of three pentagon integrals:

(3.16)

This integral has 33=27 non-contact degrees of freedom that we must fix by cuts. Following

the rule described above, it is natural to start with the leading singularities — those cuts

involving putting all 12 propagators on-shell:

⊂







































,







































. (3.17)

It is easy to verify explicitly that of these 16 leading singularities, only 15 are independent

points in the space of numerators. Thus, any choice of 15 can be used to define this number

of non-contact degrees of freedom of the W5 numerators, leaving us with 12 degrees of

freedom. We have chosen to match all cuts (3.17) except the following:

6= ⊂







































,







































. (3.18)

This selection is truly arbitrary: any choice is equally valid, without causing compli-

cations. The subtlety (and true tension) arises in the choice of the cuts that define the

remaining 12 degrees of freedom of W5. Because we have exhausted the leading singu-

larities in (3.17), these additional cuts must leave some internal propagators uncut, and

therefore have the topology of wedges. Arguably the most obvious choice for fixing the
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remaining degrees of freedom would be the following 4×3 cuts,





































































+ cyclic. (3.19)

These cuts are indeed independent and can be used to fully define the last 12 non-contact

degrees of freedom of the W5 numerators. The problem is that we must ensure that all

other integrals’ contact terms vanish for the cuts being used to define the integrals in our

basis. The relevant contact terms to consider in this case are from the ladders — for

example, those of L5, which has 3 contact-term degrees of freedom with the topology of a

wedge integral exactly involving the propagators in (3.19).

⊃ (3.20)

These contact terms have 3 degrees of freedom each, and cannot be made to vanish on all

the 4 cuts of (3.19).

This problem is in fact unavoidable, with no obvious solution. No matter what 12 cuts

(besides the 15 in (3.17)) are used to define the non-contact degrees of freedom of the W5

integrals, they will necessarily have 4 cuts supported by wedge-type contact terms of the

ladders as in (3.20). It is not hard to verify that the 4×3 cuts in (3.19) leads to an over-

constrained problem without a solution; and breaking cyclicity will not help. Does there

exist another choice of cuts for which a solution to the over-constrained system exists?

The answer is yes: the choice presented in appendix A does work. We do not wish to

claim uniqueness of this solution to this potential obstruction, but it is worth mentioning

that many other choices were tried (none of which worked). The resolution we found

chooses only 3 of the 4 cuts in (3.19) for each cyclic image,



































6=



































+ cyclic, (3.21)
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allowing us to fix 3×3 of the remaining 12 degrees of freedom of W5. The final 3 degrees

of freedom are then fixed by lower cuts,





















































+ cyclic. (3.22)

We should mention that this choice näıvely makes the problem worse, not better! Why?

Because now the contact terms of the ladders, for example L5, which have only 3 degrees

of freedom, have support on five cuts between those of (3.21) and (3.22) — three and two,

respectively. Nevertheless, it can be verified by direct computation that constraining the

contact terms (3.20) to vanish on the three cuts (3.21), these integrals automatically vanish

on the two additional cuts with the topology (3.22).

It is not hard to see that the problem we found here was unavoidable: there is no choice

of cuts capable of defining the W5 integral which do not näıvely involve more constraints

(on the contact terms of the ladders) than there exist available degrees of freedom. The

cuts described above do enjoy the requisite magic, but we do not see why this had to work.

As described in section 2.4, if there had not been a solution to this problem, it would

not have fundamentally spoiled our ability to write a closed formula for three loop ampli-

tudes; it would have just prevented this from being a prescriptive representation. Suppose

for example that we had chosen the ‘obvious’ cuts to define W5 given in (3.19). The fact that

ladder integrals including L5 could not be made to vanish on all four of the cuts in (3.19)

would have meant that many coefficients from these higher terms would contribute to the

one cut (of four) on which the integrals could not be made to vanish. Thus, the coefficient

of this part of the W5 integrals in our basis could not be just ‘the corresponding cut in field

theory’, but the difference between the right answer in field theory and all the terms that

pollute it. This would be a very-close-to prescriptive representation, but not strictly so.

Clearly, this kind of tension should become more common at higher loop orders, and it

would be very interesting to know if prescriptive representations continue to exist. We ex-

pect that this tension is avoidable through two loops in more general quantum field theories,

but revisiting this story for more general theories at three loops would also be interesting.

3.3 General aspects of the prescriptive representation at three loops

The local integrand representation of three loop amplitude integrands in planar SYM de-

rived here should be considered as an illustration of applying the prescriptive approach to

generalized unitarity — well beyond the reach of earlier methods. Indeed, prior to this

work, the only known expressions valid for all multiplicity were for MHV amplitudes, [146]

— a formula which was obtained essentially by guessing and comparing against the results

of the loop-level BCFW recursion relations [9]. The strategy we describe here seems much
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more general, explaining (to some extent) the surprising simplicity of loop amplitude in-

tegrands when expressed in terms of ‘pure’ (or close-to-pure) local Feynman integrals as

noticed in ref. [146]. Ultimately, we seek a representation of loop amplitudes at the inte-

grand level for which there is minimal cancellation between terms. Matching singularities

of field theory one-by-one seems exactly in line with this goal.

While the specific result described here has virtually no relevance to the pressing com-

putations needed for colliders, and only limited interest to even those researchers studying

planar SYM, it represents a watershed of new theoretical data in which surprising features

may be found. And because the formula (3.1), when reinterpreted using on-shell functions

of pure Yang-Mills represents a correct (albeit small) part of those amplitudes, the lessons

we learn from this toy model have much broader implications for perturbation theory. For

this reason, we would like to address some of the interesting aspects of these amplitudes,

how this representation compares with others, and may be refined or recast to better expose

different aspects of interest.

Potential for specialization and simplification. As described at the end of

section 2.3, our construction of three loop integrands was (perhaps excessively) indiffer-

ent to the possible simplifications that arise for low multiplicity or for amplitudes with

fixed NkMHV-degree. Although our representation (3.1) is arguably compact and general,

it may not be the best representation for special classes of interesting amplitudes.

One illustration of this would be a comparison with the only previously known all-

multiplicity formula, for MHV amplitudes, as described in ref. [146]. Using the notation

here, that result was given as:

AMHV
n =

∑

a≤b<c≤

d<e≤f <a

+
∑

a≤b<c<

d≤e<f <a

(3.23)

We refer the reader to ref. [146] for a detailed description of these summands and the defini-

tions of the tensor numerators defined for each integral. This representation is not incredi-

bly different from the general expression valid for all NkMHV amplitudes in (3.1). Among

the most obvious differences is the fact that there is no reference to on-shell functions as

coefficients. This is explained by the fact that all (non-vanishing) leading singularities of

planar MHV amplitudes are identical and equal to the tree amplitude — which has been

factored out in (3.23).

Another salient distinction is that not all possible leg distributions are allowed for the

integrands appearing in (3.23). While many of the topologies from table 1 are included,

only those involving many, specifically-placed massless legs are used. The reason for this is

related to the fact that for any fixed NkMHV degree not all on-shell functions appearing as

coefficients may be non-vanishing. This is especially true for small k. To understand this,
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we should note that the NkMHV-degree of an on-shell function corresponding to a graph

Γ involving amplitudes indexed by v and nI internal lines is,

kΓ =
∑

v

kv + 2L− (4L− nI) , (3.24)

where kv is the NkMHV-degree of each amplitude appearing in a corner. For a (non-

composite) leading singularity, (4L−nI) = 0, and so in order for a on-shell function to

be relevant to an MHV amplitude at three loops, kΓ = 0 =
∑

v kv+6. Because the only

amplitudes for which k < 0 are for three-point MHV amplitudes (for which k= −1), this

is only possible if the on-shell function involves exactly 6 such vertices, with all other

amplitudes in the diagram being MHV, with k=0. This is the explanation for why each

term in (3.23) involves (generally) six massless legs, and why these integrals were drawn

with empty three-point vertices at each vertex involving a massless leg in the work of

ref. [146]. Thus, the terms in (3.23) almost exactly reflect the integrals with non-vanishing

coefficients — all of which are equal to the MHV tree amplitude.8

For NkMHV amplitudes with k<6, such a specialization is always possible, as not all

the cut topologies described in appendix A have support in general. However, excluding

some topologies comes at the cost of enumerating cases, which we expect will tend to

introduce more complexity than would be gained. An exception may be the case of k=1,

for which a restricted formulation of our general result may prove compact enough to

be independently interesting. This is because NMHV amplitudes always support leading

singularities,9 and these residues are always simple ‘R-invariants’. Thus, we expect a

representation exists for which no sub-leading cuts are required as coefficients.

Composite residues and (exponentiation of) infrared divergences. Another fruit-

ful refinement of the general result may be to incorporate composite residues in order to

expose the structure of infrared divergences. Our choice to not partition our representa-

tion (3.1) according to finite and divergent parts does result in a more compact representa-

tion — as we saw also at two loops in section 2.3. Because the infrared divergences of loop

amplitudes are always associated with soft-collinear regions in loop-momentum space, they

should directly correspond to particular composite residues. And the structure of these

divergences should roughly exponentiate as described by the BDS ansatz [152].

Besides avoiding an explosion of cases to consider and fixing integrals with soft-collinear

(composite) residues separately from those without them, the principal reason why we did

not do this here is that we do not understand how. We do not sufficiently understand the

infrared divergences of the wheel-topology integrals to represent amplitudes in a way which

suggests that these divergences exponentiate from lower loop-orders. We do not believe

that there is any fundamental obstruction to doing so, but we leave the construction of

such a representation to future research.

8There is a curious exception for the wheel integral terms in (3.23) within the topology W8: these

integrals do not support MHV leading singularities in general. As such, we expect that there is unnecessary

cancellation arising in the representation (3.23), rendering it non-prescriptive.
9This is manifestly true through three loops, but we expect it to be true more generally due to the

existence of a ‘dlog’ representation from BCFW recursion [21].
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Transcendentality at three loops: iterated and elliptic integrals. One final aspect

of loop amplitudes at three loops worth mentioning involves the appearance of (potentially)

non-polylogarithmic functions, including elliptic functions of various kinds. These contri-

butions are intensely interesting, as our understanding of them is dramatically weaker than

the purely polylogarithmic transcendental functions. As such, the necessity of this more

general class of functions directly challenges our understanding, making new examples in

which to study them valuable.

The most concrete, unavoidable place where elliptic integrals arise in planar SYM is

at two loops. As noted in ref. [153], the double-box integral involving all massive corners

and at least one leg on each side of the middle propagator has no residues with maximal

co-dimension — no leading singularities. This arrangement first arises for ten particles,

(3.25)

and there is a strong argument why this integral is not an artifact of the representation:

there exists an all-scalar component of the N3MHV superamplitude for which the entire

amplitude is given by just this integral (3.25). (See ref. [119] for details.)

It is easy to verify that the scalar loop integral (3.25), on its co-dimension 7 residue

cutting all propagators, results in a one-form on loop momentum space of the form of an

elliptic integral. And it is not hard to be convinced that this is not an artifact: even when

expressed as a four-fold integral over Feynman parameters, it has no co-dimension four

residues, implying that it cannot be expressed as an iterated ‘dlog’ integral by any change

of variables. The most clear conclusion is that amplitudes even in planar SYM require a

broader definition of transcendentality (not merely via polylogarithmic functions).

Whether or not some scattering amplitudes must be polylogarithmic to all orders

— even for restricted NkMHV-degrees — has long been the subject of speculation (see

e.g. [95]). It would be beyond the scope of our present discussion to revisit these issues

here, but we would like to point out that there is at least some evidence that even four-

particle MHV amplitudes cannot be expressed using local integrals in polylogarithmic terms

starting at eight loops [99]; and this fact has images at lower loops and higher multiplicity

— including the ten particle example mentioned above at two loops.

While we do not want to speculate much on the implications for transcendentality

of our three loop representation, there are some intriguing aspects that deserve further

investigation. The most obvious new class of non-polylogarithmic functions that arise at

three loops (not merely by having a sub integral corresponding to (3.25)) is for the generally
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massive instance of the ladder L1:

(3.26)

Cutting all ten propagators of this integral results in a two-form on loop momenta param-

eterized (x, y) of the form,

=

∫

dx dy
√

Q(x, y)
, (3.27)

whereQ(x, y) is an irreducible quartic polynomial in each variable. The precise implications

of this observation for the transcendental structure of the loop integral (3.26) remains

unclear, but intensely interesting. The coefficient of L1 has support on this co-dimension

ten residue for twelve particles only for N4MHV amplitudes. Indeed, there exists a scalar

component for which the amplitude precisely takes the form of (3.27) on this cut — strongly

suggesting that these kinds of integrals are unavoidable parts of loop amplitudes.

The final example of transcendental novelty at three loops arises in the case of the

wheel integral W1, again for a generally massive distribution of external legs:

(3.28)

This new class of integral first arises for nine particles with coefficients supported for

N2MHV or N3MHV amplitudes (which are parity conjugate). Unlike the case above, cut-

ting all nine propagators in (3.28) results in a strictly rational form on the three remaining

degrees of freedom. This rational three-form, however, does support co-dimension one

residues of the same form as in (3.27). (This does not occur for fewer than nine external

legs distributed as in (3.28).) What this implies about the integrated form of the Feynman

integral (3.28), and the implications of this integral for scattering amplitudes, however,

remains unclear. In particular, while the three-form resulting from cutting all nine propa-

gators in (3.28) has a co-dimension one residue of an elliptic type, there are no co-dimension

ten cuts of a nine point amplitude which have this form. (There are no η-components of

the superfunctions on which this cut would be non-vanishing.) Thus, even if the integral

W1 were not polylogarithmic, this would not imply that nine-point amplitudes are so: it

may merely represent an artifact of the local integrand representation.
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The situation described above is reminiscent of the case of N2MHV amplitudes at

two loops. While it is easy to prove on general grounds that no N2MHV amplitude has

support on an elliptic cut at two loops, this fact need not be made manifest term-by-

term in an integrand representation. Indeed, while a (prescriptive) representation which

makes manifest the non-ellipticity of these amplitudes at two loops does exist, neither the

representation in this work nor that in ref. [119] makes this fact manifest: the basis of

integrals used has many term-wise elliptic contributions.

Whether such term-wise ellipticity is an artifact of the representation, or a necessary

consequence of using a local loop expansion remains to be seen. Further investigations of

these properties of loop amplitudes would be worthwhile.

4 Prescriptive unitarity at one loop for general theories

In our review of one loop unitarity in section 2.2, we concluded with a perhaps perplexing

comment about the difficulty of employing this approach to SYM. In this section, we

clarify this comment, and show how a prescriptive approach can be employed — at the

cost of making the power counting of the theory non-manifest. In the process, we will

illustrate how the approach we describe here compares with the more traditional approach

for theories with more general power counting. For the sake of illustration, we will continue

to discuss theories in (strictly) four dimensions; as such, our examples here will be limited

to the cut-constructible parts of dimensionally-regulated theories in four dimensions.

Recall from our discussion in section 2.2 that an over-complete basis of integrals for a

theory with ultraviolet behavior dictated by ∼1/(ℓ2)4 would be:



















,



















(4.1)

This basis, while complete, is over-complete. A choice of independent parity-odd pentagons

must be made in order to even define coefficients ck of an amplitude’s integrand.

Conveniently, as we saw in section 2.2, we may always without loss of generality ex-

pand the identity polynomial in terms of inverse propagators, which means that the power

counting of a theory need only represent a lower bound: (at the cost of introducing an

arbitrary scale into the representation), we may always consider loop integrands in SYM

to be expanded into integrands with the power counting of ∼ 1/(ℓ2)3. Considering loop

integrands in SYM to have this power counting is at worst a bad idea (we will see that it

is not); for a more general quantum field theory, this is a necessary case for us to consider.

Therefore, let us now construct a basis of one loop integrands which scale asymptoti-

cally as ∼ 1/(ℓ2)3 for large loop momenta. Clearly, any integrand in our basis must have

at least three propagators; and — as always — Passarino-Veltman reduction allows us to

focus our attention to those with at most five external propagators. Thus, we may näıevely
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have an over-complete basis of scalar triangles, tensor boxes, and pentagons involving two

powers of inverse propagators in their numerator.

Box integrals with a single inverse propagator in the numerator have 6 degrees of

freedom, which cleanly separate (using the “chiral” basis of (2.18)) into 2 non-contact

(‘chiral’) degrees of freedom, and 4 contact terms. And following the argument at the end

of section 2.3, it is easy to see that pentagon integrals with two inverse propagators can

be entirely decomposed into contact terms: 20=
(

5
1

)

×2+
(

5
2

)

×1. Thus, a complete basis of

integrals consistent with this power counting would consist of just ‘chiral’ boxes, with two

(non-contact) degrees of freedom each, and scalar triangles with one degree of freedom each:



















,



















(4.2)

Conveniently, it turns out that (for n>4), this basis is not over-complete. To see this, we

imagine combining all integrals over a common denominator and observe that this power

counting requires r = n−3 powers of inverse propagators in the numerator; according

to (2.11), this space of numerators has dimension
(

n
4

)

+
(

n+1
4

)

; and the basis (4.2) consists

of
(

n
4

)

×2+
(

n
3

)

×1, which matches the correct counting (for n>4).

In terms of this basis, a prescriptive representation is easy to construct. The triangle

integrals have only one degree of freedom, and therefore should be defined in order to match

field theory at an arbitrary point along the triple-cut involving the three propagators. The

2 non-contact degrees of freedom of each chiral box can be chosen to match field theory

on the two box-type leading singularities (see 2.8)), and their 4 contact-term degrees of

freedom should be chosen to vanish at the arbitrary points where the triangles are defined.

Thus, the cuts which define the integrals in (4.2) together with their coefficients would be,

respectively:


























,



























(4.3)

This prescriptive representation of one loop amplitudes with worse-than-SYM power-

counting is in fact very close to the prescriptive representation derived in ref. [118]. The

principle distinction between the discussion above and the result described in ref. [118] is

that composite residues were used to fix the coefficients of the triangle integrals (instead

of arbitrary points here). Also, in ref. [118], spurious propagators were included in every

integral of the basis — trading the wrong power counting for non-manifest dual conformal

invariance of the result. This may or may not be the best representation of integrands in

SYM — as the power-counting of the theory is rendered non-manifest; but it does correctly

capture any quantum field theory bounded by this degree of divergence in the ultraviolet.
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The worst power counting of any four-dimensional quantum field theory without tad-

poles would be ∼ 1/(ℓ2)2. As before, we may without any loss of generality consider any

theory with better power counting to be included in this case. As such, it captures the

cut-constructible part of any quantum field theory at one loop (including those with better

ultraviolet behavior).

Following the logic which should now be familiar, it is clear that we may expand any

integral into those with two, three, four, or five propagators, with 1, 6, 20, and 50 degrees

of freedom in the numerator for each. The 6 degrees of freedom of the general triangle

integral split into 3 non-contact terms and 3 contact terms according to the basis (3.3),

and the 20 degrees of freedom of the boxes split into 2 non-contact and 18=
(

4
1

)

×3+
(

4
2

)

×1

contact degrees of freedom. Following the same discussion as for three loops, the 50 degrees

of freedom of a degree-three tensor product of inverse propagators for an integral with 5

external propagators can be entirely decomposed into contact terms: 50 =
(

5
1

)

×2+
(

5
2

)

×

3+
(

5
3

)

×1. Thus a complete basis of loop integrands with this ultraviolet behavior can be

represented in terms of:



















, ,



















(4.4)

Here, the triangle integrals have 3 non-contact degrees of freedom in their numerator,

indexed by I ∈{1, 2, 3}. Conveniently, as with the case of 1/(ℓ2)3 power-counting (and in

contrast to the case of 1/(ℓ2)4), the basis of integrals in (4.4) is not over-complete:
(

n+ 1

4

)

+

(

n+ 2

4

)

=

(

n

2

)

×1 +

(

n

3

)

×3 +

(

n

4

)

×2 . (4.5)

(Unlike before, the independence of this basis holds for any n — including n=4.)

From this basis, a prescriptive representation is easy to construct. The coefficients

of the bubbles are fixed to match field theory at some two-parameter point ~x; and the
(

3
1

)

contact terms of the triangles and
(

4
2

)

double-contact terms of the chiral boxes are

determined by the requirement that these integrals vanish at this point. There is something

new for the cuts used to define the non-contact term degrees of freedom of the triangle

integrals: all the cuts which define these integrals (and also fix their coefficients in the

representation) have the same topology. This is not a problem: we simply choose any

three points xI , with I ∈{1, 2, 3} along the cut. The non-contact-term degrees of freedom

of the chiral boxes are, as before, determined by the leading singularities of (2.8).

Thus, the basis of integrals in (4.4) can be defined in terms of the following cuts, which

also determine their coefficients in the representation of the amplitude:



















, ,



















(4.6)
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r

next 0 1 2 3 4 5

0 1 6+0 20+0 50+0 105+0 196+0

1 1 5+1 14+6 30+20 55+50 91+105

2 1 4+2 9+11 16+34 25+80 36+160

3 1 3+3 5+15 7+43 9+96 11+185

4 1 2+4 2+18 2+48 2+103 2+194

5 1 1+5 0+20 0+50 0+105 0+196

Table 2. Division of numerator degrees of freedom consisting of r powers of inverse propagators

into non-contact vs. contact terms for integrands involving next external propagators.

It is worthwhile to compare this approach with what is ordinarily done using OPP [110].

Ordinarily, the coefficients of, e.g., the triangle integrals are determined by sufficient evalu-

ation at a sufficient number of points along their maximal cut (the residue cutting all three

propagators); because box integrals (whether scalar or tensor) do not vanish on these triple-

cuts, the coefficients of the triangles are the difference between the ‘right answer in field

theory’ (the on-shell function, evaluated at these points) and the sum of box coefficients

which ‘pollute’ this cut. What we are doing here amounts to a reorganization of the terms

that result (and a better strategy to find them). Even for the tensor triangles integrals

required for a theory with ∼1/(ℓ2)2 power counting, we do require evaluations of triangle

integrals at several points (namely, three), matched by field theory at these points. Rather

than using ‘pure’ box integrals, however, we are defining the ‘chiral’ boxes in our basis (4.4)

to vanish at these points along the triple cuts. This operation requires that the ‘box’ inte-

grals in our basis include contact-terms with the topology of triangles. Thus, the triangle

integrals in our basis (4.4) include also contact-term degrees of freedom with the topology

of bubbles, and the boxes include both triangle- and bubble-topology contact terms.

This reorganization is not extremely different from what is ordinarily achieved using

generalized unitarity at one loop. However, we hope that our illustrations at two and three

loops (even for the simple case of planar SYM) demonstrate the advantages of organizing

the basis according to the prescriptive approach outlined in section 2.4.

Let us conclude with a general discussion of the division of integrand numerators

into non-contact terms and contact terms relevant to theories with more general power

counting and also to SYM at higher loop orders. We have seen many explicit examples of

this already, but it is worthwhile to notice some of the general trends. The separation of

the degrees of freedom for the numerator of a loop integrand involving r powers of inverse

propagators which includes next external propagators for that loop momentum is given in

table 2. Finally, it is worth mentioning that there may be ambiguity in the identification

of ‘external’ propagators for a non-planar graph; whenever this occurs, the non-uniqueness

implies identities among different bases for the numerators, reducing the overall counting

relative to table 2.
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5 Conclusions and future directions

In this work we have described a new strategy for implementing generalized unitarity to

(re)construct local integrand representations of scattering amplitudes in any quantum field

theory. We call this approach prescriptive because the absence of linear algebra in our

approach results in closed-form representations of amplitudes. We described this approach

in considerable generality, using applications to planar SYM for the sake of illustration.

These applications include the first determination of all multiplicity, all NkMHV scattering

amplitudes in this theory through three loops — a considerable advance in theoretical data.

Despite our use of planar SYM for illustration, we are optimistic that this strategy will

prove useful more generally. In particular, it would be very worthwhile to seek prescriptive

representations of loop amplitudes for non-planar theories, theories without supersymme-

try, and for theories defined in arbitrary (or dimensionally-regulated) dimensions. Nothing

about our strategy requires any of these simplifications, but it remains to be demonstrated

that prescriptive representations exist more generally. This is especially the case because,

as we have seen, the mere existence of a prescriptive representation at three loops for planar

SYM required non-trivial magic to work. This tension demonstrates the non-triviality of

the existence of strictly prescriptive representations of loop amplitudes, and its resolution

represents evidence that something special is at work which remains to be fully understood.

We have uncovered new non-polylogarithmic structures of amplitudes at three loops,

the implications of which can be better understood now that entire loop amplitude in-

tegrands are known. The consequences of these structures for the symbolic bootstrap

program (see e.g. [40–45]) would be fruitful to explore.

There are many interesting roads ahead for further research. Beyond the application

of these ideas to more general theories, we expect there to be illuminating refinements

and reformulations of our results for planar SYM. In particular, it would be worthwhile to

find simpler representations for low multiplicity or low NkMHV-degree, and interesting to

make the (exponentiation of) infrared divergences of scattering amplitudes manifest at the

integrand level.
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A Explicit contributions to three loop amplitudes

In this appendix, we enumerate the cut conditions which define the non-contact-term de-

grees of freedom of every integral appearing in the three loop basis described in table 1.
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The contact-term degrees of freedom are always entirely fixed by the criteria that these

integral vanish on all the cuts used to define other integrals in the basis. Because the

resulting basis is diagonal in cuts, the coefficient of every integral is then fixed to be the

corresponding field theory cut. Thus, we use these field theory cut pictures to represent

how each of the non-contact degrees of freedom are fixed.

A.1 Detailed description of wheel integrals: defining cuts/coefficients





































degrees of freedom: 1

(W1)





















































degrees of freedom: 2 1

(W2)





















































degrees of freedom: 8 1
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degrees of freedom: 2

(W4)
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degrees of freedom: 15 3×3 1×3

(W5)





















































degrees of freedom: 4 2
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degrees of freedom: 8 4 4 2 (W7)





























































degrees of freedom: 4
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degrees of freedom: 8 4

(W9)
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degrees of freedom: 8

(W10)

Some clarifying comments are in order. For the amplitudes involved in on-shell func-

tion coefficients, those coloured in grey denote any NkMHV-degree; this applies also to

three-point amplitudes, except where specifically indicated. There are only two-three point

amplitudes, coloured blue and white by convention to indicate MHV and MHV, respec-

tively. For W2, for example, we want to make clear that the counting of coefficients depends

on the degree of the middle three-point amplitude. (The choice of how these are chosen is

arbitrary, but must be made.) For W3, the fact that the middle three-point amplitude can

have two possible MHV-degrees accounts for there being eight cuts with the first topology

— indexed by i, j and the middle three-point amplitude. This convention may seem to be

in conflict with the counting for W6, but this is in fact accounted for by the choice of cut

‘1’ for the box — which fixes the MHV-degree of the middle amplitude implicitly.

Finally, as described in the body of the text (see section 3.2.3), the counting for W5

requires some explanation. There are näıvely 16 cuts with the first topology — indexed

by (i, j, k) and the degree of the middle amplitude; any 15 of these are independent and

some (arbitrary) choice of which 15 must be made. For the second class of cuts, there are 4

possible cuts as drawn (all of which are independent, but we have chosen not to make use

of this fact); as such, the ‘3×’ in the counting reflects this choice of 3 of the 4 possible cuts;

for both the second and third topologies, ‘×3’ indicates cuts related by cyclic rotation.

A.2 Detailed description of ladder integrals: defining cuts/coefficients





























degrees of freedom: 1
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degrees of freedom: 1 1 1

(L2)
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degrees of freedom: 2
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degrees of freedom: 2
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degrees of freedom: 2
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degrees of freedom: 4 2
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degrees of freedom: 4
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degrees of freedom: 4

(L8)
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degrees of freedom: 4
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degrees of freedom: 8 4
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degrees of freedom: 8
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degrees of freedom: 8
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