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Salmonella ranks high among the pathogens causing foodborne disease outbreaks.

According to the Centers for Disease Control and Prevention, Salmonella contributed to

about 53.4% of all foodborne disease outbreaks from 2006 to 2017, and approximately

32.7% of these foodborne Salmonella outbreaks were associated with consumption

of produce. Trace-back investigations have suggested that irrigation water may be a

source of Salmonella contamination of produce and a vehicle for transmission. Presence

and persistence of Salmonella have been reported in surface waters such as rivers,

lakes, and ponds, while ground water in general offers better microbial quality for

irrigation. To date, culture methods are still the gold standard for detection, isolation and

identification of Salmonella in foods and water. In addition to culture, other methods for

the detection of Salmonella in water include most probable number, immunoassay, and

PCR. The U.S. Food and Drug Administration (FDA) issued the Produce Safety Rule

(PSR) in January 2013 based on the Food Safety Modernization Act (FSMA), which

calls for more efforts toward enhancing and improving approaches for the prevention

of foodborne outbreaks. In the PSR, agricultural water is defined as water used for

in a way that is intended to, or likely to, contact covered produce, such as spray,

wash, or irrigation. In summary, Salmonella is frequently present in surface water, an

important source of water for irrigation. An increasing evidence indicates irrigation water

as a source (or a vehicle) for transmission of Salmonella. This pathogen can survive

in aquatic environments by a number of mechanisms, including entry into the viable

but nonculturable (VBNC) state and/or residing within free-living protozoa. As such,

assurance of microbial quality of irrigation water is critical to curtail the produce-related

foodborne outbreaks and thus enhance the food safety. In this review, we will discuss the

presence and persistence of Salmonella in water and the mechanisms Salmonella uses

to persist in the aquatic environment, particularly irrigation water, to better understand

the impact on the microbial quality of water and food safety due to the presence of

Salmonella in the water environment.
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INTRODUCTION

Salmonella is a natural inhabitant in the gastrointestinal tract
of many animals, including birds, reptiles, livestock, and
humans (1–7). Salmonellosis caused by nontyphoidal Salmonella
ranks among the highest in all gastroenteritis cases linked to
food consumption, affecting the health of approximately one
million people annually in the United States alone (8, 9),
resulting in medical costs of $3.7 billion. It is estimated that
Salmonella species causes 93.8 million cases of gastroenteritis
worldwide annually with 155,000 deaths (5−95th percentile,
39,000–303,000) (10). The causative source for salmonellosis has
traditionally been attributed to animal origin (11, 12), including
meat, eggs, and other poultry products, which has attracted
considerable regulatory attention and enormous mitigation
efforts (2, 9). In recent years, the number of foodborne outbreaks
due to nontraditional sources of the pathogen such as domestic
or imported fresh fruits, vegetables, spices, and nuts has been
increasing (9, 13–15). A recent report from the Centers for
Disease Control and Prevention (CDC) suggested nearly half
(46%) of foodborne illnesses and 23% of deaths were associated
with produce consumption (16). For instance, during July
2015 to February 2016, a Salmonella outbreak associated with
consumption of imported Mexican cucumbers caused illness
in at least 907 people, with six deaths in 40 states within the
United States (17).

Consumption of more fresh fruits and vegetables has been
advocated as a healthier diet habit because raw, or less processed,
fruits and vegetables are good sources of vitamins, fiber, and other
beneficial nutrients (18, 19). Since the early 1970s, the demand
for fresh produce in the US has been on the rise continuously,
and the estimated increase of per capita consumption of fresh
fruits and vegetables from 1982 to 1997 reached approximately
32% (13). The consumption of vegetables grewmore rapidly than
fruits from 1976 to 2009 (20). A recent investigation by the US
Department of Agriculture also suggested Americans consumed
more fresh produce in 2015 than in 1970 (21) As a result, it
is expected that more produce-related outbreaks of disease will
occur even if the contamination sources and rates stay at the
present levels. This has attracted the attention of the legislative
branch and food safety regulatory agencies in the United States.
The Food Safety Modernization Act (FSMA), which was enacted
in 2011, emphasizes the significance of produce safety. In
response to that, the US Food and Drug Administration (FDA)
issued the Produce Safety Rule (PSR) in January 2013 to establish
science-based standards for the growing, harvesting, packing,
and holding by domestic and foreign farms of produce consumed
in the United States (22).

The causative pathogens for produce contaminations include
viruses, bacteria, and parasites. Contamination may occur at
various stages during the production process (2). Salmonella has
been regarded as the primary pathogen for causing produce-
related foodborne outbreaks. Pathogenic bacteria carried by
produce that can lead to an outbreak may involve multiple
external sources and production stages. For instance, at the pre-
harvest stage, Salmonella can come from specific agricultural
practices such as using animal manure as fertilizer (1) and others

may include using contaminated water for irrigation, pesticide
spraying, or anti-frost spraying (2, 23, 24).

Water has been shown as a source of microbial contamination
of fresh produce and a vehicle for pathogen transmission
(23, 25). FSMA defines “agricultural water” partially as water
that is “intended to, or is likely to contact covered produce
or food contact surfaces” (22). Irrigation water consists of
a major component of agricultural water. The sources of
irrigation water can come from ground water, surface water,
or municipal water. Irrigation water can be applied to produce
through various ways including drip tape, furrows, and overhead
sprinklers (26). In this review, we will primarily focus on the
presence, survival, persistence, and source of Salmonella in
surface water, particularly irrigation water, to help us better
understand the impact on the microbial quality of water and
food safety due to the presence of Salmonella in the water
environment.

PRODUCE AS A VEHICLE FOR
TRANSMISSION OF SALMONELLA

Foodborne outbreaks associated with fresh produce in the
United States have been on the rise in the last few decades;
and Salmonella has been recognized as the primary causative
pathogen (1, 11, 13, 27). According to a report from the CDC,
31 Salmonella outbreaks from 2002 to 2003 were associated
with fresh produce; while 29 were poultry related (2, 28). Also,
Salmonella contributes to 53.4% (55/103) of the foodborne
disease outbreaks documented by CDC among all pathogens
investigated from 2006 to 2017 (Figure 1A); 32.7% (18/55) of
the multistate foodborne Salmonella outbreaks were associated
with produce (Figure 1B); and 60% (18/60) of the fresh produce-
related outbreaks were attributed to Salmonella among all the
pathogens involved (Figure 1C) (29). Many common types of
produce have been implicated in Salmonella-related outbreaks,
including beans, alfalfa sprouts, tomatoes, hot peppers, lettuce,
cucumbers, cantaloupes, water melons, papayas, and mangoes
(1, 2, 29–32).

Salmonella is originally from, and has adapted to, the
microenvironment of the gastrointestinal tract of animals. Once
released from the animal gastrointestinal tract or other sources
with feces or exudates, Salmonella can be carried to surface
waters through rainfall and surface runoffs, survive many
challenges such as ultraviolet (UV) radiation from sunlight,
poor nutrients, the changes in pH, and temperature (33–35).
After attaching to produce, Salmonella must persist under these
adverse environmental conditions at a sufficient concentration
to cause human illness (13). The surface of various fruits and
vegetables provides a niche for numerous bacterial species,
such as epiphytes, plant pathogens, and opportunistic human
pathogens, such as Salmonella (36). Interestingly, some plant
pathogenic bacteria, such as Pectobacterium carotovorum, can
promote the growth of Salmonella by macerating plant tissue
and providing nutrients (9, 37), whereas other bacterial species
such as Panebacillus spp. on tomatoes and cilantro may inhibit
or even kill Salmonella (38, 39). Thus Salmonella has to survive
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FIGURE 1 | Summary of surveillance of foodborne pathogen outbreaks from CDC (29). (A) Multistate foodborne outbreaks caused by Salmonella rank highest in all

the pathogens surveilled; (B) the percentage of multistate Salmonella outbreaks linked to produce from 2006 to 2017; and (C) and Salmonella contributes to 60% of

all produce-related outbreaks caused by different pathogens surveilled.

the inhibition from these microbes and outcompete them for the
acquisition of nutrients and space (33).

The mechanisms for how Salmonella are carried in irrigation
water or from other sources interact with plants, survive or persist
on these intermediate hosts have become an interesting topic
in recent years. Studies indicate Salmonella can be internalized
into tomato plants through different routes and may possibly
colonize and employ the plant as an alternative host (2, 9, 36). The
formation of biofilm-like structures on the surface of roots, the
colonizing regions of emerging lateral roots and wounded tissues
has been reported (40, 41). Moreover, Salmonella inoculated into
soil or blossoms can be recovered from the fruit at low internal
levels, suggesting its ability to colonize and internalize tomato
plants, and however, survival ability with different serovars varies
in the soil and in different parts of the plants (42). Salmonella
was also recovered from tomato fruits after it was introduced
into the plant by stem injection or by flower inoculation (43).
Stine et al. demonstrated that Salmonella was still detectable for
at least 14 days after inoculation, indicating the bacteria probably
developed a mechanism to adapt and survive within this hostile
environment (44).

Recent studies have further suggested Salmonella may not
only passively use plants as a “shelter” for survival, but a
growing body of evidence has indicated it also may have evolved
mechanisms for active adhesion and escape of plant immunity
systems and actively internalize and proliferate in some plants,
such as the tomato (9, 42, 45–47). It was found that Salmonella

populations inoculated onto the exterior of tomatoes can increase
in numbers at suitable humidity and temperature and such
bacterial growth is serovar dependent (48). This may explain why
some serovars, such as Newport, Montevideo, and Saintpaul, are
more frequently linked to Salmonella outbreaks (2). A latest study
suggested that the mechanisms Salmonella requires to colonize
tomato plants are similar to phytopathogens, such as biosynthesis
of amino acids, lipopolysaccharides (LPS), and nucleotides,
indicating the flexibility of this pathogen to fit different hosts
(49). The studies on Salmonella entry into inner leaves indicated
that while trichomes are postulated as preferential colonization
sites (50, 51), stomata are shown to be entry points Salmonella
utilize for penetration of lettuce leaves (52, 53). The interaction
of Salmonella with Arabdopsis, potato, sprouts and other plants
are also reported and reviewed by Schikora et al. (47).

Preservation of taste, nutrients, and other desirable qualities
of produce demand minimum processing, including avoidance
of heating and sanitation with disinfectant to leafy vegetables
and sprouts (2, 54), if washing is inadequate, the contamination
acquired in field or production stage and postharvest easily
transit from field to the table. Washing with chlorinated water,
water-dip disinfection procedures may be applied to fruits such
asmelons, mango, and papaya. But if the disinfection efficiency of
chlorinated water is not adequately monitored, the contaminated
Salmonella can still be attached; and the rough surfaces for some
types of melon like Cantaloupes can increase the adherence
of bacteria and compromise the effect of washing (15, 30, 31,
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55). Nowadays, the precut ready-to-eat vegetables and fruits
are widely available to consumers in grocery stores; and poor
hygiene and sanitary practice in preparation of these foods can
bring additional chances for bacterial contamination (15, 56, 57).
Therefore, the elimination of Salmonella contamination of fresh
produce from fields to forks is almost impossible because of the
above-mentioned loopholes. In general, the frequent occurrence
of Salmonella outbreaks associated with produce and the scarcity
of approaches available for sanitizing contaminated produce
underscore the urgency for development of more efficient
preventive control measures that can be applied at an earlier stage
in the produce production.

IRRIGATION WATER AS A SOURCE OR A
VEHICLE FOR TRANSMISSION OF
SALMONELLA

The original source of Salmonella on produce may come
from soil, manure, irrigation water, and contact with reptiles,
birds, or other small animals (23, 24, 58). Irrigation water
has drawn considerable attention in recent years, and studies
have implicated irrigation water as a source of Salmonella
contamination (23, 24, 59). This hypothesis has been previously
reviewed (5, 23, 24, 27, 60, 61) and appears to be supported
by trace-back investigations of produce-related Salmonella
outbreaks (62, 63). The 2005 multistate Salmonella outbreak
involving tomatoes was caused by Newport serotype, and a trace-
back investigation linked this strain to an outbreak associated
with tomatoes that occurred 3 years earlier. Furthermore, the
isolates from these two outbreaks were shown to be genotypically
identical by pulsed-field gel electrophoresis (PFGE), and the same
bacterial strains were found present in a pond the farm used
for irrigation (62). A case control study of a 2008 multistate
outbreak identified Salmonella Saintpaul on serrano and jalapeño
peppers and was also present in irrigation ponds (63). Another
study indicated that the PFGE patterns of some of the isolates
from irrigation ponds of produce farms in southern Georgia
were indistinguishable from strains that were associated with
the Salmonella Thompson outbreaks in 2010, 2012, and 2013,
Salmonella Enteritidis outbreaks in 2011 and 2013, and a
Salmonella Javiana outbreak in 2012 (61). The investigation of
papaya Salmonella outbreak happened from 2006 to 2007 in
Australia also found that the river water used for washing papayas
was contaminated with Salmonella (64).

PREVALENCE AND SOURCE OF
SALMONELLA IN IRRIGATION WATER

The fresh produce consumption over the last 40 years and
number of foodborne disease outbreaks associated with fresh
produce has been increasing (15, 18). Irrigation is a critical
factor for the production of fruits and vegetables, Salmonella
present in irrigation waters has been regarded as one of the major
source for fresh produce contamination (2, 23, 24), and this
has become a public health concern and drawn more attention
of food safety regulatory agencies. Irrigation is a critical factor

for the production of fruits and vegetables. As identified above,
the source of irrigation water can include groundwater from
wells, surface water (rivers and irrigation ponds), and treated
wastewater (24, 27, 65, 66). Groundwater in wells is naturally
filtered by soil and generally has a higher microbial quality
(i.e., less microbes present). But it may be compromised by
inferior construction or insufficient depth of the well, and may be
contaminated from nearby latrines, septic tanks leaching fields,
land application of waste water, and rainfalls (27, 67). Incidences
of Salmonella contamination of ground water is mainly a concern
of developing countries, especially in the rural areas, due to poor
hygienic conditions, deficiently-structured water supply systems,
and inadequate disinfection treatment (68), but occasionally
occurs in developed countries as well (69, 70).

Surface waters, which include ponds, lakes, rivers, and
streams, account for nearly half of the water used for irrigation in
the United States (26). They are more exposed to environmental
events such as discharge of sewage, rainfall, animal husbandry,
and wildlife, and thus are more susceptible to contamination as
compared to groundwater (23, 67). Rivers have been widely used
as an irrigation source for agricultural practice (71, 72); river
water, however, has been shown to be one of the largest reservoirs
of viable Salmonella (2, 73). An estimation of Salmonella loads
from a coastal Mediterranean river of a 16-month period
(74) indicated Salmonella occurrence up to 95% during high
waterflow (21% of the year) such as storm events. The subsequent
study discovered S. Typhimurium accounted for 33.1% of all
isolates recovered from the river in that period (73). In another
study (12), Salmonella were detected from 57 of 72 (79.2%)
water samples monthly collected from six stations of Little
River in upper Suwannee Bain of Southern Georgia State of the
United States. The recovery of Salmonella from rivers exhibited
seasonality pattern, with summer time being highest, which
is similar to the prevalence of Salmonella in irrigation ponds
(6, 61). This increased prevalence of Salmonella during summer
time may be related to multiple environmental factors, such
as host shedding, enhanced persistence of Salmonella in warm
temperature, and increase of storm events (12). In the Suwannee
River watershed of southern Georgia, open surface pond waters
are the main source of irrigation water. The case rates in this
region have been observed to be 1.5-fold higher than the national
average (6, 12). Presence of Salmonella in irrigation ponds
within this region has been surveyed by Li et al. and showed
that Salmonella was recovered from 50 of 170 (29.4%) water
samples collected monthly over 27 months from 10 selected
irrigation ponds that serve as water sources for irrigation of
vegetables (61). Furthermore, more than half of the isolates were
identified as S. Newport and antimicrobial susceptibility testing
confirmed 16 S. Newport isolates were multidrug resistant
(MDR), exhibiting resistance to ampicillin, chloramphenicol,
streptomycin, sulfamethoxazole, and tetracycline (ACSSuT)
and to the 1st, 2nd, and 3rd generations of cephalosporins
(cephalothin, amoxicillin-clavulanic acid ceftriaxone) (61).
Another monthly survey by Luo et al. on 10 ponds in the same
area isolated Salmonella from 28.2% of all samples (n = 635)
and the most common serotypes were Hadar, Montevideo, and
Newport. In addition, 98.9% of the strains were reported to
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be resistant to streptomycin and about 20% were MDR strains
(6). The contamination of fresh produce by these nontyphi
Salmonella species present in irrigation waters could generate
detrimental clinical and public health consequence because the
increasing antibiotic resistance limits options of treatment after
microbial diagnosis. In foodborne disease outbreak settings,
the infection of MDR strains may bring excess of mortality and
morbidity (75, 76). Moreover, the encodings genes of MDR may
be horizontally transferred to other pathogenic bacteria resulting
the spreading of antibiotic resistance (75).

The microbial quality of treated municipal water depends
on the efficiency of treatments to remove pathogenic enteric
bacteria, viruses, and parasites. Prevalence of Salmonella in
treated effluent has been reported (77). In the United States,
only a limited scale of treated municipal water is used for
irrigation of crops because of the concern of potential bacterial
contamination (24). However, in countries or regions with a
shortage of fresh water, wastewater treated to a suitable level can
be used as a substitute for ground water or surface water for
irrigation purposes, and the microbial quality guidelines adopted
for treated wastewater must be the strictest (23).

It is generally accepted that Salmonella present in water can
be traced back to its animal origins. This pathogen may directly
be transported from feces or exudates of wild animals by rain
water runoff to rivers or ponds used for irrigation (12). Manure
of domesticated animals has long been used to fertilize soil
because it is economical and beneficial to the environment.
However, studies have indicated that Salmonella in manure can
survive as long as 231 days and may eventually contaminate
produce by rain water splashing and/or by surface irrigation
water (78). Sewage effluents contain waste water from human
toilets with a high concentration of bacteria and other pathogens
(79). The average concentration of Salmonella can reach as high
as 2.7 × 102 CFU/100ml (80, 81), which could become a major
source of contamination if discharged directly or with inadequate
treatment. Salmonella and other bacteria in sewage water can
be effectively reduced to very low levels with modern treatment
methods, but it is not practical to eliminate all the bacteria.
When discharged, this will pose another contamination source of
Salmonella to surface waters (79, 82) as illustrated in the proposed
model of Salmonella transmission in the environment (5).

SALMONELLA SURVIVAL AND
PERSISTENCE IN IRRIGATION WATER

The gastrointestinal tract of vertebrates is generally regarded as
the natural habitat for Salmonella (83), and bacteria released
from feces could be transported into aquatic systems by sewage
discharges, rainfall events or associated surface runoffs (84).
Salmonellamay survive in an environment with a broad range of
pH (4.05–9.5) and can multiply in a broad range of temperatures
(7–48◦C) (34). In a closed environment at room temperature
(25◦C), it has been shown that Salmonella can survive for up
to 5 years in sterile water or a phosphate buffered solution
(85). However, the eco-environment of irrigation water, such
as river or pond water, is harsher and more complicated

and dynamic. Survival and persistence of Salmonella in water
depends on multiple environmental factors, such as temperature,
pH, salt, dissolved oxygen concentration, nutrient availability,
interaction with other microorganisms, and exposure to UV
light radiation (23, 27, 86, 87). As a result, Salmonella viability
will decrease in water over time and could survive generally
less than 30 days (23). However, many studies now show
that biofilms can facilitate the survival of Salmonella in water
and invertebrates such as free-living protozoa and various
vertebrate animals can serve as reservoirs for Salmonella and
other pathogenic bacteria. For example, Gaertner et al. detected
Salmonella from water biofilms and crayfish samples from
the headwater spring of Spring Lake, Texas and found that
Salmonella isolates from biofilms collected 23 days apart shared
the same Rep-PCR profile, suggesting Salmonella infrequently
washed into an aquatic system might take up water biofilms
as dwellings for long term persistence (88). Sha et al. further
demonstrated Salmonella isolated from biofilms on a concrete
surface exhibited significant microheterogeneity, but remained
pathogenic (89). Additionally, Salmonella were recovered from
sediments in water, and the concentration was higher than in
the overlying water. Similar phenomena have also been observed
in survival of other bacteria in water. This might be caused by
sedimentation and absorption (90–92), which may help explain
why continuous prevalence of Salmonella over a long period of
time was found in river and surface ponds in multiple studies
(5, 12).

Besides the elongation of Salmonella viability and survivability
in water environment, recently, Li et al. also suggested that
frequent detection of Salmonella in irrigation water might be
due to numerous reintroduction events associated with several
different hosts in the environment. This was supported by
genomic microarray analysis on Salmonella Newport isolates
(5). On the one hand, produces growing in the field can be
directly contaminated by Salmonella excreted from proximate
environmental hosts, such as swine, chicken, beef, dairy
cattle, husbandry or human, other wild lives, or inadequately
composited manures applied in the fields (4, 5, 9); on the other
hand, these bacteria could also be repeatedly introduced to the
irrigation ponds through storm events and rainfalls, survive in
water, and reach fresh produce through irrigation, and circulate
back to human and other animals (Figure 2) (5).

Furthermore, the prevalence and distribution of Salmonella
in rivers, streams, or ponds exhibit seasonality, which has been
documented in multiple studies (12, 61, 93). Thus, running water
formed by rainfall may act as an important vehicle for Salmonella
transportation. In addition, a number of studies suggest that
bacteria can enter a viable but nonculturable (VBNC) state under
stress conditions (94), such as low temperature (95), osmotic
stress (96), pH changes (97), or nutrient starvation (98). Bacteria
in the VBNC state cannot be recovered with routine growth
media, but are alive (i.e., they metabolic activity) and these cells
can become culturable again on resuscitation (99). Salmonella is
one of the bacteria reported using VNBC as a survival strategy
in harsh environments, including aquatic systems (100–102).
The existence of VBNC has been controversial, since although
it was reported 30 years ago, there is still little direct conclusive
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FIGURE 2 | Proposed model of Salmonella transmission in irrigation water in the environment, adapted from Li et al. (5).

information on the molecular mechanisms underlying VNBC
state induction and resuscitation (92, 103).

As mentioned above, many bacterial pathogens are known
to survive within free-living protozoa, particularly amoebae
(104). In fact, more than 20 species of pathogenic bacteria
have been reported to associate with a single species (i.e.,
Acanthamoeba) of amoebae (105). This provides a potential
mechanism for bacterial survival in the aquatic environment
with the amoebae serving as an environmental reservoir.
Salmonella Typhimurium was shown to replicate and survive
in Acathamoeba spp.; however, it was cytotoxic and killed the
amoebae (106–108). Douesnard-Malo and Daigle investigated
the interactions between Acathamoeba castellanii and Salmonella
Typhi, the etiologic agent of typhoid fever (109). They showed
that S. Typhi could survive at least 3 weeks when grown in
coculture with A. castellanii as opposed to less than 10 days when
grown as singly cultured bacteria under the same conditions.
Additionally, growth rates of amoebae after 14 days were similar
in cocultures or when amoebae were singly cultured, suggesting
that S. Typhi was not cytotoxic to A. castellanii (109). These
studies suggest that certain species of free-living amoebae can
serve as an environmental reservoir for pathogenic Salmonella
species.

With an increasing number of outbreaks associated with
consumption of fresh produce, understanding the mechanisms
of produce contamination by foodborne pathogens is useful

to develop preventative and processing measures to curtail
the microbial populations in produce. A relatively new topic
regarding the mechanisms of produce contamination is the
concept of internalization of produce by pathogens, which has
given rise to debate in the field in the last two decades (43,
110–113). Internalization is defined as the uptake of pathogens
through the roots into the intercellular spaces between plant
cells and in the plant vasculature tissues, xylem and phloem
(114). Internalized pathogens cannot be removed by washing
or disinfection and thus can pose a risk for human health if
contaminated produce is eaten uncooked (115). The uptake
of different foodborne microbes including bacteria (Salmonella
and E. coli) (42, 116–121), viruses (norovirus) (122–124), fungi
(125), and protozoa (126) through roots into produce has
been reported. However, the presence of pathogens including
Salmonella inside plant cells remains controversial (35), and
further comprehensive and in-depth study is needed on the
internalization of produce by pathogens.

INDIRECT DETECTION OF SALMONELLA

IN IRRIGATION WATER

Rapid and accurate detection/estimation of the levels of
Salmonella and other pathogens is prerequisite for understanding
the dynamics of microbial populations and determination of
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microbial quality of irrigation water (102). The major source
of microbial contamination of irrigation water is from fecal
origin (4, 127, 128), and thus the microbial quality guidelines
of irrigation water are through testing total counts of coliforms,
fecal coliforms, E. coli, fecal streptococci, and nematode eggs
(23, 129). Because total counts of coliforms and fecal coliforms
cannot exclude bacteria from nonfecal origin, the presence of E.
coli is now regarded as a better indicator of microbial quality
of irrigation water (23, 129–131). The PSR establishes microbial
quality criteria for various uses of agricultural water using generic
E. coli as an indicator for fecal pollution. However, the use of
generic E. coli as an index organism for the presence of human
pathogens in water sources has been discussed in the literature as
well. The PSR also requires that agricultural water must be safe
and of adequate sanitary quality for its intended use. It has been
shown that the concentration of E. coli can predict the level of
Salmonella present in water (6, 132). However, Salmonella could
be identified even if E. coli counts were below the actionable
levels, raising a concern that the satisfaction of the current limit
of generic E. coli may not necessarily represent the absence of
Salmonella (6). Accurate estimation/enumeration and isolation
of Salmonella in water are still indispensable in source-tracking
investigations of produce associated outbreaks.

DIRECT DETECTION OF SALMONELLA IN
IRRIGATION WATER

Traditional methods for detection, isolation, and identification
of Salmonella in water involve nonselective and selective pre-
enrichment in liquid culture followed by isolation using selective
and differential agar plates. Such methods are laborious and
time-consuming, which may take 4–5 days to complete (133).
To overcome these limitations, immunoassays such as enzyme-
linked immunosorbent assay (ELISA) have been combined with
culture methods for detection of Salmonella (134), but the
application of ELISA is greatly hampered by its poor performance
in sensitivity and specificity. Fortunately, a combination of
culture-based methods with DNA-based technologies has given
a great boost for Salmonella detection in various food matrices.
DNA-based methods, including conventional and real-time PCR
(qPCR), have become the most common methods for the
detection of Salmonella (135–137), with qPCR being more
advantageous due to its specificity, sensitivity, and short turn-
round time.

There are two different approaches used in qPCR detection.
One approach uses SYBR Green dye to nonspecifically bind
to synthesized double DNA (dsDNA). This dye only fluoresces
when bound to dsDNA, thus the intensity of fluorescence
quantitatively reflects the amount of the newly synthesized
dsDNA (138, 139). The other approach is specific, employing
a DNA probe with a fluorescent reporter incorporated at
one end and a quencher of fluorescence at the other end to
prevent detection of fluorescence. Degradation of the probe by
5’−3’ nuclease activity of TaqMan polymerase will allow the
unquenched emission of fluorescence, and the probe is also
complementary to the DNA target and can anneal in each

cycle. Thus, the increase of fluorescence can proportionately
reflect the amplification of the DNA product. The advantage
of this method is that it can be used to detect multiple targets
simultaneously with high specificity and sensitivity and is widely
used in detection and identification of microorganisms (140–
142). The Loop-Mediated Isothermal Amplification (LAMP) can
be carried out at a constant temperature and the amplicons are
detected by measuring turbidity or fluorescence (143–147). It is a
good option for detection of Salmonella from waters in rural area
or developing countries where thermocycler is not equipped or
budget is limited.

Most conventional PCR and qPCR assays for Salmonella
target the invasive gene (invA) because it is an important
virulence factor gene (148). This locus is considered to be
present in all Salmonella spp., including a wide range of
Salmonella serotypes and absent in other closely related bacterial
species and genera (149–151). The biological confirmation of
positive PCR results of irrigation water samples with convention
methods should proceed, especially when the results are to
serve the regulatory purpose. This can be achieved by plating
on conventionally-used selective growth agars, including XLD
(Xylose Lysine Deoxycholate) (152), HE (Hektoen eteric) (153),
and BS (Bismuth sulfite, a modification of Wilson and Blair
agar) (154) agar. The presumed Salmonella colonies on these
plates based on morphology may undergo further biochemical or
molecular identification process. Salmonella is urease-negative,
hence, this trait can also be used for differentiation from some
urease-positive bacteria such as Proteus and Citrobacter species
on urea medium with phenol red as in indicator (155).

ENUMERATION OF SALMONELLA IN
IRRIGATION WATER

In general, the level of Salmonella cells in food, poultry, produce,
or other food matrices is low, and direct enumeration of
Salmonella cell number has always been a challenge (156).
A variety of methods have been established, including direct
plating, fluorescence in situ hybridization (157), most probable
number (MPN) (158), modified MPN methods (132, 156),
and qPCR (135, 159, 160). These methods can be applied
for enumeration of Salmonella populations in irrigation water,
however, direct plating sometimes is inefficient due to low level
of Salmonella cells in water and competitiveness from natural
microbiota (161). Direct counting by immunofluorescence-based
methods are also not widely used due to low sensitivity in
enumeration, problems of antibody quality and linkage of
fluorochrome (162). The MPN method is still widely used, in
particular, for determination of low concentration of Salmonella
samples (156), and it has been improved by combination with
serology or multiplex PCR in the confirmation step in the MPN
method (158, 163). McEgan et al. have developed a modified
MPN method for irrigation water. This modified MPN includes
a three-by-threeMPN dilution test, selective enrichment, plating,
biological confirmation, and PCR confirmation, and it normally
takes about a week to complete the entire process (132).
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Detection of low level of Salmonella in food or water samples
with molecular methods typically requires a pre-enrichment
step to increase the number of the target cells, but the high
backgroundmicrobiota in some foods, such as fresh produce, will
also multiply in this process and consequentially complicates the
subsequent steps (164). Methods for quantification of Salmonella
in foods have been developed by using qPCR to detect the DNAof
the samples in order to estimate the copy number of a target gene
that reflects the quantity of bacterial cells (135, 165). Elimination
of the enrichment process presumably may improve the accuracy
of the quantification, but this approach is not without drawbacks.
First, only a very small amount of DNA template can be added
to the PCR reaction mixture, and DNA purity and proportion
of target DNA in the total DNA may affect the accuracy of the
results. Therefore, it becomes critical to select the appropriate
preparation method for separation of bacteria in water or food.
The other issue involves the inability of PCR to discriminate
DNA from viable cells and dead cells, which may undermine
the reliability of the assay. One way to overcome this issue is to
detect the presence of RNA (166, 167), which is laborious and can
result in false-negative results due to degradation of RNA. The
other approach involves using a photoreactive dye propidium
monoazide (PMA), which has been incorporated into the PCR to
differentiate dead from live bacterial cells in foods (142, 168–170).
The principle for PMA’s selectivity in detection is based on its
ability to penetrate only cell membranes of dead cells, covalently
bind to DNA upon light exposure, and subsequently inhibit the
modified DNA from amplification by PCR. But caution should
be exercised because in some cases inhibition of amplification
of PMA-bound DNA from dead cells was found incomplete
(171–174).

REDUCING SALMONELLA IN IRRIGATION
WATER

Irrigation water is extensively applied during the produce
growth stage, and thus the assurance of microbial quality
of irrigation water is critical in the protection of produce

safety. In the United States, the standards for drinking
water (the Safe Drinking Water Act, SDWA) was enacted
in 1974, and subsequently the Environmental Protection
Agency set the drinking water standards, which requires total
coliforms (including the fecal coliforms and E. coli) to be 0 per

100ml water (EPA) (https://www.epa.gov/ground-water-and-
drinking-water/national-primary-drinking-water-regulations).
Developing general standards for water used for irrigation is
rather complicated because the source of water for irrigation
can vary greatly with region, season, and climate. Even within
the same region, water microbial quality can be quite dynamic.
Precipitation, the distance to domesticated animal raising
facilities, and the number of wild or domestic animals in the
proximity of the water can also constitute substantial changes
to the microbial quality of the water (61). However, with the
passage of FSMA, and more specifically, the PSR, many growers
producing covered crops must now meet certain minimum
requirements for the safe use of agricultural water. This may
serve as a good solution for improving microbial quality of
irrigation water reduction of foodbonre outbreaks assocaited to
fresh produces.

CONCLUSIONS

Salmonella is frequently detected in surface water, which
accounts for nearly half of the water used for irrigation. Trace-
back investigations of outbreaks often implicate irrigation water
as a source (or a vehicle) for transmission of Salmonella.
In addition, the bacterium can survive in these aquatic
environments by a number of mechanisms, including entry into
the VBNC state and/or residing within free-living protozoa. As
such, assurance of microbial quality of irrigation water is vital to
the mitigation of produce-related foodborne outbreaks.
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