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BACKGROUND: Newborns in neonatal intensive care units (NICUs) are in contact with a variety of medical products whose production might include
synthetic chemicals with hormonal activity.

OBJECTIVES:Our aim was to assess the content of bisphenol A (BPA) and parabens (PBs) and the hormone-like activities of a subset of medical prod-
ucts commonly used in NICUs in prolonged intimate contact with NICU newborns.

METHODS: Fifty-two NICU items were analyzed, determining the concentrations of BPA and PBs [methyl- (MeP), ethyl- (EtP), propyl- (PrP), and
butylparaben (BuP)] and using the E-Screen and PALM-luciferase assays to measure the in vitro (anti-)estrogenic and (anti-)androgenic activity,
respectively, of the extracts. Items found to have elevated BPA/PB content or hormone-like activities were further extracted using leaching
methodologies.

RESULTS: BPA was found in three-fifths and PBs in four-fifths of tested NICU items, and ∼ 25% and ∼ 10% of extracts evidenced estrogenic and
anti-androgenic activity, respectively. The highest BPA content was found in the three-way stopcock (>7:000 ng=g), followed by patterned transpar-
ent film dressing, gastro-duodenal feeding tubes, sterile gloves, single-lumen umbilical catheters, and intravenous (IV) infusion extension sets (con-
centrations ranged from 100 to 700 ng=g BPA). A total PB concentration (

P
PBs) >100 ng=g was observed in several items, including light therapy

protection glasses, patterned transparent film dressing, winged IV catheters, IV infusion extension sets, and textile tape. The highest estrogenic activ-
ity [>450 pM estradiol equivalent (E2eq)] was found in small dummy nipples, three-way stopcocks, and patterned transparent film dressing and the
highest anti-androgenic activity [>5mM procymidone equivalent units per gram (Proceq=g)] in small dummy nipples and three-way stopcocks.

DISCUSSION: According to these findings, neonates might be exposed to multiple sources of BPA and PBs in NICUs via inhalation, dermal, oral, and
IV/parenteral routes. There is a need to address the future health implications for these extremely vulnerable patients and to adopt precautionary pre-
ventive measures as a matter of urgency. https://doi.org/10.1289/EHP5564

Introduction
Bisphenol A (BPA) is a high-production volume chemical com-
monly used in the manufacturing of epoxy resins and polycarbon-
ate plastics and as an additive in many other plastics, for example,
polyvinyl chloride (PVC) (Gimeno et al. 2015). Parabens (PBs)
are a family of alkyl esters of p-hydroxybenzoic acid [methylpara-
ben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylpar-
aben (BuP) congeners]. They are widely included in personal care
products and pharmaceuticals as antimicrobial preservatives and as
an additive in plastics for food packaging and beverages (Darbre
and Harvey 2008). Over the past few decades, it has been shown
that BPA and PBs demonstrate estrogen-like effects, and these
compounds have therefore been described as endocrine disrupting
chemicals (EDCs) (Boberg et al. 2010; Darbre and Harvey 2008;
Perez et al. 1998). Moreover, numerous studies have associated

BPA and PB exposure with metabolic disorders in adults and with
impaired neurodevelopment and disrupted sexual maturation in
children (Giulivo et al. 2016). Particular concerns have been raised
about early life EDC exposure because of its potential to cause
adverse health consequences throughout life. Furthermore, the
pharmacokinetics of xenobiotics, which differ between neonates
and older children/adults, can also be affected by underlying medi-
cal conditions (Nellis et al. 2015). Thus, it has been suggested that
exposure to EDCs such as BPA and PBs during susceptible periods
of child development (e.g., perinatal period) may be associated
with various adverse effects in children, including alterations in
behavior and executive function (Ghassabian et al. 2018; Jiang
et al. 2019), accelerated pubertal timing (Berger et al. 2018;
Harley et al. 2019), or respiratory disease (Agier et al. 2019;
Buckley et al. 2018).

Very-low-birth-weight (VLBW) newborns (<1,500 g) and low-
birth-weight (LBW) newborns (<2,500 g) often require a com-
plex care environment in a neonatal intensive care unit (NICU)
to simulate in utero conditions until the proper development of
their immature skin and gastrointestinal, immune, nervous, or re-
spiratory systems (Harrison and Goodman 2015). LBW infants
are also more likely to require medical appliances in intimate
contact with them, including a) bags of intravenous (IV) fluids
and total parenteral nutrition; b) nasogastric and enteral feeding
tubes, respiratory masks/endotracheal tubes, and venous cathe-
ters; and c) cardiopulmonary bypass circuits, among others.
Many of these medical devices are made of polycarbonate or
PVC plastics, in which residual nonpolymerized BPA can remain
after the polymerization process and may leach from the product
(Gimeno et al. 2015). BPA may also leach after hydrolysis of the
polymer under certain conditions (EU 2010; Mercea 2009), and
its release is greater with longer contact time, higher temperature,
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and elevated pH (as in hydroxide aqueous solutions) (Geens et al.
2011, 2012). To date, only two studies have addressed the expo-
sure of NICU neonates (Calafat et al. 2009; Duty et al. 2013).
One of these (Calafat et al. 2009) found that urinary BPA con-
centrations were 3.42- to 8.75-fold higher when the intensity of
medical device utilization was medium or high versus low. The
other study (Duty et al. 2013) observed 16- to 32-fold higher
BPA concentrations in NICU infants than in infants from the
general population. Concerning PBs, Calafat et al. (2009) also
found higher urinary MeP levels among newborns with a greater
use of medical devices, although potential sources of exposure
were not identified. In addition, infants are also potentially
exposed to BPA and PB exposures from personal care products,
clothing, and other baby products, including socks, diaper-
changing mats, and baby mattresses (Asimakopoulos et al. 2016;
Freire et al. 2019; Xue et al. 2017). Thus, NICU-admitted infants
can be inadvertently exposed to BPA and PBs via dermal, inges-
tion, inhalation, IV, and parenteral routes. Furthermore, the com-
bined exposure of NICU infants to other EDCs besides BPA and
BPs, such as phthalates, should be taken in consideration.
Previous studies have reported the exposure of VLBW and LBW
newborns to phthalates in NICUs (Calafat et al. 2004; Green et al.
2005; Stroustrup et al. 2018b; Weuve et al. 2006), suggesting
that it impacts neurobehavioral performance (Stroustrup et al.
2018a).

In response to increasing concerns about EDC exposure in the
hospital environment, the European Commission published
Opinions on the risk of oral, subcutaneous, and IV exposure to
BPA (SCENIHR 2015) and phthalates (SCENIHR 2016) from
medical devices made of materials that may potentially leach
these chemicals. They described a particular risk of systemic
BPA availability after nonoral exposures, as in the case of neo-
nates in NICUs, infants undergoing prolonged medical proce-
dures, and patients receiving dialysis (SCENIHR 2015). The
highest daily exposure was reported to be for neonates in NICUs,
at 3,000 ng=kg body weight (BW), whereas the daily exposure
for adult dialysis patients was 57 ng=kg BW, and SCENIHR
(2015) called for urgent research on the composition and release
of BPA from medical devices. However, no attention has been
paid to the presence of PBs in the NICU environment. The pres-
ent study is part of a wider project that aims to assess the poten-
tial adverse health impact on neonates in a NICU of exposure to
EDCs from their medical care, diet, and environment. The gen-
eral aim of this first study was to identify potential sources of ex-
posure to EDCs in neonates admitted to NICUs. Therefore, we
assessed the content of BPA and PBs in an extensive array of a)
plastic medical devices, b) textiles, and c) semisolid/liquid prod-
ucts (including ointments and nutritional supplements) that are
commonly used in NICUs and are in intimate contact with new-
borns, and we measured both the estrogenic and anti-estrogenic
activities and the androgenic and anti-androgenic activities of
extracts from these products.

Material and Methods

Sample Collection

In June 2018, we collected a total of 52 unused items usually
employed in the NICU of the Virgen de las Nieves Hospital, in
Granada (Spain). This convenience sample was selected by three
pediatricians of the unit (J.A.H., M.P.C., and L.S.), who together
compiled a list of all items used in the unit that were in intimate
contact with neonates. It included 25 plastic medical devices, 18
textiles, and 9 semisolid/liquid products, as detailed in Table 1,
which also displays the information on their composition reported
by the manufacturers on the packaging or on their website. We

report the extraction method, concentrations of BPA and PBs
(MeP, EtP, PrP, BuP, and total paraben compounds (

P
PBs), and

the average length of time in contact with the neonate for each
item (estimated by the pediatricians). The country of manufacture
was in Europe for 37 items, the United States for 8, Asia for 6,
and Australia for 1. Of the 25 plastic items, only 8 described the
raw material used (polyhexahydrotriazine in 1, polyethylene in 1,
PVC in 4, polyurethane in 1, and cotton/polyamide/polyurethane
in 1). With regard to additives, the presence or absence of latex
was indicated in 17 items (16 items were declared latex-free) and
the presence or absence of di-(2-ethylhexyl)-phthalate (DEHP) in
7 items, including 4 declared as DEHP-free.

Chemicals and Reagents

All reagents were analytical grade unless otherwise specified.
BPA, MeP, EtP, PrP, BuP, labeled deuterium BPA (BPA-d16),
and labeled EtP ring 13C6 (EtP-13C6) were purchased from
Sigma-Aldrich. Solvents for extraction procedures—ethyl ace-
tate, tetrahydrofuran, and dichloromethane—were purchased
from Merck, and methanol (MeOH) and acetone were supplied
by Sigma-Aldrich. Liquid chromatography/mass spectrometry
(LC-MS)–grade acetonitrile, water, and ammonia (25%) were
purchased from Sigma-Aldrich. Water (18:2 MX cm) was puri-
fied using an in-house Milli-Q® system (Millipore).

For chemical analyses, stock standard solutions (100 mg=L)
of each compound were prepared in acetonitrile and stored at 4°C
in the dark. The solutions remained stable for at least 2 months.
Working standards were prepared immediately before use by
dilution with pure acetonitrile.

For in vitro cell assays, reference standards for 17b-estradiol
(E2), methyltrienolone (R1881), ICI 182780 (henceforth, ICI),
procymidone, puromycin, geneticin (G418), luciferin (sodium
salt), sulforhodamine B (SRB), and trichloroacetic acid (TCA)
were obtained from Sigma-Aldrich. Stock solutions (10mM) of
E2, R1881, procymidone, and ICI were prepared in ethanol, and
successive dilutions were performed in culture medium. Stock
solutions were kept at −20�C, and dilution series were freshly
prepared before each experiment. The culture medium and fetal
bovine serum (FBS) were supplied by Gibco (Invitrogen) and all
cell culture plastics by Falcon (VWR International Eurolab).

Instrumentation and Ultra-High-Performance Liquid
Chromatography–Mass Spectrometry Conditions

Analyses were performed by ultra-high-performance liquid chro-
matography coupled to mass spectrometry (UHPLC-MS/MS),
using an ACQUITY UPLC™ H-Class (Waters) consisting of
ACQUITY UPLC™ binary solvent manager and ACQUITY
UPLC™ sample manager. A Xevo TQS tandem quadrupole MS
(Waters) equipped with an orthogonal Z-spray™ electrospray
ionization (ESI) source was used for BPA and PBs detection.
Chromatographic separation of compounds was performed using
an ACQUITY UPLC BEH™ C18 (50 mm×2:1 mm internal di-
ameter, 1:7 lm particle size) from Waters. The gradient mobile
phase consisted of 0.025% vol/vol ammonia aqueous solution
(Solvent A) and 0.025% vol/vol ammonia in acetonitrile (Solvent
B). Gradient conditions were as follows: 0:0–3:5min, 60%
Solvent B; 3:5–4:0min, 60–100% Solvent B; 4:0–6:5min, 100%
Solvent B and back to 60% for 0:1min. Flow rate was 0:25 mL=
min. The injection volume was 5 lL. The column temperature
was maintained at 40°C. The MS was operated in negative ESI
mode, using optimized MS/MS parameters as defined in a previ-
ous study (Vela-Soria et al. 2014).
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Table 1. NICU item detail information.

Item
no. Description

Route of
exposure Countrya

Contact time
with neonatesb Material Extraction method

Raw
materialc Details

1 Feeding syringe I Oral France Hours Plastic Own methodology NF —

2 Feeding syringe II Oral France Hours Plastic Own methodology NF —

3 Gastro-duodenal feeding
tube

Oral France Week Plastic Genay et al. 2011 NF —

4 Extension tube for feeding
syringe

Oral France Days Plastic Genay et al. 2011 PVC —

5 Feeding sampling straw Oral France Minutes Plastic Genay et al. 2011 NF —

6 Small dummy Oral Germany Week Plastic Own methodology NF Latex
7 Large dummy Oral Germany Week Plastic Own methodology NF —

8 Human milk fortifier Oral Switzerland Minutes Semisolid/liquid Wang and Zhou 2013 NF —

9 Pulse oximeter adhesive
sensor I

Dermal USA Days Plastic/textile Own methodology NF Latex-free

10 Pulse oximeter adhesive
sensor II

Dermal China Days Textile Own methodology NF Latex-free

11 ECG electrode Dermal Malaysia Days Textile Xue et al. 2017 NF Latex-free
12 Light therapy protection

glasses
Dermal USA Days Textile Xue et al. 2017 Cotton/

PA/PUR
—

13 Occlusive skin wrap Dermal New
Zealand

Minutes Plastic Genay et al. 2011 PE —

14 Sterile gloves Dermal Malasia Minutes Plastic Genay et al. 2011 NF Latex-free
15 Latex gloves Dermal Malasia Minutes Plastic Genay et al. 2011 NF —

16 Patterned transparent film
dressing

Dermal USA Weeks Textile Xue et al. 2017 NF Latex-free

17 White hypoallergenic
paper tape

Dermal Spain Weeks Textile Xue et al. 2017 NF —

18 Textile tape Dermal France Weeks Textile Xue et al. 2017 NF —

19 Surgical tape Dermal Germany Weeks Textile Xue et al. 2017 NF —

20 Self-adhesive dressing pad Dermal Spain Weeks Textile Xue et al. 2017 NF Latex-free
21 Wound dressing

transparent with paper
frame

Dermal China Weeks Textile Xue et al. 2017 NF Latex-free

22 Transparent adhesive film
dressing

Dermal England Weeks Textile Xue et al. 2017 NF —

23 Hydrocolloid transparent
dressing

Dermal Denmark Weeks Textile Xue et al. 2017 NF —

24 White cohesive bandage Dermal Spain Weeks Textile Xue et al. 2017 NF Latex-free
25 Infant flow LP headgear Dermal Mexico Weeks Textile Xue et al. 2017 NF Latex-free, DEHP-

free
26 Sterile non-woven

swabs
Dermal Spain Minutes Textile Xue et al. 2017 NF Latex-free

27 Nonsterile non-woven
swabs

Dermal Spain Minutes Textile Xue et al. 2017 NF Hypoalergenic,
transpirant

28 Absorbent bed underpad Dermal Portugal Days Textile Xue et al. 2017 NF —

29 XS-sized diaper Dermal Germany Hours Textile Xue et al. 2017 NF —

30 S-sized diaper Dermal Germany Hours Textile Xue et al. 2017 NF —

31 Chlorhexidine Dermal Spain Minutes Semisolid/liquid Wang and Zhou 2013 NF 2 g clorhexidine/
100 mL solution

32 Hand sanitizer Dermal Germany Minutes Semisolid/liquid Zhang et al. 2005 NF 45 g 2-propanol, 30 g
1-propanol, 0:2 g
mecetronium ethyl-
sulfate each 100 g
of solution

33 Talcum and zinc oxide
cream

Dermal Spain Minutes Semisolid/liquid Wang and Zhou 2013 NF Lanoline, dimethi-
cone, glycerin, rose
essence

34 Proteolytic enzyme cream Dermal United
Kingdom

Minutes Semisolid/liquid Wang and Zhou 2013 NF Collagenase A, liquid
paraffin, solid
paraffin

35 Winged IV catheter (trans-
parent section)

IV/parenteral Belgium Days Plastic Own methodology NF —

36 Winged IV catheter IV/parenteral Germany Week Plastic Genay et al. 2011 NF —

37 Single-lumen umbilical
vein catheter

IV/parenteral France Week Plastic Genay et al. 2011 PVC DEHP-free

38 Double-lumen umbilical
vein catheter

IV/parenteral France Week Plastic Genay et al. 2011 PUR —

39 Extension set for IV
infusion system

IV/parenteral United
Kingdom

Week Plastic Genay et al. 2011 PVC Latex-free, DEHP-
free

40 Extension set for IV
infusion system (light
resistant)

IV/parenteral Italy Week Plastic Genay et al. 2011 PVC Latex-free, DEHP-
free
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Sample Extraction, Treatment, and LC-MS Conditions

Samples were extracted from the selected items using different
methodologies according to the nature of the material. The
extraction procedure for each type of material is described
below.

Plastic medical devices. BPA and PBs from hard plastic
materials in medical devices were studied as follows: 50 mg of
sample was accurately weighed and placed in a 7-mL glass vial;
3 mL of acetone was then added and left for 24 h, followed by
sonication for 30 min. Samples were then centrifuged at 20°C for
10 min at 5,000× g, and the organic phase was taken, filtered
through a 0:2-lm polytetrafluoroethylene (PTFE) filter, and dried
under a nitrogen stream. The residue was dissolved with 200 lL
acetonitrile (containing 25 lg=L of BPA-d16 and 10 lg=L of
EP-13C6)/Milli-Q® water 1:1 vol/vol, and centrifuged at 4°C for
10 min at 24,960× g for cleaning. BPA and PBs from soft plastic
materials were studied using a slight modification of the method
described by Genay et al. (2011). Briefly, 50 mg of each sample
was accurately weighed and placed in a 4-mL glass vial, and
1 mL tetrahydrofuran was added and left for 30 min. Next,
100 lL of the solution was poured into another glass vial and
600 lL of MeOH was added. After mixing, 200 lL was taken
and dried under a nitrogen stream. The residue was then dis-
solved with 200 lL acetonitrile (containing 250 lg=L of BPA-
d16 and 62:5 lg=L of EtP-13C6)/Milli-Q® water 1:1 vol/vol and
centrifuged at 4°C for 10 min at 24,960× g for cleaning, followed
by the injection of 5 lL into the LC system.

When high BPA/PB content or elevated estrogenic/anti-
androgenic activity was detected in plastic components, the con-
centration of released BPA and PBs was then studied under soft
extraction conditions. In brief, plastic components were fully
immersed in a 0.9% sodium chloride (NaCl) aqueous solution
(250, 500, or 1,000 mL with pH of 7.5) for 20 d at 37°C, fol-
lowed by analysis of the solutions to determine the presence of
BPA and PBs. BPA and PBs were extracted from the NaCl solu-
tions by solid-phase extraction as described elsewhere (Real et al.
2015). Briefly, Isolute® C18 cartridges were conditioned with
2× 4 mL MeOH and 2× 4 mL Milli-Q® water, and NaCl solu-
tions were then loaded at 12 mL=min, followed by drying for 1 h
and elution with 4 mL of MeOH. The eluent was dried under a

nitrogen stream and the residue dissolved with 200 lL acetoni-
trile (containing 25 lg=L BPA-d16 and 10 lg=L EP-13C6)/
Milli-Q® water, 1:1 vol/vol. 5 lL was injected into the LC
system.

Textile products. Extraction of BPA and PBs from textile
products was performed as previously described (Xue et al.
2017) with some modifications. Briefly, 0:5 g of each textile
was accurately weighed, cut, placed in 15-mL glass centrifuge
tubes, and spiked with 0:25 mL of an isotope-labeled surrogate
mixture solution (250 lg=L BPA-d16 and 62:5 lg=L EP-13C6
in acetonitrile), whereas 7:5 mL of a mixture of acetone and
dichloromethane (1:4 vol/vol) was used for the extraction. After
sonication for 20 min and centrifugation at 5,000 × g for 5 min,
the solvent was collected, filtered through a 0:2-lm nylon filter,
and transferred to another glass tube. The solvent was evapo-
rated to dryness under a gentle stream of nitrogen and the resi-
due dissolved with 250 lL of acetonitrile for injection into the
LC system.

Liquid/semisolid products. Extraction of BPA and PBs from
ointments was performed as previously described (Wang and
Zhou 2013) with some modifications. Briefly, 0:5 g of each oint-
ment was accurately weighed and placed in 15-mL glass centri-
fuge tubes, followed by heating at 80°C for 2 min to homogenize
and spiking with 0:020 mL of the isotope-labeled surrogate mix-
ture solution (25 lg=L of BPA-d16 and 10 lg=L of EP-13C6, in
acetonitrile). Next, 5 mL of MeOH was added, followed by shak-
ing for 2 min and sonication in an ultrasonic bath for 20 min.
After centrifugation at 5,000× g for 10 min, the solvent was col-
lected and filtered through a 0:2-lm PTFE filter. The filtered sol-
vent was evaporated to dryness under a gentle stream of nitrogen
and the residue dissolved with 200 lL of acetonitrile/Milli-Q®

water, 1:1 vol/vol. Next, the extract was placed in a 1:5-mL
Eppendorf® tube and centrifuged at 24,960× g for 10 min at 4°C.
The extract was placed in a chromatographic vial for injection
into the LC system.

BPA and PBs were extracted from NaCl (in plastic and glass
ampoules), IV caffeine, and sterile water using a modification of
the extraction method described by Sanchez-Prado et al. (2011).
Briefly, 0:5 mL of each sample was taken, placed in a 15-mL
glass centrifuge tube, and spiked with 0:020 mL of the isotope-

Table 1. (Continued.)

Item
no. Description

Route of
exposure Countrya

Contact time
with neonatesb Material Extraction method

Raw
materialc Details

41 Three-way stopcock IV/parenteral Israel Week Plastic Own methodology NF —

42 Disinfecting cap for
needle-free connectors

IV/parenteral USA Week Plastic Own methodology NF —

43 Hypodermic injection
needle

IV/parenteral USA Week Plastic Own methodology NF —

44 Syringe IV/parenteral Spain Day Plastic Own methodology NF —

45 Caffeine perfusion
20 mg=mL

IV/parenteral Italy Minutes Semisolid/liquid Sanchez-Prado et al.
2011

NF —

46 Water for injection solvent
for parenteral use

IV/parenteral Spain Minutes Semisolid/liquid Sanchez-Prado et al.
2011

NF —

47 0.9% NaCl solution for IV
flush (syringe)

IV/parenteral Germany Minutes Semisolid/liquid Sanchez-Prado et al.
2011

NF —

48 0.9% NaCl solution for IV
(ampoule)

IV/parenteral Spain Minutes Semisolid/liquid Sanchez-Prado et al.
2011

NF —

49 Endotracheal tube Respiratory Malaysia Weeks Plastic Genay et al. 2011 PHT Latex-free, DEHP
50 Closed suction system Respiratory Mexico Weeks Plastic Genay et al. 2011 NF Latex-free, DEHP
51 Nasal cannula Respiratory Lithuania Weeks Plastic Genay et al. 2011 NF Latex-free, DEHP
52 Nasal prong Respiratory USA Weeks Plastic Genay et al. 2011 NF Latex-free, DEHP-

free

Note: —, not available; DEHP, di-(2-ethylhexyl)-phthalate; ECG, electrocardiograph; IV, intravenous; LP, low pressure; NaCl, sodium chloride; NF, not found; NICU, neonatal inten-
sive care unit; PA, polyamide; PE, polyethylene; PHT, polyhexahydrotriazine; PUR, polyurethane; PVC, polyvinyl chloride; S, small; XS, extra small.
aCountry in which the item was manufactured.
bAverage time that the item is in contact with newborns, based on a survey of pediatricians.
cInformation obtained from packaging or manufacturer’s website.
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labeled surrogate mixture solution (25 lg=L BPA-d16 and
10 lg=L EP-13C6 in acetonitrile), followed by the addition of
5 mL ethyl acetate, shaking for 2 min, and sonication in an ultra-
sonic bath for 20 min. After centrifugation at 5,000× g for 10
min, the solvent was collected and filtered through a 0:2-lm
PTFE filter. The filtered solvent was evaporated to dryness under
a gentle nitrogen stream, and the residue was dissolved with
200 lL of acetonitrile/Milli-Q® water, 1:1 vol/vol, with 5 lL
being injected into the LC system.

BPA and PBs were extracted from hand sanitizer liquid using
a slight modification of the extraction procedure described by
Zhang et al. (2005). Briefly, 1 mL of each sample was taken,
placed in a 15-mL glass centrifuge tube, and spiked with 0:20 mL
of the isotope-labeled surrogate mixture solution (25 lg=L BPA-
d16 and 10 lg=L EP-13C6 in acetonitrile), followed by the addi-
tion of 5 mL MeOH, shaking for 2 min, and sonication in an ultra-
sonic bath for 10 min. A further 5 mL MeOH was then added, and
the solution was filtered through a 0:2-lm PTFE filter. Next,
300 lL was taken, placed in a chromatographic vial, and 700 lL
of Milli-Q® water was added, with 5 lL being injected into the LC
system.

Quality Assurance and Quality Control in Chemical
Analyses

Matrix-matched calibration was performed for the analysis of
textiles and ointments. Samples used as blanks were previously
analyzed to confirm that the compounds of interest were absent
or below the limit of detection (LOD). Standard addition calibra-
tion was used for the samples of the liquids, hard plastics, and
soft plastics.

LODs and limits of quantification (LOQs) were determined
on the basis of the lowest point of the calibration standard with a
signal-to-noise (S/N) ratio of >3 and >10, respectively. LODs
for textiles were 0:7 ng=g for BPA, 0:5 ng=g for MeP and BuP,
and 0:4 ng=g for EtP and PrP. LODs for ointments were 0:3 ng=g
for BPA, 0:15 ng=g for MeP and BuP, and 0:1 ng=g for EtP and
PrP. LODs for the standard addition calibration were 0:1 ng=g for
BPA and 0:03 ng=g for PBs.

Samples were analyzed in duplicate. Extraction was carried
out in batches of 15, with each batch containing 12 samples as
well as the following 3 quality control samples: a procedural
blank (no sample) to test for interference or laboratory contami-
nation and two spiked blank samples (5:0 ng=g of BPA and
2:5 ng=g of PBs). Samples were frozen after extraction until
injection into the LC system. No BPA or PBs were detected in
any procedural blank. Recoveries for all target compounds in the
quality-control spiked samples ranged from 86% to 104%, and
the coefficient of variation (CV) was below 20% in all cases.

Hormone-Like Activity Assessment

The E-Screen bioassay and PALM luciferase assay were per-
formed as previously described (Molina-Molina et al. 2014,
2019) with some modifications.

MCF-7 and PALM cell lines: culture conditions. MCF7
BUS human breast cancer cells (Soule et al. 1973) were a gift
from C. Sonnenschein (Tufts University, Boston, MA). PALM
human prostate cancer cells, from a human androgen-dependent
stable transfected cancer line (Térouanne et al. 2000), were pro-
vided by P. Balaguer (DR2 at INSERM U896, Montpellier,
France). Both cell lines were cultured as previously described
(Molina-Molina et al. 2014). In brief, MCF-7 cells were cultured
in DMEM (Gibco, Invitrogen) with phenol red supplemented
with 10% FBS (seeding medium), whereas PALM cells were cul-
tured in Ham’s F12 medium supplemented with 10% FBS,

1 mg=mL G418, and 1 lg=mL puromycin (seeding medium).
Given the hormonal activity of phenol red and FBS, experiments
were performed in a test culture medium of phenol red-free
DMEM (Gibco, Invitrogen) supplemented with 10% dextran-
coated charcoal-FBS (10% DCC-FBS) for MCF-7 cells and
Ham’s F12 medium supplemented with 6% DCC-FBS and 1%
antibiotic for PALM cells, in a 5% carbon dioxide humidified
atmosphere at 37°C.

E-Screen. Briefly, MCF-7 cells were trypsinized and plated
in 96-well culture plates at initial concentrations of 4 × 103 cells
per well. One day later, the seeding medium was removed and
replaced with 150 lL test culture medium. For agonistic assays,
dry extracts of the samples were resuspended in 1:25 mL of test
culture medium, vigorously shaken, left at rest for 30 min, and
then filtered through a 0:22-lm filter (PALL® Acrodisc® Syringe
Filters with Supor® Membrane, 13 mm) and tested (50 lL added
per well) on MCF-7 cells at dilutions of 1:1 to 1:10. A dose–
response curve (0:1–1,000 pM) for estradiol (E2) and a negative
control of cells treated solely with hormone-free medium (test
culture medium) and a solvent control (0.1% ethanol in test cul-
ture medium) were included in each experiment. The bioassay
was ended on Day 6 (late exponential phase) by removing the
media from wells, fixing the cells with TCA (10% wt/vol at 4°C,
30 min), and staining them with SRB [0.4% wt/vol in acetic acid
(1% vol/vol), at room temperature, 30 min]. Finally, the bound
dye was solubilized using tris(hydroxymethyl)aminomethane
(10mM, at room temperature, 30 min, pH 10.4) and the absorb-
ance read at 492 nm. This method relies on the ability of SRB to
bind stoichiometrically to cell membrane proteins under mild acidic
conditions and to be removed under basic conditions. The amount
of bound dye can therefore serve as a proxy for cell number, which
can then be extrapolated tomeasure cell proliferation. Next, the ratio
of SRB-stained cells between treated cells and hormone-free control
cells (negative controls) was calculated for each concentration.
Tests were done in triplicate, and results were expressed as prolifer-
ative effect (PE) [MCF-7 cell proliferation (fold over control)]. The
antagonistic activities of sample extracts were determined by co-
incubation with the agonist E2 at 100 pM. Because the PE only pro-
vides information on the effect of the extract in the E-Screen bioas-
say, this was transformed into E2 equivalent (E2eq) or antiestrogen
(ICI 182780) equivalent (ICIeq) units related to 1 g of sample by
reading from dose–response curves of E2 or ICI (see Figure S1A,B).
In this manner, the PE of each extract was referred to the maximal
PE obtained with E2 or ICI and transformed into E2eq or ICIeq.
E2eq and ICIeq values for each sample extract were calculated by
using the concentration that obtained the greatest induction or inhi-
bition of cell proliferation, respectively. E2eq=g and ICIeq values
were corrected for the dilution factor and reported as wE2eq=g or
ICIeq/g of the originalNICU sample.

PALM assay. PALM cells were seeded at a density of 5× 104

cells per well in 96-well white opaque tissue culture plates in
150 lL test culture medium. Dry extracts of the samples were
serially diluted (as described above for the E-Screen bioassay),
and 50 lL per well was added at 8 h after seeding. Serial dilu-
tions of the synthetic human androgen receptor agonist methyl-
trienolone-R1881 (1–10,000 pM) and the test culture medium
alone were included on each plate with the test samples as posi-
tive and negative controls, respectively. PALM cells were incu-
bated for 40 h at 37°C, and the medium was then removed and
replaced by test culture medium containing 0:3mM luciferin
(Sigma-Aldrich). Next, the 96-well plate was introduced into a
luminometer for 2 s to measure luminescence from intact living
cells.

Human androgen receptor (hAR)-agonistic activities were
tested at 1:1 to 1:10 dilutions of the samples, performing tests in
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quadruplicate for each dilution. Values were normalized to the
readings with R1881 alone (10 nM), and this was taken as the
maximum response or maximal luciferase activity (100%).
Negative controls (test culture medium alone) were used to
define the minimum response (10%). The antagonistic activity
of extracts was determined by co-incubation with R1881 ago-
nist (0:3 nM). Results were expressed as a percentage of maxi-
mal luciferase activity. Finally, the luciferase activity in each
sample extract was expressed as percentage of the maximal lu-
ciferase activity obtained with R1881 or procymidone (Proc)
and transformed into R1881 or procymidone equivalent units
(R1881eq or Proceq, respectively) by reading from dose–
response curves for R1881 or procymidone (standard serial
dilutions) included on each plate (see Figure S1C,D). R1881eq
and Proceq values were calculated from the concentration that
obtained the greatest induction or inhibition of luciferase activ-
ity, respectively. R1881eq and Proceq values obtained were
corrected for the dilution factor and reported as R1881eq=g and
Proceq=g of the original sample.

Statistical Data Analysis

Mean concentrations and coefficients of variation (CVs) of BPA,
MeP, EtP, PrP, BuP, and

P
PBs were calculated, as well as the

estrogenic and anti-androgenic activities from two separate
extractions. Results for EDC content and hormone-like activities
were summarized according to the main route of exposure.
Nevertheless, it should be taken into account that the EDC con-
tent of some NICU items (e.g., BPA or PBs) may plausibly reach
internal body compartments via multiple routes; for instance, the
endotracheal tube might be both a respiratory and dermal route of
exposure to hormone-like chemicals. Spearman correlation analy-
sis was performed to examine the relationship between log-
transformed concentrations of BPA and PBs. The relative weight
of each chemical in relation to the total EDC concentration was
calculated for each exposure route. Therefore, we divided the
concentrations of each compound by the sum of BPA and PBs
found in each item, followed by calculation of the mean relative
weight of each compound in the items related to each exposure
route, and the results were expressed as percentages. Statistical
significance was set at p<0:05. SPSS software (version 23.0;
IBM) was used for the statistical analyses.

Results
Data on the BPA and PBs content and (anti-)estrogen and (anti-)
androgenic activities of extracts are exhibited in Tables 2–5
according to the exposure route (oral, dermal, IV/parenteral, or
inhalation). Figure 1 depicts the mean relative concentration of
each compound in items in contact with newborns via the same
exposure route. As shown, BPA concentrations represented
∼ 30% of the total concentration of the studied EDCs via all
routes of exposure, whereas MeP represented 40–60% of total
BPA and PB content via all routes except for inhalation. In addi-
tion, BPA levels were significantly and positively correlated withP

PBs in the samples (rho coefficient 0.411, p=0:017). Estro-
genic and anti-androgenic activities were detected in 13 (25%) and
5 (10%) of the 52 tested samples, respectively (Tables 2–5). With
the exception of the winged IV catheter, all NICU items that
exhibited estrogenic activity contained BPA at detectable levels.
No anti-estrogenic or androgenic activity was observed in any
sample. Estrogenic activity was observed in two of five DEHP-
free items (40.0%) and in one of three DEHP-containing items
(33.3%). T

a
b
le
2
.
C
o
n
ce
n
tr
at
io
n
s
o
f
B
P
A

an
d
P
B
s
an
d
h
o
rm

o
n
e-
li
k
e
ac
ti
v
it
ie
s
in

N
IC
U
it
em

s
re
la
te
d
to

o
ra
l
ro
u
te
s
o
f
ex
p
o
su
re

(n
=
8
).

It
em

n
o
.

D
es
cr
ip
ti
o
n

E
D
C
co
n
te
n
t
(n
g
/g
)

H
o
rm

o
n
e-
li
k
e
ac
ti
v
it
y

B
P
A

M
eP

E
tP

P
rP

B
u
P

R
P
B
s

E
-S
cr
ee
n

P
A
L
M

as
sa
y

M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
E
2
eq
/g

(p
M
)a

P
ro
ce
q
=g

(m
M
)b

1
A

F
ee
d
in
g
sy
ri
n
g
e
I

<
0
:1

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
—

N
D

N
D

1
B

F
ee
d
in
g
sy
ri
n
g
e
I
(p
is
to
n
)

<
0
:1

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
—

N
D

N
D

2
A

F
ee
d
in
g
sy
ri
n
g
e
II

<
0
:1

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
—

N
D

N
D

2
B

F
ee
d
in
g
sy
ri
n
g
e
II
(p
is
to
n
)

<
0
:1

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
—

N
D

N
D

3
G
as
tr
o
-d
u
o
d
en
al
fe
ed
in
g
tu
b
e

3
0
1
.1

1
3
.2

6
4
.8

1
5
.7

5
.5

6
.7

3
.5

1
8
.1

<
0
:0
3

—
7
3
.8

1
9
3
.9

N
D

4
E
x
te
n
si
o
n
tu
b
e
fo
r
fe
ed
in
g
sy
ri
n
g
e

1
1
.9

6
.7

1
7
.4

2
.1

<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
1
7
.4

N
D

N
D

5
F
ee
d
in
g
sa
m
p
li
n
g
st
ra
w

1
0
7
.7

1
5
.3

5
.0

1
2
.9

<
0
:0
3

—
1
7
.4

2
.1

2
.4

7
.4

2
4
.8

N
D

N
D

6
A

S
m
al
l
d
u
m
m
y
(n
ip
p
le
)

6
.5

1
2
.3

6
3
.7

5
.4

5
.3

1
1
.5

2
0
.4

5
.4

1
.4

1
0
.6

9
0
.8

2
,4
0
3
.8

9
,7
8
8
.0

6
B

S
m
al
l
d
u
m
m
y
(h
ar
d
se
ct
io
n
)

<
0
:1

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
—

N
D

N
D

7
A

L
ar
g
e
d
u
m
m
y
(n
ip
p
le
)

7
.8

8
.6

2
4
.2

1
4
.8

<
0
:0
3

—
6
.3

1
1
.5

1
.7

1
6
.6

3
2
.2

N
D

N
D

7
B

L
ar
g
e
d
u
m
m
y
(h
ar
d
se
ct
io
n
)

3
.6

5
.6

9
.4

4
.1

<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
9
.4

N
D

N
D

8
H
u
m
an

m
il
k
fo
rt
if
ie
r

<
0
:0
3

—
<
0
:1
5

—
<
0
:1

—
<
0
:1

—
<
0
:1
5

—
—

N
D

N
D

N
IC
U
it
em

s
[n

(%
)]

5
(6
2
.5
%
)

5
(6
2
.5
%
)

2
(2
5
.0
%
)

4
(5
0
.0
%
)

3
(3
7
.5
%
)

6
(7
5
.0
%
)

2
(2
5
.0
%
)

1
(1
2
.5
%
)

N
o
te
:
V
al
u
es

b
el
o
w

th
e
li
m
it
o
f
d
et
ec
ti
o
n
ar
e
re
p
re
se
n
te
d
b
y
th
e
sy
m
b
o
l
<

fo
ll
o
w
ed

b
y
th
e
li
m
it
o
f
d
et
ec
ti
o
n
.
—

,
n
o
t
ap
p
li
ca
b
le
;
B
P
A
,
b
is
p
h
en
o
l
A
;
B
u
P
,
b
u
ty
l-
p
ar
ab
en
;
C
V
,
co
ef
fi
ci
en
t
o
f
v
ar
ia
n
ce
;
E
2
,
es
tr
ad
io
l;
E
D
C
,
en
d
o
cr
in
e
d
is
ru
p
ti
n
g

ch
em

ic
al
;
E
tP
,
et
h
y
l-
p
ar
ab
en
;
M
eP

,
m
et
h
y
l-
p
ar
ab
en
;
N
D
,
n
o
t
d
et
ec
te
d
;
N
IC
U
,
n
eo
n
at
al
in
te
n
si
v
e
ca
re

u
n
it
;
P
rP
,
p
ro
p
y
l-
p
ar
ab
en
;
P

P
B
s,
to
ta
l
co
n
ce
n
tr
at
io
n
s
o
f
p
ar
ab
en
s.

a
C
o
n
ce
n
tr
at
io
n
s
eq
u
iv
al
en
t
to

E
2
p
er

g
ra
m
.

b
C
o
n
ce
n
tr
at
io
n
s
eq
u
iv
al
en
t
to

p
ro
cy
m
id
o
n
e
p
er

g
ra
m
.

Environmental Health Perspectives 117004-6 127(11) November 2019



T
a
b
le
3
.
C
o
n
ce
n
tr
at
io
n
s
o
f
B
P
A

an
d
P
B
s
an
d
h
o
rm

o
n
e-
li
k
e
ac
ti
v
it
ie
s
in

N
IC
U
it
em

s
re
la
te
d
to

d
er
m
al

ro
u
te
s
o
f
ex
p
o
su
re

(n
=
2
6
).

It
em

n
o
.

D
es
cr
ip
ti
o
n

E
D
C
co
n
te
n
t
(n
g
/g
)

H
o
rm

o
n
e-
li
k
e
ac
ti
v
it
y

B
P
A

M
eP

E
tP

P
rP

B
u
P

R
P
B
s

E
-S
cr
ee
n

P
A
L
M

as
sa
y

M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
E
2
eq
/g

(p
M
)a

P
ro
ce
q
=g

(m
M
)b

9
A

P
u
ls
e
o
x
im

et
er

ad
h
es
iv
e
se
n
so
r
I
(h
ar
d
se
ct
io
n
)

7
3
.6

1
3
.5

8
1
.9

1
5
.7

<
0
:0
3

—
1
1
.5

1
7
.1

<
0
:0
3

—
9
3
.4

1
,4
0
0
.0

N
D

9
B

P
u
ls
e
o
x
im

et
er

ad
h
es
iv
e
se
n
so
r
I
(a
d
h
es
iv
e
se
ct
io
n
)

4
.1

8
.4

8
.3

1
2
.3

<
0
:0
4

—
<
0
:0
4

—
<
0
:0
5

—
8
.3

3
4
6
.2

N
D

1
0

P
u
ls
e
o
x
im

et
er

ad
h
es
iv
e
se
n
so
r
II

2
.7

5
.1

1
2
.7

1
6
.8

0
.8

5
.1

<
0
:0
4

—
<
0
:0
5

—
1
3
.5

N
D

N
D

1
1

E
C
G
el
ec
tr
o
d
e

3
3
.1

9
.0

<
0
:0
5

—
0
.3

1
.1

<
0
:0
4

—
<
0
:0
5

—
0
.3

1
2
6
.2

N
D

1
2

L
ig
h
t
th
er
ap
y
p
ro
te
ct
io
n
g
la
ss
es

4
.6

9
.0

4
8
0
.7

4
.1

4
.2

1
2
.3

<
0
:0
4

—
<
0
:0
5

—
4
8
4
.9

1
9
7
.0

N
D

1
3

O
cc
lu
si
v
e
sk
in

w
ra
p

6
7
.0

1
0
.2

4
.3

8
.4

<
0
:0
4

—
<
0
:0
4

—
9
.2

1
2
.3

1
3
.5

N
D

N
D

1
4

S
te
ri
le
g
lo
v
es

1
4
0
.5

1
2
.3

1
9
.4

1
4
.0

<
0
:0
4

—
1
4
.3

1
2
.8

<
0
:0
5

—
3
3
.5

N
D

1
.8

1
5

N
o
n
st
er
il
e
g
lo
v
es

1
7
.8

1
0
.6

3
2
.4

2
.1

<
0
:0
4

—
1
3
.0

4
.4

<
0
:0
5

—
4
5
.4

N
D

2
.4

1
6

P
at
te
rn
ed

tr
an
sp
ar
en
t
fi
lm

d
re
ss
in
g

6
8
8
.1

1
1
.2

2
0
8
.0

4
.8

1
1
.7

6
.1

1
.4

1
2
.3

<
0
:0
5

—
2
2
1
.1

2
,1
0
7
.4

1
.0

1
7

W
h
it
e
h
y
p
o
al
le
rg
en
ic
p
ap
er

ta
p
e

1
.4

0
.9

1
3
.4

6
.2

2
.1

1
1
.1

<
0
:0
4

—
<
0
:0
5

—
1
5
.5

N
D

N
D

1
8

T
ex
ti
le
ta
p
e

6
.4

8
.0

1
0
8
.0

1
2
.7

3
.4

1
1
.7

<
0
:0
4

—
1
.6

1
3
.4

1
1
3
.0

1
7
1
.4

N
D

1
9

S
u
rg
ic
al
ta
p
e

0
.9

1
3
.4

7
.5

1
.4

<
0
:0
4

—
<
0
:0
4

—
<
0
:0
5

—
7
.5

N
D

N
D

2
0

S
el
f-
ad
h
es
iv
e
d
re
ss
in
g
p
ad

1
.2

8
.0

7
9
.1

1
3
.0

3
2
.8

1
3
.0

<
0
:0
4

—
<
0
:0
5

—
1
1
1
.9

N
D

N
D

2
1

T
ra
n
sp
ar
en
t
w
o
u
n
d
d
re
ss
in
g
w
it
h
p
ap
er

fr
am

e
4
.3

1
3
.9

4
0
.5

1
5
.0

7
.1

2
.2

<
0
:0
4

—
<
0
:0
5

—
4
7
.6

1
4
4
.0

N
D

2
2

T
ra
n
sp
ar
en
t
ad
h
es
iv
e
fi
lm

d
re
ss
in
g

1
.1

1
6
.6

6
.1

5
.4

<
0
:0
4

—
<
0
:0
4

—
<
0
:0
5

—
6
.1

N
D

N
D

2
3

H
y
d
ro
co
ll
o
id

tr
an
sp
ar
en
t
d
re
ss
in
g

2
6
.7

1
3
.1

1
.5

5
.4

<
0
:0
4

—
<
0
:0
4

—
<
0
:0
5

—
1
.5

N
D

N
D

2
4

W
h
it
e
co
h
es
iv
e
b
an
d
ag
e

2
.7

5
.9

5
.4

1
1
.5

0
.9

3
.6

<
0
:0
4

—
<
0
:0
5

—
6
.3

N
D

N
D

2
5

In
fa
n
t
fl
o
w
L
P
h
ea
d
g
ea
r

<
0
:0
7

—
4
.3

6
.7

<
0
:0
4

—
1
.7

1
0
.4

<
0
:0
5

—
6
.0

N
D

N
D

2
6

S
te
ri
le
n
o
n
-w

o
v
en

sw
ab
s

<
0
:0
7

—
1
.1

3
.6

<
0
:0
4

—
<
0
:0
4

—
<
0
:0
5

—
1
.1

N
D

N
D

2
7

N
o
n
st
er
il
e
n
o
n
-w

o
v
en

sw
ab
s

<
0
:0
7

—
3
.8

8
.0

<
0
:0
4

—
<
0
:0
4

—
<
0
:0
5

—
3
.8

N
D

N
D

2
8

A
b
so
rb
en
t
b
ed

u
n
d
er
p
ad

<
0
:0
7

—
0
.3

0
.1

<
0
:0
4

—
<
0
:0
4

—
<
0
:0
5

—
0
.3

N
D

N
D

2
9

X
S
-s
iz
ed

d
ia
p
er

<
0
:0
7

—
<
0
:0
5

—
<
0
:0
4

—
<
0
:0
4

—
<
0
:0
5

—
—

N
D

N
D

3
0

S
-s
iz
ed

d
ia
p
er

<
0
:0
7

—
1
.1

1
0
.6

<
0
:0
4

—
<
0
:0
4

—
<
0
:0
5

—
1
.1

N
D

N
D

3
1

C
h
lo
rh
ex
id
in
e

1
.1

1
1
.3

3
.2

1
6
.4

<
0
:1

—
<
0
:1

—
<
0
:1
5

—
3
.2

N
D

N
D

3
2

H
an
d
sa
n
it
iz
er

<
0
:3

—
<
0
:1
5

—
<
0
:1

—
<
0
:1

—
<
0
:1
5

—
—

N
D

N
D

3
3

T
al
cu
m

an
d
zi
n
c
o
x
id
e
cr
ea
m

<
0
:3

—
2
.6

2
.1

<
0
:1

—
0
.2

1
0
.1

1
.1

6
.1

3
.9

N
D

N
D

3
4

P
ro
te
o
ly
ti
c
en
zy
m
e
cr
ea
m

<
0
:3

—
1
.9

1
3
.4

<
0
:1

—
<
0
:1

—
1
0
.7

1
2
.1

1
2
.6

N
D

N
D

N
IC
U
it
em

s
[n

(%
)]

1
7
(6
5
.4
%
)

2
3
(8
8
.5
%
)

9
(3
4
.6
%
)

6
(2
3
.1
%
)

4
(1
5
.4
%
)

2
4
(9
2
.3
%
)

7
(2
6
.9
%
)

3
(1
1
.5
%
)

N
o
te
:
V
al
u
es

b
el
o
w

th
e
li
m
it
o
f
d
et
ec
ti
o
n
ar
e
re
p
re
se
n
te
d
b
y
th
e
sy
m
b
o
l
<
fo
ll
o
w
ed

b
y
th
e
li
m
it
o
f
d
et
ec
ti
o
n
.
—
,
n
o
t
ap
p
li
ca
b
le
;
B
P
A
,
b
is
p
h
en
o
l
A
;
B
u
P
,
b
u
ty
l-
p
ar
ab
en
;
C
V
,
co
ef
fi
ci
en
t
o
f
v
ar
ia
n
ce
;
E
2
,
es
tr
ad
io
l;
E
D
C
,
en
d
o
cr
in
e
d
is
ru
p
ti
n
g

ch
em

ic
al
;
E
C
G
,
el
ec
tr
o
ca
rd
io
g
ra
p
h
;
E
tP
,
et
h
y
l-
p
ar
ab
en
;
L
P
,
lo
w
p
re
ss
u
re
;
M
eP

,
m
et
h
y
l-
p
ar
ab
en
;
N
D
,
n
o
t
d
et
ec
te
d
;
N
IC
U
,
n
eo
n
at
al
in
te
n
si
v
e
ca
re

u
n
it
;
P
rP
,
p
ro
p
y
l-
p
ar
ab
en
;
S
,
sm

al
l;
X
S
,
ex
tr
a
sm

al
l;
P

P
B
s,
to
ta
l
co
n
ce
n
tr
at
io
n
s
o
f
p
ar
ab
en
s.

a
C
o
n
ce
n
tr
at
io
n
s
eq
u
iv
al
en
t
to

E
2
p
er

g
ra
m
.

b
C
o
n
ce
n
tr
at
io
n
s
eq
u
iv
al
en
t
to

p
ro
cy
m
id
o
n
e
p
er

g
ra
m
.

Environmental Health Perspectives 117004-7 127(11) November 2019



T
a
b
le
4
.
C
o
n
ce
n
tr
at
io
n
s
o
f
B
P
A

an
d
P
B
s
an
d
h
o
rm

o
n
e-
li
k
e
ac
ti
v
it
ie
s
in

N
IC
U
it
em

s
re
la
te
d
to

IV
/p
ar
en
te
ra
l
ro
u
te
s
o
f
ex
p
o
su
re

(n
=
1
4
).

It
em

n
o
.

D
es
cr
ip
ti
o
n

E
D
C
co
n
te
n
t
(n
g
/g
)

H
o
rm

o
n
e-
li
k
e
ac
ti
v
it
y

B
P
A

M
eP

E
tP

P
rP

B
u
P

R
P
B
s

E
-S
cr
ee
n

P
A
L
M

as
sa
y

M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
M
ea
n

C
V
(%

)
E
2
eq
/g

(p
M
)a

P
ro
ce
q
=g

(m
M
)b

3
5
A

W
in
g
ed

IV
ca
th
et
er

(d
is
in
fe
ct
in
g

ca
p
fo
r
n
ee
d
le
)

<
0
:1

—
2
1
.5

1
4
.0

<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
2
1
.5

N
D

N
D

3
5
B

W
in
g
ed

IV
ca
th
et
er

(c
o
lo
re
d
se
ct
io
n
)

<
0
:1

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
—

N
D

N
D

3
6

W
in
g
ed

IV
ca
th
et
er

<
0
:1

—
4
3
.8

8
.5

7
.0

1
0
.6

9
6
.9

1
4
.8

1
.8

1
.5

1
4
9
.5

3
0
0
.0

N
D

3
7

S
in
g
le
-l
u
m
en

u
m
b
il
ic
al
v
ei
n
ca
th
et
er

1
3
0
.4

1
3
.1

<
0
:0
3

—
1
0
.9

3
.6

<
0
:0
3

—
<
0
:0
3

—
1
0
.9

2
8
1
.0

N
D

3
8

D
o
u
b
le
-l
u
m
en

u
m
b
il
ic
al
v
ei
n
ca
th
et
er

4
9
.0

5
.9

<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
—

N
D

N
D

3
9

E
x
te
n
si
o
n
se
t
fo
r
IV

in
fu
si
o
n
sy
st
em

1
1
2
.7

4
.8

1
0
6
.4

5
.4

<
0
:0
3

—
1
9
.4

9
.3

<
0
:0
3

—
1
2
5
.8

1
9
2
.2

N
D

4
0

E
x
te
n
si
o
n
se
t
fo
r
IV

in
fu
si
o
n
sy
st
em

(l
ig
h
t
re
si
st
an
t)

2
9
.8

2
0
.2

<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
—

N
D

N
D

4
1
A

T
h
re
e-
w
ay

st
o
p
co
ck

(c
le
ar

se
ct
io
n
)

7
,0
5
2
.7

1
8
.2

1
0
.0

1
3
.1

1
.2

5
.9

<
0
:0
3

—
<
0
:0
3

—
1
1
.2

4
8
9
.8

5
.4

4
1
B

T
h
re
e-
w
ay

st
o
p
co
ck

(c
ap
)

<
0
:1

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
—

N
D

N
D

4
2

D
is
in
fe
ct
in
g
ca
p
fo
r
n
ee
d
le

5
.2

1
4
.0

1
7
.6

2
.8

<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
1
7
.6

N
D

N
D

4
3

H
y
p
o
d
er
m
ic
in
je
ct
io
n
n
ee
d
le
(p
la
st
ic
p
ro
te
ct
o
r)

6
.7

1
1
.4

1
2
.2

1
5
.7

<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
1
2
.2

N
D

N
D

4
4
A

S
y
ri
n
g
e

<
0
:1

—
4
.7

7
.3

<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
4
.7

N
D

N
D

4
4
B

S
y
ri
n
g
e
(p
lu
n
g
er
)

<
0
:1

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
<
0
:0
3

—
—

N
D

N
D

4
5

C
af
fe
in
e
p
er
fu
si
o
n
2
0
m
g
=
m
L
in
fa
n
t

<
0
:3

—
<
0
:1
5

—
<
0
:1

—
<
0
:1

—
0
.8

1
5
.7

0
.8

N
D

N
D

4
6

W
at
er

fo
r
in
je
ct
io
n
so
lv
en
t
fo
r
p
ar
en
te
ra
l
u
se

<
0
:3

—
<
0
:1
5

—
<
0
:1

—
<
0
:1

—
<
0
:1
5

—
—

N
D

N
D

4
7

0
.9
%

N
aC

l
so
lu
ti
o
n
fo
r
IV

fl
u
sh

(s
y
ri
n
g
e)

<
0
:3

—
5
.7

6
.7

2
.6

1
0
.2

<
0
:1

—
0
.8

9
.3

9
.1

N
D

N
D

4
8

0
.9
%

N
aC

l
so
lu
ti
o
n
fo
r
IV

fl
u
sh

(a
m
p
o
u
le
)

<
0
:3

—
3
.2

6
.1

<
0
:1

—
<
0
:1

—
<
0
:1
5

—
3
.2

N
D

N
D

N
IC
U
it
em

s
[n

(%
)]

7
(5
0
.0
%
)

9
(6
2
.3
%
)

4
(2
8
.6
%
)

2
(1
4
.3
%
)

3
(2
1
.4
%
)

1
1
(7
8
.6
%
)

4
(2
8
.6
%
)

1
(7
.1
%
)

N
o
te
:
V
al
u
es

b
el
o
w

th
e
li
m
it
o
f
d
et
ec
ti
o
n
ar
e
re
p
re
se
n
te
d
b
y
th
e
sy
m
b
o
l
<

fo
ll
o
w
ed

b
y
th
e
li
m
it
o
f
d
et
ec
ti
o
n
.
—
,
n
o
t
ap
p
li
ca
b
le
;
B
P
A
,
b
is
p
h
en
o
l
A
;
B
u
P
,
b
u
ty
l-
p
ar
ab
en
;
C
V
,
co
ef
fi
ci
en
t
o
f
v
ar
ia
n
ce
;
E
2
,
es
tr
ad
io
l;
E
D
C
,
en
d
o
cr
in
e
d
is
ru
p
ti
n
g

ch
em

ic
al
;
E
tP
,
et
h
y
l-
p
ar
ab
en
;
IV

,
in
tr
av
en
o
u
s;
M
eP

,
m
et
h
y
l-
p
ar
ab
en
;
N
aC

l,
so
d
iu
m

ch
lo
ri
d
e;
N
D
,
n
o
t
d
et
ec
te
d
;
N
IC
U
,
n
eo
n
at
al
in
te
n
si
v
e
ca
re

u
n
it
;
P
B
,
p
ar
ab
en
;
P
rP
,
p
ro
p
y
l-
p
ar
ab
en
;
P

P
B
s,
to
ta
l
co
n
ce
n
tr
at
io
n
s
o
f
p
ar
ab
en
s.

a
C
o
n
ce
n
tr
at
io
n
s
eq
u
iv
al
en
t
to

E
2
p
er

g
ra
m
.

b
C
o
n
ce
n
tr
at
io
n
s
eq
u
iv
al
en
t
to

p
ro
cy
m
id
o
n
e
p
er

g
ra
m
.

Environmental Health Perspectives 117004-8 127(11) November 2019



Oral Route of Exposure

BPA was found in five (62.5%) of the eight oral-use items at con-
centrations ranging up to 301:1 ng=g (Table 2). The highest BPA
concentration was recorded for the gastro-duodenal feeding tube
(301:1 ng=g), followed by the feeding sampling straw (107:7 ng=g).
PBs were detected in five (62.5%) of the oral-use items, with the
highest concentrations observed in the small dummy nipple
(90:8 ng=g) and gastro-duodenal feeding tube (73:8 ng=g). The
most frequently detected PB congener was MeP, with the highest
concentrations observed in the small dummy nipple (63:7 ng=g)
and gastro-duodenal feeding tube (64:8 ng=g), which were also pos-
itive for estrogenicity (2,403:8 pM E2eq=g and 193:9 pM E2eq=g,
respectively). The highest antiandrogen activity was recorded for
the small dummy nipple (9:8mM Proceq=g). The large dummy

leached detectable levels of BPA (0:12 ng=g) and the small
dummy exhibited anti-androgenic activity (0:03mM Proceq=g)
(see Table S1).

Dermal Route of Exposure

Table 3 displays the BPA and PB content and hormonal activity
of the NICU items in dermal contact with neonates. BPA was
detected in 17 (65.4%) of the 26 items at concentrations ranging
from 0.90 to 688:1 ng=g. The highest BPA concentration was in
patterned transparent film dressing (688:1 ng=g), followed by
sterile gloves (140:5 ng=g) and the hard section of the pulse ox-
imeter adhesive sensor I (73:6 ng=g).

Detectable concentrations of at least one PB congener were
found in 24 (92.3%) of the 26 items, and

P
PBs values ranged

Table 5. Concentrations of BPA and PBs and hormone-like activities in NICU items related to respiratory routes of exposure (n=4).

Item no. Description

EDC content (ng/g) Hormone-like activity

BPA MeP EtP PrP BuP

RPBs

E-Screen PALM assay

Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) E2eq/g (pM)a Proceq=g (mM)b

49 Endotracheal
tube

95.4 16.6 <0:03 — 58.6 14.0 5.6 11.1 7.9 10.2 72.1 148.1 ND

50 Closed suction
system

<0:1 — <0:03 — 8.4 7.3 <0:03 — <0:03 — 8.4 ND ND

51 Nasal cannula <0:1 — <0:03 — 76.2 3.6 18.1 9.8 22.3 19.3 116.6 ND ND
52 Nasal prong 33.9 18.4 <0:03 — <0:03 — 3.4 12.3 15.6 7.6 19.0 ND ND

NICU items
[n (%)]

2 (50.0%) 0 (0.0%) 3 (75.0%) 3 (75.0%) 6 (75.0%) 4 (100%) 1 (25.0%) 0 (0.0%)

Note: Values below the limit of detection are represented by the symbol < followed by the limit of detection. —, not applicable; BPA, bisphenol A; BuP, butyl-paraben; CV, coeffi-
cient of variance; E2, estradiol; EDC, endocrine disrupting chemical; EtP, ethyl-paraben; MeP, methyl-paraben; ND, not detected; NICU, neonatal intensive care unit; PB, paraben;
PrP, propyl-paraben;

P
PBs, total concentrations of parabens.

aConcentrations equivalent to E2 per gram.
bConcentrations equivalent to procymidone per gram.

Figure 1. Distribution profiles of the BPA and paraben content found in NICU items according to the main route of exposure. Bars represent the mean relative
concentration of each compound in items in contact with neonates via the same exposure route.
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from 0.30 to 484:9 ng=g. The most frequently detected PB was
MeP (88.5%), which showed the highest concentration among PBs
[mean± standard deviation ðSDÞ=47:0± 104:2 ng=g], followed
by EtP (34:6%; 7:9±10:7 ng=g). The highest MeP concentration
was found in light therapy protection glasses (480:7 ng=g), fol-
lowed by patterned transparent film dressing (208:0 ng=g), textile
tape (108:0 ng=g), the hard section of the pulse oximeter adhesive
sensor I (81:9 ng=g), and self-adhesive dressing pads (79:1 ng=g).

As in the case of BPA and PB concentrations, the highest es-
trogenic activity was found in patterned transparent film dressing,
followed by hard and adhesive sections of the pulse oximeter ad-
hesive sensor I, light therapy protection glasses, textile tape,
transparent wound dressing with paper frame, and electrocardio-
graph (ECG) electrodes. Anti-androgenic activity was detected
by the PALM assay in nonsterile and sterile gloves and in pat-
terned transparent film dressing, with values ranging from 1.0 to
2:4mM Proceq=g.

Intravenous and Parenteral Routes of Exposure

Table 4 displays the BPA and PB content and hormonal activity
of the NICU items related to the IV/parenteral exposure route.
BPA was detected in 7 (50.0%) of the 14 items. The highest BPA
concentration (among all 52 items in the study) was found in the
three-way stopcock (clear section) (7,052:7 ng=g), followed by
the single-lumen umbilical vein catheter (130:4 ng=g), IV infu-
sion system extension set (112:7 ng=g), and double-lumen um-
bilical vein catheter (49:0 ng=g). PBs were detected in 11 items
(78.6%), with the highest concentrations being 149:5 ng=g
(96:9 ng=g PrP) for the winged IV catheter (Item No. 36) and
125:8 ng=g (106:4 ng=g MeP) for the IV infusion system exten-
sion set. Detectable levels of PBs were also observed in some
liquid solutions, including 0.9% NaCl (in commercial syringe
or ampoule preparations)

In addition to the presence of BPA or PBs, estrogen-like
activity was detected in the clear section of the three-way stop-
cock (489:8 pM E2eq=g), the winged IV catheter (Item No. 36)
(300:0 pM E2eq=g), the single-lumen umbilical vein catheter
(281:0 pM E2eq=g), and the IV infusion system extension set
(192:2 pM E2eq=g). Anti-androgenic activity was observed in the
clear section of the three-way stopcock (5:4mMProceq=g). Both
the three-way stopcock and the single-lumen umbilical vein cathe-
ter leached detectable levels of BPA (4.7 and 0:9 ng=g, respec-
tively) and exhibited estrogenic activity (18.3 and 9:3 pM E2eq=g,
respectively) (see Table S1).

Inhalation Exposure Route

Table 5 displays the BPA and PB content and hormonal activity
of the four NICU items related to the inhalation route. BPA was
detected in two of these, at a concentration of 95:4 ng=g in the en-
dotracheal tube and 33:9 ng=g in the nasal prong. At least two PB
congeners were detected in each item, with

P
PBs ranging up to

116:6 ng=g (nasal cannula). The PB congener with the highest
concentration was BuP in the nasal prong and EtP in the remaining
three items. The endotracheal tube, which contained 95:4 ng=g
BPA and 72:1 ng=g

P
PBs, also showed estrogenic activity

(148:1 pM E2eq=g). No anti-androgenic activity was observed in
any of these items. Endotracheal tube samples were found to leach
EtP (0:87 ng=g) and PrP (0:43 ng=g), and the extracts exhibited es-
trogenic activity (7:28 pM E2eq=g) (see Table S1).

Discussion
This study reports, to our knowledge for the first time, the pres-
ence of BPA and PBs in materials in contact with newborns in
NICUs. It also presents the first evidence that the contents of

NICU materials exert hormonal activities. Thus, BPA was
detected in 59.6% of the 52 NICU items tested and PBs in 86.5%,
and estrogenic activity was observed in 26.9% of item extracts
and anti-androgenic activity in 9.6%. These findings indicate that
various NICU materials may act as potential sources of exposure
to BPA and PBs for the extremely vulnerable neonates admitted
to this type of unit.

Diet is the main route of BPA human exposure in the general
population. Although we did not assess nutritional samples
(breast milk or formula) in the present investigation, a previous
study revealed that nutritional intake might not be a crucial con-
tributor to urinary BPA concentrations in NICU newborns (Duty
et al. 2013). With regard to the oral intake of PBs, only limited
evidence has been published on the PB content of medication
administered in NICUs (Nellis et al. 2015). Interestingly, we
found that some medical devices related to the nutrition system
have detectable levels of BPA and PBs and show estrogenic and
anti-androgenic activities. In particular, we observed a high con-
centration of BPA and PBs in the gastro-duodenal feeding tube
and of BPA in the feeding sampling straw. Higher urinary BPA
concentrations were previously reported in NICU neonates who
required feeding-related medical devices (e.g., nasogastric tube)
in comparison with those who did not (Duty et al. 2013).
Estrogenic activity was also shown by two of the items related to
oral exposure. The highest estrogenic and anti-androgenic activ-
ities in any studied item were observed in extracts from the small
dummy used in the NICU, likely due not only to the BPA and PB
content but also to nontested EDCs such as DEHP, whose pres-
ence is suggested by the plasticity of the material. In this context,
authors using a water and MeOH migration technique found that
baby teethers leached BPA and PBs (Asimakopoulos et al. 2016;
Potouridis et al. 2016).

As in the case of adult patients, the skin of hospitalized neo-
nates is usually in direct contact with dressings, tapes, bandages,
electrodes, and wraps, among others. The epidermis of preterm
neonates is especially fragile due to incomplete maturation of the
skin barrier, exacerbating their susceptibility to chemical irrita-
tion and local or systemic infections (Eichenfield and Hardaway
1999; Oranges et al. 2015). Moreover, the incomplete develop-
ment of the stratum corneum can increase the permeability of
neonatal skin to topical agents (Oranges et al. 2015). In the pres-
ent study, some of the NICU items were identified as putative
sources of dermal exposure to BPA and PBs and included pat-
terned transparent film dressing, textile tapes, and light therapy
protection glasses, whose extracts also evidenced estrogenic or
anti-androgenic activity, as did extracts from pulse oximeter ad-
hesive sensor I, ECG electrodes, and sterile and nonsterile gloves.
The range of BPA concentrations in these dermal-contact items
(range <LOD–688:1 ng=g) is similar to that reported in infant
clothing (<2:21–111 ng=g) (Xue et al. 2017) and lower than that
observed in infant socks (186–13,300 ng=g) (Freire et al. 2019;
Xue et al. 2017). However, the dermal exposure of neonates to
these EDCs from NICU items is likely to be higher, given the
aforementioned immaturity of their skin.

Several IV/parenteral tubing items contained BPA and PBs
(e.g., three-way stopcocks, umbilical vein and winged catheters,
IV infusion system extension sets), and their extracts also showed
hormonal (estrogenic and/or anti-androgenic) activity. In this
regard, detectable amounts of BPA were reported to leach from
hemodialyzers (Haishima et al. 2001; Murakami et al. 2007), and
plasma BPA levels were lower in hemodialysis patients using
polynephron (BPA-free) versus conventional polysulfone dia-
lyzer membranes (Mas et al. 2018). Likewise, BPA concentra-
tions were increased after a single hemodialysis session in
patients with diabetes (Turgut et al. 2016) or uremia (Shintani

Environmental Health Perspectives 117004-10 127(11) November 2019



2001), and urinary BPA levels were significantly higher in
patients using BPA-free dialyzers in comparison with BPA-
containing dialyzers (Bosch-Panadero et al. 2016). Similar stud-
ies have reported increased serum DEHP levels in hemodialysis
patients (Wahl et al. 2004). We also found that BPA was leached
by the IV/parenteral tubing and accessories, and the eluted
extracts exhibited estrogenic activity.

With regard to the inhalation exposure route, high BPA and
PBs concentrations (>100 ng=g) were observed in endotracheal
tubes and nasal cannulas. In this line, Duty et al. (2013) found
significantly higher median BPA urinary concentrations in new-
borns who required a nasal cannula (40 lg=L vs. 26 lg=L) or
continuous positive airway pressure (38 lg=L vs. 13 lg=L) in
comparison with those who did not. The extract of endotracheal
tube assayed in the present study exhibited estrogenic activity,
a novel finding. Endotracheal tubes, nasal cannulas, and nasal
prongs were made of plasticized PVC, and it is known that
products made of plasticized PVC, polycarbonate and epoxy
resins may contain BPA (López-Cervantes and Paseiro-Losada
2003; Sun et al. 2001). Chiellini et al. (2011) reported detecta-
ble levels of DEHP in PVC endotracheal tubes.

Our findings reveal the widespread presence of hormonally
active chemicals in medical items used in NICUs and related to
inhalation, oral, dermal, and IV/parenteral routes. Given the
extreme vulnerability of these neonates, these findings are of
major concern. In adults, the toxicokinetics of BPA and PB
vary widely according to the exposure route (Søeborg et al.
2014), whereas the metabolism of BPA and PB in neonates
appears to be similar for all routes of exposure (Taylor et al.
2008). For instance, first-pass metabolism considerably reduces
the bioavailability of free BPA and PBs after oral exposure in
adults (Shin et al. 2019; Søeborg et al. 2014), the capacity for
phase II metabolism is slowly maturing in neonates and infants
(<3 months of age), increasing the bioavailability of free BPA
and PBs (Mulla et al. 2015; Nachman et al. 2014), which might
be even more pronounced in VLBW and LBW pre-term neo-
nates. In contrast, BPA and PBs are systemically bioavailable
after dermal or IV exposure, even in adults (SCENIHR 2015;
Søeborg et al. 2014). Furthermore, in the case of preterm neo-
nates, the absorption fraction of EDCs after dermal exposure is
likely to be higher than the range estimated for adults
(10–30%), given their increased skin permeability (SCENIHR
2015) and higher skin surface area-to-body weight and weight-
to-intake ratios (Guzeilan et al. 1992). Alongside the immatur-
ity of their xenobiotic metabolism capacity, this means that the
bioavailability of EDCs may be substantively greater in neo-
nates than in older children or adults for the same exposure
doses.

The European Union (EU) has banned the use of BPA in
baby bottles (EU 2011) and in materials in contact with foods
intended for infants and young children (EU 2018). The EU has
also set a maximum BPA migration limit of 0:1 mg=mL in toys
designed for use by children under 3 years of age or designed to
be placed in the mouth (EU 2017). With regard to PBs, the sole
restriction in EU legislation is that personal care products for
children under 3 years of age should carry a label warning against
their use in the diaper area (EU 2014). The evidence presented in
the present study indicates the need to regulate the presence of
BPA and PBs in materials commonly used in hospitals, especially
in NICUs. In this regard, SCENIHR (2015) recommended the
selection of medical devices that do not leach EDCs when possi-
ble. However, current EU regulations on the prohibition of BPA
and PBs do not include hospital materials in intimate contact
(oral and nonoral) with extremely vulnerable VLBW and LBW
neonates admitted to NICUs.

The EDC concentrations observed in plastic NICU items
should not be considered as leaching levels, although the leaching
of plastic items with high BPA/PB content or estrogenic/anti-
androgenic activity was further examined by using softer extrac-
tion methods that may be closer to physiological temperature and
pH conditions. Likewise, concentrations in textile and liquid/
semisolid products should not be interpreted as absorbed concen-
trations, and the variability in skin permeability (SCENIHR
2015) prevents estimation of the daily dermal exposure dose.
Another study limitation was the failure to measure other poten-
tial EDCs such as phthalates, although the presence or absence of
phthalates was indicated on the label of some items. We highlight
that no item indicated the presence or absence of BPA or PBs.
However, we cannot rule out the presence in these extracts of
other hormonally active compounds, including phthalates as well
as hitherto unidentified compounds with hormonal potency, or
the presence of mixtures of various compounds. Furthermore, the
possible effect of chemical mixtures, including additive, synergis-
tic, or antagonistic interactions, cannot be predicted from individ-
ual chemical contents. Of special interest in this regard was the
winged IV catheter (NICU Item 36) in the IV/parenteral route of
exposure, in which no BPA or PB was detected but a high level
of estrogenic activity was recorded. It should be borne in mind
that this study was designed to explore the presence of these com-
pounds in a range of NICU medical devices but not to provide
exhaustive analyses of all materials used in NICUs or to compare
products among different suppliers. Finally, the results cannot be
generalized to NICUs worldwide, given potential differences in
hospital protocols and procedures. However, the findings of our
exploratory investigation have revealed the widespread presence
of hormonally active chemicals in several NICU items, indicating
the need for careful examination by competent authorities of all
materials and devices in contact with NICU neonates, assessing
not only their EDC content and leaching rates but also their bio-
logical activity.

Neonates in NICUs may be potentially exposed to hormonally
active chemicals from multiple sources. There is a need for fur-
ther research to verify these findings, to support the development
of preventive measures, and to ensure that health care professio-
nals are aware of the EDC content/leaching of materials and devi-
ces. It is also crucial to include data on the utilization of medical
devices in clinical–epidemiological studies on adverse effects in
NICU neonates.

Conclusions
We contribute the first report, to our best knowledge, of direct
measurements of the BPA/PB content and hormone-like activity
of medical devices and products widely used in NICUs and in
prolonged intimate contact with newborns. Our findings suggest
that NICU newborns may be exposed to BPA and PBs via inhala-
tion, oral, dermal, and IV/parenteral routes, with the possibility
that other hospitalized infants may be similarly exposed. There is
an urgent need to investigate the potential short-, mid- and long-
term implications of our findings for the health of these highly
vulnerable neonates.
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