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Abstract. Some results of ULF magnetic field observation

at Karimshino site (Kamchatka, Russia) since June 2000 to

September 2001 are presented here. Using case study we

have found an effect of suppression of ULF intensity about

2–6 days before rather strong and nearby seismic shocks

(magnitude M = 4.0 − 6.2). It is revealed for nighttime

and horizontal component of ULF field (G) in the frequency

range 0.01 − 0.1 Hz. Then we prove the reliability of the

effect by computed correlation between G (or 1/G) and spe-

cially calculated seismic indexes Ks for the whole period

of observation. Basing on the simple criteria we conclude

that reliability of seismo-associated ULF suppression effect

is comparable with well-known effect of connection between

ULF variation and Kp index of global magnetic activity. It

seems the reason of suppression is located at the atmosphere

or ionosphere but not in the ground medium.

1 Introduction

It is recognized now that analysis of seismic data itself, even

sophisticated, is not sufficient in order to resolve two es-

sential problems of geodynamics: what are mechanisms of

earthquakes (EQs) origin and how to do forecasting of large

EQs. In such a situation an importance of nonseismic meth-

ods is evident. One of them is variation of magnetic field in

the ultra-low frequency (ULF) range 0.01 − 10 Hz.

This effect was firstly reported by Fraser-Smith et

al. (1990) in relation to Loma-Prieta (1989) (USA) large EQ

(magnitude Ms = 7.1) and by Molchanov et al. (1992),

Kopytenko et al. (1993) in association with Spitak, 1987

(former Soviet Union) EQ (Ms = 6.9). Fraser-Smith et

al. (1990) were lucky to observe ULF geomagnetic varia-

tions at distance 7 km from EQ epicenter and found that ULF

magnetic intensity increased about 14 days before EQ, then

it depressed several days ahead and once again it increased

strongly at 4 h before the main shock and continued at high
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level after EQ. They found the most clear effect in the fre-

quency band F = 0.01 − 0.1 Hz. Molchanov et al. (1992),

Kopytenko et al. (1993) observed ULF variation at distance

130 km from the EQ epicenter and noted only last stage of

the process: increase of ULF intensity in time period from

3 h before to several days after EQ.

Next researches on this subject were mainly produced in

Japan. Hayakawa et al. (1996a) reported results of obser-

vation the ULF magnetic field variations before great EQ at

Guam, 1993 (Ms = 8.0) at epicenter distance 65 km. They

suggested to analyze the polarization ratio R = Z/H in fre-

quency band 0.01 − 0.05 Hz and found that this parameter

increased about 1 month before EQ but returned to the regu-

lar level after it. Later Hayakawa et al. (1999) considered

the data once again and showed that slope of ULF spec-

trum (fractal number) also changed before the EQ. Hattori

et al. (2002) reported observation of ULF magnetic variation

around date of two Kagoshima, 1997 large EQs (M = 6.5

and M = 6.3) at distance about 60 km from the both epi-

centers. They also analyzed polarization ratio and found its

increase about 1 month before EQ date. They could not find

this signature at the far-distance stations with the same equip-

ment. Kopytenko et al. (2002) observed ULF magnetic vari-

ations using network of stations situated in the Izu and Chiba

area of Japan. They discussed results related to EQ swarm

during June–July 2000 with strongest shock Ms = 6.4 in the

middle of the swarm. Epicenter distances to the stations var-

ied from 70 to 150 km and the authors paid main attention to

polarization ratio near frequencies F1 = 0.1 ± 0.005, F2 =
0.01 ± 0.005 and F3 = 0.005 ± 0.003 Hz. It was shown

that ratio R(F3)/R(F1) sharply increases just before a start

of strong seismic activity, while amplitudes of Z and G com-

ponent variations and Z/G ratio defined in a frequency range

F2 during night time intervals (00:00–06:00 LT) begin to in-

crease 1.5 months before the period of the seismic activity.

In this paper we consider ULF perturbations only in tem-

poral scale from several hours to a few days and pay main

attention to time correlation of our data with seismicity.
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Fig. 1. Ks , Kp (upper panel) and amplitude polarization ratio (Z/G)1/2 in the different frequency bands (2 h averaging) for the first interval

of observation from 24 June 2000 to 25 February 2001.

2 Index of seismic activity

In order to estimate a correlation between seismicity and

nonseismic parameter like ULF magnetic intensity at a given

station it is necessary to introduce a parameter characterizing

seismic influence in the observational point for earthquakes

with different magnitudes M , epicenter distance D and depth

H . We assume that index of seismic activity is proportional

to seismic energy input

1Es =
∫

Psdt ∼< Ps > τ

where Ps is seismic energy flux and τ is duration of seis-

mic pulse. Ps is decreasing on distance due to divergence of

flux in space (∝ R−2), then due to inelastic attenuation (co-

efficient Fa) and due to scattering or elastic attenuation (Aki

and Richards, 1980). Scattering can be described in terms

of multi-ray propagation and in the first approximation the

scattering factor in Ps is in inverse proportion to τ . Hence:

1Es ≃ (Es/R
2)Fa ∼ (101.5M/R2)Fa(R, M) (1)

where Kanamori and Anderson (1975) scaling is used. So,

we can introduce seismic index Ks as following:

Ks =
√

1Es/1E∗
s = K0100.75M8a/R (2)

where 1E∗
s = 1Es near the boundary of seismic influence

R = R∗, K0 is a constant and attenuation coefficient can

be presented by approximated formula (Molchanov et al.,

2002):

8a =
√

Fa ≃ (1 + R/La)
−2.5 (3)

Here La is attenuation distance and it is easy to find that

La ≃ QLs/2 ≃ 10M/2, where Q ≃ 100 is elastic quality

and Ls is average size of seismic source (Aki and Richards,

1980). It is evident that Ks = 1 near boundary of seismic

influence, where 1Es = 1E∗
s and R = R∗. It allows to de-

termine K0 ≃ 0.1 directly from observational data as it was

done in (Gorbatikov et al., 2002). In result K0 ≃ 0.1 we will

use this seismic index Ks in above-described formulation.

3 Description of observation and case study results

During 1999–2000, in addition to the existing seismic

and geophysical observations, Russian and Japanese scien-

tists established a special observatory at Karimshino site

(52.94◦ N, 158.25◦ E) in Kamchatka (Far-Eastern Russia).

Its main purpose was to study a correlation of seismic activity

with electromagnetic and other nonseismic phenomena. The
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Fig. 2. Variations of amplitude polarization ratio around date of

selected EQs (indicated in Fig. 1) in the channel 2, F = 0.01 −
0.03 Hz (two hours averaging). Vertical dotted lines show midnight

times.

main advantage of this station is quiet electromagnetic envi-

ronment that allows us to use rather sensitive equipment and

to check some theoretical ideas. The regular recordings have

been started since June 2000 and some information about

Karimshino station is already published (Uyeda et al., 2002;

Gladyshev et al., 2002).

Our three-component induction magnetometer measures

the geomagnetic field variations in the frequency range

0.003 − 40 Hz. The sensitivity threshold is better than

20 pT/Hz1/2 at frequency 0.01 Hz. It corresponds to

0.02 pT/Hz1/2 at frequencies above 10 Hz. Here we ana-

lyze results in the interval from 24 June 2000 to 25 February

2001 (the first interval duration of 7 months) and second in-

terval from 26 February 2001 to 16 September 2001 (during

of about 6 months). So, whole period of the observation has

duration about 13 months. As mentioned before in this paper

we are presenting results on variation with scale more than

several hours that is why we use two hour averaging of the

data.

First of all we have produced the variation of the spec-

trum of ULF intensity for each magnetic field component

(H, D, Z) in the 7 frequency bands: F = 0.003 − 0.01 Hz

(channel 1), F = 0.01 − 0.03 Hz (channel2), F = 0.03 −

0.1 Hz (channel 3), F = 0.1 − 0.3 Hz (channel 4), F =
0.3 − 1.0 Hz (channel 5), F = 1.0 − 3.0 Hz (channel 6) and

F = 3.0 − 5.0 Hz (channel 7). We have found conventional

correlation with Kp index of magnetic activity and evident

daily variation, especially in channels 1, 2, 3. But a clear sig-

nature of correlation with Ks (i.e. seismicity) has not been

discovered in such a type of analysis.

Then we apply the method of polarization ratio, which was

discussed in many papers since (Hayakawa et al., 1996a) and

which is reduced to analysis of Z1/2/G1/2) ratio in our re-

search. The results for the first time interval are shown in

Fig. 1. In contrast with amplitude analysis some correlation

with Ks can be supposed at least for the frequency channels

2 and 3 and near the date of large Ks values (these cases are

indicated by vertical dash lines).

In order to check it we demonstrate all the cases in Fig. 2,

each case during time interval ±14 days around the EQ date

and presentation is centered to the corresponding date. Rely-

ing upon results in Fig. 1 and for simplicity we present only

channel 2 (F = 0.01 − 0.03 Hz). It is obvious that nighttime

values of
√

(Z/G) show increase at about 2–7 days time pe-

riod before EQ date.

An important question arises immediately: what it means,

increase of Z component or decrease of G component or

both? The first of all we examined a behavior of Z compo-

nent and found it reveals mainly seasonal changes and some-

times it is exposed to small man-made perturbations but does

not show correlation with seismicity. To clarify it we present

Z/G values and 1/G values after 1 day averaging in Fig. 3

for the same cases as in Fig. 2.

After scrutinized consideration we have found the effect

discussed not for all the cases. The possible reason is that

characteristics of EQs are different. To check it we present

EQs characteristics for the cases with rather big Ks value in

Fig. 4 together with estimation of possibly correlated cases.

It seems the correlated cases are mainly concentrated near

sea shore. We failed to discover the direction to ULF emis-

sion from H/D ratio. It indicates probably on large scale of

the emission source. We hope to conduct some direction

finding in future multi-station observations, which are sup-

posed since end of 2002 year.

4 Prove of the effect by correlation analysis

Here we are going to check the effect, i.e. association of G

intensity with Ks index, by conventional correlation method.

Furthermore we try to find the anticipated correlation with

Kp. At the beginning we construct the set of normalized

deviations as the following:

δGi(t) = (Gi− < Gi >)/ < Gi >

δ(1/Gi) = (1/Gi− < 1/Gi >)/ < 1/Gi >

where i is number of the frequency channel, i = 1, 2, 3

and < Gi >, < 1/Gi > denotes running mean with 1

month window. Taking into consideration that the tempo-

ral scale of expected effect is about several days we pro-
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Fig. 3. (a) Z/G ratio for selected EQs after 1-day averaging. (b) The same as in (a) but for 1/G values and in corresponding scaling.

duce 2 day averaging of δGi and δ(1/Gi) which leads to

values δ2Gi , δ2(1/Gi), and find Ksd =
∑

Ks per 2 days,

Kpd =
∑

Kp per 2 days. Due to clear daily variation

of ULF spectral power in the selected channels, δ2Gi is

mainly related to daytime ULF intensity, but δ2(1/Gi) is

mainly related to nighttime ULF intensity. As a next step we

have computed correlation functions F1i(τ ) = δ2Gi ∗ Ksd ,

F2i(τ ) = δ2(1/Gi) ∗ Ksd , F3i(τ ) = δ2Gi ∗ Kpd and

F4i(τ ) = δ2(1/Gi) ∗ Kpd using conventional programs,

where τ is determined in the interval ±15 days. The negative

value of τ corresponds to preseismic period and positive τ -

value is for postseismic period in our formulation. Because

of Ksd and Kpd are positive values, it is evident that positive

value of F1i(τ ) corresponds to increase of daytime ULF in-

tensity with Ks and negative value is for its decrease. In con-

trast positive value of F2i(τ ) means suppression of nighttime

ULF intensity and negative value F2i(τ ) means increase of

the intensity with seismicity. The signs of correlation func-

tions F3i(τ ) and F4i(τ ) characterizing relation of ULF mag-

netic field with processes in the ionosphere-magnetosphere

have the same meaning.

First of all we present a correlation of ULF intensity with

global ionosphere-magnetosphere activity, functions F3i(τ )

in the Fig. 5a and F4i(τ ) in the Fig. 5b. Obvious correlation

is observed both for daytime ULF intensity (Fig. 5a) and for

the night-time values (Fig. 5b). It is stable, i.e. it reveals for

the first interval of observation, then for the second 6-month

interval and for the whole 13 month’s interval. Remembering

above-mentioned definition, positive values of δ2Gi ∗ Kpd

correlation and negative values of δ2(1/Gi) ∗ Kpd correla-

tion at τ ≃ 0 mean that both day-time and night-time ULF

intensity is proportional and concurrent to Kp index. This

correlation is rather understandable.

We call a correlation as reliable one if it reveals for all the

intervals and at least twice out of a reliability margin at the

whole interval, which is about ±0.1. Basing on this point

a correlation in Figs. 5a and 5b is reliable. Then we show

correlation of ULF intensity with seismic index Ks , functions

F1i(τ ) (Fig. 5c) and F2i(τ ) (Fig. 5d). Due to our criteria

there is no correlation between daytime intensity and Ks , but

night-time suppression of ULF intensity near value τ ∼ −4

days looks as reliable effect. This conclusion coincides with

result of case study. Some increase of correlation at +14 days

is probably connected with aftershock activity and it is not

considered here.

5 Discussion and conclusions

We have found effect of suppression of ULF magnetic field

variations about 2 − 6 days before rather strong seismic

shocks in a case study. It is revealed for night-time and for

horizontal component intensity (G) in the frequency range

0.01 − 0.1 Hz. We prove a reliability of the effect by com-

puted correlation between G (or 1/G) and specially calcu-

lated seismic indexes Ks . Basing on the simple criteria we

conclude that reliability of seismo-associated ULF suppres-

sion effect is comparable with well-known effect of relation

between ULF variation and Kp index of global magnetic ac-

tivity. Using Ks in our formulation for analysis of preseismic

effect means indeed assumption that seismic shock is a result

of some dynamic process (like instability) and intensity of

preseismic perturbations is proportional to energy of seismic

shock itself. Some justification of this approach contains in

well-known correlation between magnitudes of foreshocks

and main shock (see e.g. Scholz, 1990).

This effect can be also supposed in the previous observa-

tions at least in those where preseismic increase of polariza-

tion ratio had been found (see Introduction). As it is shown
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Fig. 4. Map of observation area at Kamchatka peninsula around

Karimshino station (star). Positions of EQs with Ks > 0.3 are

shown by big circles, positions of EQs with 0.03 < Ks < 0.3 are

shown by medium circles. Coloring is estimation of the suppression

effect from case study: black is for clear effect, gray is for weak

effect and blank is for questionable cases.

here a decrease of G could lead to observed increase of ratio

Z/G. As mentioned above we need to take into consider-

ation that ULF signal at Z component is more exposed to

man-made interferences than response in horizontal compo-

nents. Note furthermore that depression of variation of ho-

risontal components of the magnetic field several days before

main shock was noted in one of the first paper by Fraser-

Smith et al. (1990). It was usually supposed that seismo-

associated ULF variations could be either due to direct radia-

tion from EQ origin zone (Fenoglio et al., 1995; Molchanov

and Hayakawa, 1995) or due to a change of geoelectric con-

ductivity inside and nearby EQ zone, which leads to the

change of ULF waves generated by ionospheric sources (e.g.

Merzer and Klemperer, 1997). The first mechanism is not

compatible with our observational results because it predicts

preseismic increase of ULF intensity. Indeed we have ob-

served such an increase about 0.5 − 2 h before several EQ

shocks but it can not be revealed in our statistics. Probably

the interval of ULF increase could be extended essentially for

the very large EQs up to a few days as reported earlier (see

Introduction). However an explanation by preceding change

of the ground conductivity is also not very attractive for us

because long-time magnetotelluric observation in USA and

Japan did not show any correlation with seismicity (see e.g.

Park, 1997). It seems that suppression of ULF magnetic vari-

ation is happened not inside of the ground but in the lower

ionosphere. A hint might be in results of monitoring of upper

atmosphere and ionosphere around EQ date by VLF trans-

mitter signals, which reported by Hayakawa et al. (1996b)

Fig. 5. Cross correlation of δ2G∗Kp (a), δ2(1/G)∗Kp (b), δ2G∗
Ks (c) and δ2(1/G) ∗ Ks (d) in a range of ±15 days for whole 13

months period of observation and different frequency bands.

and Molchanov et al. (2001). They found clear perturba-

tions of atmosphere-ionosphere boundary several days be-

fore large EQs at nighttime or during night-to day transition

(so-called terminator time).
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Fig. 6. Cross correlation of atmosphere temperature variations at

Karimshino and Ks index during summer-autumn time of 2000 year

(5 month) for periods 2–5 h (stars) and whole range of spectrum

analysis 2–200 hours (squares).

Molchanov et al. (2001) provide arguments that water and

gas eruptions before EQs could origin “mosaic” and “twin-

kle ” spots of atmospheric temperature and density variations

leading to generation of acoustic-gravity waves (AGW) tur-

bulence with horizontal scales about 1–100 km. As consid-

ered by Mareev et al. (2002) and Alperovich et al. (2002),

propagation of AGW perturbations into the ionosphere can

modify plasma conductivity, which results in the loss of pen-

etration ability for the ULF waves generated in the magne-

tosphere (magnetic pulsations). In order to justify such an

approach we have produced the correlation analysis of atmo-

spheric temperature variations observed by portable meteo-

station at Karimshino. We exclude tidal variations by rejec-

tion of spectrum components with periods 24±2 h, 12±1 h,

8 ± 1 h and 6 ± 0.5 h and produce the analysis both for

fast variations (periods T = 2 − 5 h) and slow variations

(T = 2 − 200 h with rejection of tides). The results for the

summer-autumn period of 2000 are presented in Fig. 6. They

do not contradict to our point of view. Note that we cannot

find this correlation for the interval winter 2000-spring 2001,

when rather hard snowing happened at Kamchatka.

So, suggested here mechanism could be responsible for

our effect though these perturbations can not be found in

the conventional impedance analysis of the magneto-telluric

fields.

Like some other non-seismic precursors our effect looks as

sporadic one in a case study and can be recognized only by

statistics. We believe that ULF-seismicity relation becomes

more clear and regular after integration on space, i.e. using

of network of stations, what we suppose to do in future.
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