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Abstract

Tsetse flies (Glossina spp.) are the cyclical vectors of Trypanosoma spp., which are unicellular parasites responsible for
multiple diseases, including nagana in livestock and sleeping sickness in humans in Africa. Glossina species, including
Glossina morsitans morsitans (Gmm), for which the Whole Genome Sequence (WGS) is now available, have established
symbiotic associations with three endosymbionts: Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis
(Wolbachia). The presence of Wolbachia in both natural and laboratory populations of Glossina species, including the
presence of horizontal gene transfer (HGT) events in a laboratory colony of Gmm, has already been shown. We herein report
on the draft genome sequence of the cytoplasmic Wolbachia endosymbiont (cytWol) associated with Gmm. By in silico and
molecular and cytogenetic analysis, we discovered and validated the presence of multiple insertions of Wolbachia (chrWol)
in the host Gmm genome. We identified at least two large insertions of chrWol, 527,507 and 484,123 bp in size, from Gmm
WGS data. Southern hybridizations confirmed the presence of Wolbachia insertions in Gmm genome, and FISH revealed
multiple insertions located on the two sex chromosomes (X and Y), as well as on the supernumerary B-chromosomes. We
compare the chrWol insertions to the cytWol draft genome in an attempt to clarify the evolutionary history of the HGT
events. We discuss our findings in light of the evolution of Wolbachia infections in the tsetse fly and their potential impacts
on the control of tsetse populations and trypanosomiasis.
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Introduction

The genus Wolbachia encompasses intracellular maternally

inherited Gram-negative bacteria estimated to infect over 40%

of insect species, in addition to filarial nematodes, crustaceans, and

arachnids [1,2]. Wolbachia interactions with its host can have

diverse outcomes that range from mutualistic to pathogenic or

reproductive parasitism [3]. In arthropods, Wolbachia alterations to

host reproduction include parthenogenesis induction, male killing,

feminization of genetic males, and cytoplasmic incompatibility (CI)

[1,4]. In its simplest form, CI occurs when a Wolbachia infected

male mates with an uninfected female, causing developmental

arrest of the embryo. In contrast, Wolbachia infected females can

mate with either an uninfected male or a male infected with the

same Wolbachia strain, and produce viable Wolbachia infected

offspring. It has been suggested that the reproductive advantage

afforded by the Wolbachia induced CI mechanism may permit the

rapid spread of desirable host phenotypes into natural populations

as a novel disease control approach [4–7].

A number of Wolbachia whole genome sequence (WGS) data are

available to date and at least ten more genomes are currently being

sequenced from a diverse set of hosts [8–15]. The majority of the

PLOS Neglected Tropical Diseases | www.plosntds.org 1 April 2014 | Volume 8 | Issue 4 | e2728

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0002728&domain=pdf


Wolbachia strains have genomes that range from 1.08 to 1.7Mb in

size [12]. Although most Rickettsiales have small genomes,

Wolbachia sets a different pace by carrying an extremely high

number of mobile and repetitive elements [4,16,17]. In addition, a

number of Ecdysozoan genomes have been reported to contain

chromosomal insertions originating from Wolbachia, including the

mosquito Aedes aegypti [18,19], the longhorn beetle Monochamus

alternatus [20], filarial nematodes of the genera Onchocerca, Brugia,

and Dirofilaria [21,22], parasitoid wasps of the genus Nasonia [22],

the fruit fly Drosophila ananassae [22], the pea aphid Acythosiphon

pisum [23], and the bean beetle Callosobruchus chinensis [23,24].

Horizontal gene transfer (HGT) events in prokaryotes are rather

common, and represent a way for bacteria to acquire novel

features that enable them to adapt to different environments and

to reorganize their genome [25–27]. In unicellular eukaryotes,

gene transfer events are also relatively common [28]. Since many

unicellular eukaryotes are phagotrophic on bacteria and other

micro-organisms, they are constantly exposed to prokaryotic

DNA, which may predispose them to incorporate foreign genetic

material into their genomes [29]. By contrast, in multi-cellular

organisms HGTs are rare [30]. It is likely that the localization of

Wolbachia within the host germ-line cells [31] may have enabled

the transfer of its genetic material to the host chromosomes.

Tsetse flies are the exclusive vectors of Human African

Trypanosomes (HAT), also known as sleeping sickness, and of

the livestock disease Nagana in sub-Saharan Africa. These diseases

are caused by different members of the kinetoplastid protozoan

parasites, Trypanosoma spp. The World Health Organization

(WHO) has estimated that 60 million people in Africa live in

tsetse infested areas, and are at risk of contracting sleeping sickness

[32]. Disease control in the mammalian host is complicated due to

the lack of vaccines, cheap and effective therapeutic treatments,

and simple accurate diagnostic tools [33,34].

Tsetse flies also harbor multiple symbiotic microbes, which

display different levels of integration with their host. The obligate

mutualist genus Wigglesworthia provides dietary supplements to

support host fecundity and is also necessary during larval

development for the adult immune maturation processes [35–

38]. The facultative symbiont genus Sodalis is present in some

individuals in natural populations and may play a role in tsetse’s

trypanosome transmission ability (vector competence) [38,39].

The ability to cultivate Sodalis in vitro and transform and repopulate

tsetse with modified Sodalis has led to a potential paratransgenic

control strategy to modify tsetse’s vector competence by expressing

trypanocidal molecules in recSodalis [40–44]. Natural populations

of many tsetse species also harbor a third symbiont, which belongs

to the genus Wolbachia. Recent surveys indicate that Wolbachia

infection prevalence in natural populations of different tsetse

species can vary considerably, with some populations having near

100% infection prevalence [41,45]. We recently demonstrated that

Wolbachia infections in Glossina morsitans morsitans (Gmm) induce CI

in the laboratory and confer a reproductive advantage to infected

females [41]. Further modeling of CI demonstrated the potential

use of Wolbachia to drive a desirable host phenotype into a natural

tsetse population [41,46]. Thus, it is suggested that tsetse carrying

modified Sodalis expressing antiparasitic molecules in their midgut

can be used to replace their wild parasite-susceptible counterparts

through Wolbachia-mediated CI. One population control method

that has been successful for tsetse, and currently being imple-

mented in Africa, is the sterile insect technique (SIT), where males

rendered sterile through irradiation are released to mate with wild

females and suppress their fecundity [41,47]. A promising

alternative/complementary approach to SIT could be the use of

the incompatible insect technique (IIT), which relies on Wolbachia-

induced sterility in the released males instead of irradiation

[48,49].

In this paper, which is being submitted as a satellite to the

manuscript describing the WGS of the tsetse species Gmm, we

report on the draft genome sequence of its associated cytoplasmic

Wolbachia endosymbiont (cytWol). Moreover, we mined the WGS

of Gmm and report on the presence of multiple extensive

chromosomal insertions of Wolbachia (chrWol) in the host genome.

These results confirmed our previous PCR-amplification based

data suggesting the presence of HGT event(s) between Wolbachia

and Gmm [45]. The HGT events were validated by Southern blot

and Fluorescent in situ Hybridization (FISH) analyses on Gmm

chromosomes. We compared the chrWol insertions discovered in

the assembled Gmm genome to cytWol to understand the evolution

of HGT events, and discuss our findings in light of the evolution of

Wolbachia infections in tsetse. Finally, we analyzed the presence of

Wolbachia HGT events in several Gmm natural populations, and

discuss the potential to harness Wolbachia effects for the control of

tsetse-transmitted diseases.

Materials and Methods

Cytoplasmic Wolbachia source DNA and sequencing
For the genome sequencing of the naturally infected Wolbachia

strain of G. m. morsitans (wGmm), approximately 250 ovaries were

dissected from adult females from the Gmm colony maintained in

the Yale University insectary. DNA was prepared using Qiagen

DNeasy kit (Qiagen, Inc., Valencia, CA). The complete genome

sequence was determined using whole-genome shotgun pyrose-

quencing using the Roche 454 GS sequencer FLX Titanium

system (454 Life Sciences, Branford, CT, USA).

In order to improve the wGmm draft genome, Illumina read

libraries from the tsetse genome assembly were used. These were

obtained from: (a) a pool of five tsetse flies. and (b) the first larval

progeny of tetracycline-treated female. Two sets of Illumina reads

were used: a PCR-free small fragment (,300 bp) library and Hi-

Seq mate-pair libraries with an insert of approximately 1.6 kb.

Cytoplasmic Wolbachia assembly and annotation
The tsetse ovary DNA used for wGmm sequencing contained a

mixture of host genetic material, as well as cytoplasmic (cyt) and

Author Summary

African trypanosomes are transmitted to man and animals
by tsetse fly, a blood sucking insect. Tsetse flies include all
Glossina species with the genome of Glossina morsitans
morsitans (Gmm) being sequenced under the International
Glossina Genome Initiative. The endosymbionts Wiggle-
sworthia glossinidia, Sodalis glossinidius and Wolbachia
pipientis (Wolbachia) have been found to establish symbi-
otic associations with Gmm. Wolbachia is known to be
present in natural and laboratory populations of Glossina
species. In this study we report the genome sequence of
the Wolbachia strain that is associated with Gmm. With the
aid of in silico and molecular and cytogenetic analyses,
multiple insertions of the Wolbachia genome were
revealed and confirmed in Gmm chromosome. Compari-
son of the cytoplasmic Wolbachia draft genome and the
chromosomal insertions enabled us to infer the evolution-
ary history of the Wolbachia horizontal transfer events.
These findings are discussed in relation to their impact on
the development of Wolbachia-based strategies for the
control of tsetse flies and trypanosomiasis.
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chromosomal (chr) Wolbachia DNA. A customized informatics

pipeline was developed to computationally distinguish between

sequence reads. An initial assembly was performed using MIRA

[50]. First, all host sequences were removed by mapping the 454

reads to the Wolbachia reference genomes (wMel, wRi, wPip and

wBm). The filtered sequence reads contained chromosomal and

cytoplasmic reads. The chromosomal reads were further removed

using MIRA by mapping the filtered sequences to the chromo-

somal Wolbachia contigs (99% cut-off). The same procedure was

followed for the Illumina data. The resulting 454 and Illumina

reads were de novo assembled using MIRA. This initial assembly

was subsequently improved using approaches described in the

PAGIT protocol [51]. In brief, the contigs were aligned to the

wMel genome using ABACAS [52], creating one large scaffold

that consisted of the contigs successfully mapped to the wMel

genome and a set of contigs that did not map. An attempt was

made to close the gaps in the large scaffold using IMAGE [53]

with the PCR-free small fragment library. After gap closing, the

large scaffold was reduced once more to a set of contigs by

breaking it around any of the unclosed gaps. This is because there

are usually many genome rearrangements between different

Wolbachia strains, and we would therefore expect a number of

rearrangements to exist between the wMel and wGmm genomes.

Breaking the scaffold makes allowance for these gaps. Finally,

scaffolding was then performed on this reduced set of contigs using

SCARPA [54] with the Hi-Seq mate-pair libraries. The statistics

for the assembly at each stage of the process are given in Table S1.

The genome was annotated with XBASE and RAST [55,56],

followed by manual curation. Putative protein-encoding genes

were identified using GLIMMER [57] and tRNA by tRNAscan-

SE [58]. Predicted proteins were examined to detect frame-shifts

or premature stop codons to identify pseudogenes using ARTE-

MIS [59]. Those for which the frame-shift or premature stops

were of high quality by examining re-mapped reads in these

regions were annotated as ‘‘authentic’’ mutations. This Whole

Genome Shotgun project has been deposited at DDBJ/EMBL/

GenBank under the accession AWUH00000000. The version

described in this paper is version AWUH01000000.

Chromosomal Wolbachia assembly and annotation
The Sanger and 454 reads used in the tsetse genome assembly

were obtained from flies treated with tetracycline as described

previously [41]; therefore, these reads did not contain cytWol

sequences. As mentioned above, Wolbachia specific sequences were

filtered out from WGS reads of each sequencing technology with

MIRA [50] using the complete genomes of wMel (AE017196), wRi

(CP001391), and wBm (AE017321) as reference sequences. We

obtained 5,306 (Sanger), and 10,978 (454) Wolbachia-specific

sequences respectively. All the filtered putative Wolbachia-specific

sequences were further examined using blast and a custom made

Wolbachia database.

ChrWol-specific sequences were assembled with MIRA and

AMOS [50,60] using as a reference sequence the wGmm draft

genome. The statistics for the two chrWol assemblies are as follows:

N50 2970, mean contig length 1261.97, longest contig 15053, total

length 527,504 bp for insertion A, while for insertion B N50 2791,

mean contig length 1092.82, and total length 484,123. Genes were

identified with Glimmer [61], followed by a round of manual

curation using Blastn [62] and MegaBlast [62] against the non-

redundant and custom made Wolbachia databases. The predicted

CDSs were translated and used to search the NCBI non-

redundant database, KEGG, and COG databases. The tRNAS-

can-SE tool [58] was used to identify tRNA genes.

Phylogenetic analyses
Phylogenetic analyses were performed using Maximum-Likeli-

hood (ML) and Neighbor-Joining (NJ) estimation for a concate-

nated set of six phage genes from wGmm, wRi, wMel and wPip.
The genes used for the phylogeny included HK97 family phage major

capsid protein (wGmm_0882, WD_0458, WRi_002750, WP0102),

phage integrase family site-specific recombinase (wGmm_0004, WD_1148,

WRi_009900, WP0980), phage SPO1 DNA polymerase-related protein
(wGmm_0674, WD_0164, WRi_000900, WP0922), prophage

LambdaW5 baseplate assembly protein W (wGmm_0971, WD_0640,

WRi_005480, WP0303), prophage LambdaW1, baseplate assembly

protein J (wGmm_0970, WD_0639, WRi_010130, WP0302) and

a prophage LambdaW1, site-specific recombinase resolvase protein

(wGmm_0960, WD_0634, WRi_005400, WP0342).

In addition, a concatenated set of ten genes (DNA-directed RNA

polymerase, DNA polymerase III (alpha subunit), DNA gyrase B, translation
elongation factor G, aspartyl-tRNA synthetase, CTP synthase, glutamyl-

tRNA(Gln) amidotransferase B, GTP-binding protein, cell division protein
FtsZ, fructose-bisphosphate aldolase) from the identified Gmm chromo-

somal insertions, wGmm, wRi, wMel, wPip, and wBm were used.

All sequences were aligned using MUSCLE [63] and ClustalW

[64] as implemented in Geneious 5.4 [65], and adjusted manually.

ML and NJ trees were constructed using MEGA 5.0 [66] with

gamma distributed rates with 1000 bootstrap replications and the

method of Tamura-Nei as genetic distance model [67].

Southern blot hybridization analyses
To determine the number of chromosomal insertions, genomic

DNA from tetracycline-treated Gmm females and normal Gmm

individuals were restricted with HindIII endonuclease, electropho-
resed on 1% agarose gel in 16TBE buffer, and transferred to a

positively charged nylon membrane according to Southern

protocol [68]. The membrane was hybridized at 55uC with

350 ng of a 569 bp probe corresponding to part of the wsp gene

labeled with the Gene Images Alkphos Direct labeling system (GE

Healthcare, Little Chalfont, UK) using the random primer method

following manufacturer protocols. Signal detection was performed

using CDP-star followed by exposure to autoradiographic film (X-

OMAT AR, Kodak). The absence of cytWol from the tetracycline-

treated Gmm DNA was confirmed by a PCR assay, which resulted

in only a single 16S rRNA amplification product originating from

the chromosomal insertions [45].

FISH chromosomal preparations and hybridization
Mitotic chromosome spreads were obtained from freshly

deposited larvae from the Slovakia Academy of Sciences Institute

of Zoology tsetse laboratory Gmm strain. Briefly, larval nerve

ganglia were incubated on a slide in 100 ml 1% sodium citrate for

10 min at room temperature, and sodium citrate was replaced

with methanol-acetic acid (3:1 solution) for 4 min. The tissue was

disrupted by pipetting in 100 ml 60% acetic acid for fixation and

dropped onto clean slides heated on a hot plate at 70uC until

acetic acid evaporation. After dehydration in 80% ethanol, slides

were stored at 220uC for at least 2 weeks.

For in situ hybridization experiments, multiple probes specific

for Wolbachia 16S rRNA, fbpA and wsp genes were amplified from

the Slovakian strain DNA [45,69]. To generate the labeled probes,

1 mg of DNA resuspended in 16 ml ddH2O was denatured by

boiling for 10 min. 4 ml of labeling mix (Biotin High Prime kit;

Roche, Basel, Switzerland) were added and the reaction was

incubated overnight at 37uC. After the reaction was stopped,

ddH2O (5 ml), 206SSC buffer (25 ml) and formamide (50 ml) were

added and 25 ml of denatured probe was placed on each pre-

treated slide. The hybridization was performed at 37uC overnight

Horizontal Gene Transfer Events in Tse-tse Flies
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in a humid chamber and detection of hybridization signals was

performed using the Vectastain ABC elite kit (Vector Laborato-

ries, Burlingame, CA, USA) and Alexa Fluor 594 Tyramide

(Invitrogen). Chromosomes were DAPI stained and the slides were

mounted using the VECTASHIELD mounting medium (Vector

Laboratories). Chromosomes were screened under an epifluores-

cence Zeiss Axioplan microscope and images were captured using

an Olympus DP70 digital camera. For the localization of signals

on mitotic chromosomes the karyotype description of Willhoeft

[69,70] was adopted.

Analysis of HGT fragments in Gmm genome via PCR and
sequencing
Natural samples of Gmm used to examine HGT fragments

originated from four populations collected in Zambia, Zimbabwe

and Tanzania (Table 1). DNA was isolated from adult flies stored

in EtOH using the Qiagen DNeasy kit (Qiagen, Valencia, CA)

following the manufacturers’ instructions and stored at 220uC.

The aposymbiotic (Wolbachia-free) Gmm line [41] was used as a

control. For detection of Wolbachia, a PCR assay that amplified a

438 bp 16S rRNA fragment was used with the specific primer set

wspecF and wspecR [71]. For input DNA control, a 377 bp

fragment of the mitochondrial 12S rRNA gene was amplified with

the primer set 12SCFR and 12SCRR [72]. The PCR amplifica-

tion protocol was 10 min at 95uC, 35 cycles of 30 sec at 95uC,

30 sec at 54uC and 1 min at 72uC, and 10 min at 72uC.

The identification of the Wolbachia strain infections was based

on MLST (gatB, coxA, hcpA, fbpA and ftsZ) and wsp-based

genotyping approaches [45,69]. PCR reactions were performed

using the following program: 5 min of denaturation at 95uC,

followed by 35 cycles of 30 sec at 95uC, 30 sec at the appropriate

temperature for each primer pair (52uC for ftsZ, 54uC for gatB,

55uC for coxA, 56uC for hcpA, 58uC for fbpA and wsp) and 1 min at

72uC. All reactions were followed by a final extension step of

10 min at 72uC. Both strands of the products were sequenced

using the respective primers. In addition, PCR products of 16S
rRNA, wsp and MLST genes from the Gmm populations analyzed

were cloned in pGEM-T Easy Vector System, and PCR products

from several clones generated by the primers T7 and SP6 were

sequenced in both directions using the BigDye Terminator v3.1

Cycle Sequencing Kit (PE Applied Biosystems) and were analysed

using an ABI PRISM 310 Genetic Analyzer (PE Applied

Biosystems). All Wolbachia gene sequences were manually edited

with SeqManII by DNAStar and aligned using MUSCLE [63], as

implemented in Geneious 5.4 [65], and adjusted manually.

Recovery of Wolbachia reads from RNA-seq data sets
To determine if genes from the chromosomal insertions were

potentially expressed in locations other than the gonotrophic

tissues, we utilized mapping of Illumina datasets from other

studies, that included transcriptome reads from somatic tissues

[73–75]. Reads were mapped to the chromosomal insertions using

CLC Genomics Workbench (CLC Bio, Cambridge, MA) allowing

no mismatches per reads, a maximum of 10 hits per read and 80%

of the gene must match at 95%. Predicted open reading frames

(ORF) from the insertions were extracted and the following criteria

were utilized to determine the possibility of expression: 1) at least

25 reads were recovered from the ORF and 2) those represented

had coverage of over 85% of the ORF. This filtering approach

excluded genes with a high number of mapped reads that were

only present in small limited sections of the ORFs. These sections

with high read numbers mapping but low coverage could be where

sequence similarity between Gmm, Wigglesworthia or Sodalis is high

enough to yield mapping to the chromosomal insertions.

Results

Cytoplasmic wGmm genome features
The draft genome of cytoplasmic wGmm contains 201 contigs of

1,019,687 bp, comprised of 800 putative functional coding

sequences (CDS) and 16 pseudogenes (Figure 1 and Table 2).

The GC content of wGmm is 35.2%, in the range observed for the

other sequenced Wolbachia genomes (Table 2). Although, the

wGmm genome is not complete, based on comparison of the

identified contigs, it is most similar to the two Wolbachia strains

associated with Drosophila melanogaster and D. simulans, wMel and

wRi, respectively (Table S2). It is more distantly related to the

genomes of the Wolbachia strains associated with Culex pipiens and

Brugia malayi, wPip and wBm, respectively (Table S2). The majority

of the regions and genes missing from the wGmm genome relative

to the wMel and wRi genomes encode phage, ankyrin and

hypothetical proteins (Tables S3 and S4).

Repetitive and mobile DNA. One interesting feature of

Wolbachia genomes is the presence of high numbers of genes

encoding proteins containing ankyrin repeat domains (ANK),

which are thought to play an important role in host-symbiont

interactions, the establishment of symbiosis and the induction of

reproductive phenotypes [76]. In comparison to the closely related

wMel and wRi genomes, which contain 23 and 35 such genes

respectively, the draft genome of wGmm has only 10 genes

encoding proteins with one or more ANK repeat domains

exhibiting the highest sequence identity with wMel, wRi, and

wPip (Table 3).

An additional feature of the Wolbachia genomes is the presence

of a high number of repeat sequences, IS elements and prophages.

However, the draft wGmm genome contains a much reduced

number of repeat elements, 1.2% compared to 8.9% in wMel and

22.1% in wRi, respectively (Table 2). This is could be due to

assembly issues in the draft wGmm assembly i.e. collapsed or

unassembled repeats. The wGmm contains only 10 IS elements

made up of the following families: IS3, IS5, and ISwPi6 (Table 4).

Only 14 phage related genes (partial or putatively protein

encoding genes) were discovered in the wGmm genome, a

relatively small number when compared with wMel, wRi, and

wPip. Phylogenetic analysis based on six concatenated phage genes

suggested that the wGmm phage genes are more closely related to

the wMel and wRi than the wPip corresponding phage (Figure S1).

General comparison with other Wolbachia

genomes. Comparisons of wGmm, wMel, wRi, and wBm

suggest that a high degree of rearrangement has occurred in the

multiple genomes. There are many blocks of genes that share co-

linearity with wRi, wMel and wBm. While several of the genomes

have undergone extensive rearrangements, the co-linear blocks are

most likely maintained due to their important biological functions

and co-transcription. An example that has already been discussed

Table 1. Identity of analyzed G. m. morsitans samples.

Code

Country (Area,

Collection Date)

Number of analyzed

individuals

cytWol

present

12.3A Zambia (MFWE, Eastern
Zambia, 2007)

43 41

30.9D Zimbabwe (Rukomeshi, 2006) 50 42

32.3D Zimbabwe (Makuti, 2006) 32 28

34.7G Tanzania (Ruma, 2005) 44 35

doi:10.1371/journal.pntd.0002728.t001
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in the literature [10,77] is the type IV secretion system (T4SS), for

which the gene order function is also conserved in wGmm (Figure

S2).

Chromosomal Wolbachia features
Both PCR-based evidence from Wolbachia infected tsetse flies,

and analysis of the Gmm annotated genome data indicated the

presence of Wolbachia gene fragments inserted in the host genome.

We mined the final assembly of the Gmm host genome and were

able to identify 261 contigs that carried chrWol DNA sequences.

Based on nucleotide diversity, close examination of the 261 contigs

indicated that these represented at least three different events,

which we refer to as insertions A, B and C. Manual editing and

implementation of the AMOS snps script enabled the separation

of the contigs into different insertions, with insertions A and B

being the largest in size. Figure 2 shows the mapping of these two

insertions on the wGmm reference genome. The observed pattern

suggests that at least two large Wolbachia genome segments of

527,507 and 484,123 bps have been integrated into the Gmm

chromosomes indicating that at least 51.7% and 47.5.% of the

draft Wolbachia genome were transferred to the host nuclear

genome. Sequence analysis of insertion A predicted 197 putative

functional coding sequences, 148 pseudogenes, and 15 tRNAs.

Remnants of 163 pseudogenes were discovered that are greater

than 100 bp in size and that have either partially been integrated

into the host genome, or only represent part of the pseudogene.

For insertion B, sequencing analysis revealed the presence of 159

putative functional coding sequences, 148 pseudogenes and 13

tRNAs. In insertion B, 157 remnants of pseudogenes were also

identified. Thus, on average more than 60% of the genes

transferred to the tsetse nuclear genome have been pseudogenized.

The average length of the putative functional coding sequences is

slightly smaller than wMel, wRi and the cytoplasmic wGmm at

690 bp for insertion A and 677 bp for insertion B (Table S4). The

GC% content for insertion A and B is 35.1%. Comparison

between the chromosomal insertions A and B and the wGmm

draft genome using Blastn and lastz indicated that: (a) the two

insertions are very similar to each other (Figure S4) and (b) at least

four genes, three hypothetical proteins and hemK are present in the

chromosomal insertions but not in the cytoplasmic Wolbachia

genome. The sequence identity between chromosomal and

cytoplasmic genes and phylogenetic analysis based on ten

concatenated genes clearly suggests that the chromosomal

insertions A and B are closely related to the cytoplasmic wGmm

genome (Table 5 and Figure S3). In more detail, comparison of the

sequence identity in eleven chromosomal genes indicates that the

Figure 1. Circular map of the cytoplasmic wGmm genome. The outermost circle represents the scale in Kbp. Contigs of the draft genome are
presented as boxes and they have been randomly ordered into a single circle for presentation purposes. In the second and fourth circle CDS in the
two strands are presented. In the third and fifth circle the position of the tRNAs are presented. In the sixth and seventh circle CDSs identified for the
wGmm genome are colored according to the Clusters of Orthologous Groups (COG) categories and represented as lines and boxes.
doi:10.1371/journal.pntd.0002728.g001
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majority of them exhibit a high sequence identity with the wGmm

sequences (Table 5). The third Wolbachia HGT segment, insertion

C, is only 2,089 bp in size and sequence analysis predicted the

presence of only six pseudogenes.

A number of different types of mutations were identified in

insertions A and B present in the host nuclear genome, and these

shed light on the pseudogenization process. Our analysis suggests

that more than 80% of the mutations that accumulated in the

putative functional coding sequences represent single nucleotide

polymorphisms (SNPs) (Figure 3). The majority of the genes that

have been pseudogenized accumulated mutations that consist of

nucleotide polymorphisms with deletions (NPD) and NPs. In both

insertions, genes that have been pseudogenized contain mutations

that combine NPs and deletions (NPDs) are more than those

pseudogenized by NPs (Figure 3). In addition, we identified two

additional types of mutations, NPs with insertions and NPs with

deletions and insertions, associated with both chromosomal

Wolbachia insertions but to a much lesser degree. A list of partial

and full genes corresponding to the chrWol insertions is available

in Tables S6, S7 and S8.

Expression of chromosomal sequences
Based on our results, there were very few ORFs that met our

criteria for expression from chromosomal insertions. In general,

there were multiple ORFs that had high number of mapped reads

(.100), but in nearly all cases the coverage of the mapping was

below 30% indicating that these may represent reads from another

symbiont or tsetse transcripts. Results were similar for the three

transcriptomes analyzed from heads, salivary glands and the

bacteriome. However, three putative ORFs satisfied our criteria:

serB, ccmB and a degenerate transposase located at both insertions

(102636-102894 for insertion A and 97255-97523 for insertion B).

Table 2. wGmm genome features and comparisons with other sequenced Wolbachia genomes.

Host Glossina morsitans Drosophila melanogaster Drosophila simulans Brugia malayi Culex pipiens

Wolbachia wGmm wMel wRi wBm wPip

Genome size 1,019,687 1,267,782 1,445,873 1,080,084 1,482,355

G + C content (%) 35.2 35.2 35.2 34 34.2

% coding DNA 64.6 81 77.7 67.4 82

Predicted functional
protein-coding genes

800 1,195 1,150 805 1,275

Pseudogenes 16 74 114 98 110

IS elements 10 32 67 33 62

IS – Mobile elements
(% of genome)

1.2 8.9 22.1 5.4 7.1

Genes containing ankyrin
repeats

10 23 35 5 60

Phage and prophage genes 14 38 13 ? 118

Phage – prophage regions Not Known 3 (26WO-A and 16WO-B) 4(16WO-A, 26WO-B,
16WO-C)

0 prophage 5 (56WO-B)

tRNA 34 34 34 34 34

23s rRNA 1 1 1 1 1

16s rRNA 1 1 1 1 1

5s rRNA 1 1 1 1 1

doi:10.1371/journal.pntd.0002728.t002

Table 3. Ankyrin-domain containing proteins encoded by the wGmm genome.

Locus Annotation Size (bp) Contig number Present (highest homology first)

wGmm 0356 ankyrin repeat-containing prophage LambdaW1 1968 42 wPip, wMel, wRi

wGmm 0372 ankyrin repeat-containing protein 1245 44 wMel, wRi

wGmm 0536 ankyrin repeat containing protein 867 72 wMel, wRi

wGmm 0561 ankyrin repeat-containing protein 255 76 wRi, wMel

wGmm 0573 ankyrin repeat-containing protein 2082 78 wRi, wMel

wGmm 0691 ankyrin repeat-containing protein 807 99 wMel, wRi

wGmm 0870 ankyrin repeat-containing protein 1191 139 wMel, wRi, wPip

wGmm 0967 ankyrin repeat containing protein 462 164 wPip, wMel, wRi

wGmm 0968 ankyrin repeat-containing prophage LambdaW1 750 164 wPip, wRi, wMel

wGmm 1071 ankyrin repeat-containing protein 1113 176 wRi, wMel

doi:10.1371/journal.pntd.0002728.t003
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These analyses suggest that most of the genes present in the

chromosomal insertions are likely not expressed, but the few

specific genes we identified may have low levels of expression.

Further studies will be necessary to validate their expression.

Southern blot analysis
Hybridization of the wsp probe to Gmm female DNA restricted

with the HindIII enzyme produced five bands of about 1200, 1600,

2150, 2600 and 2700 bp (Figure 4, lanes 1 and 3). DNA from

tetracycline-treated females (cytWol-free) had a similar profile,

except that the 2700 bp band, corresponding to the expected

cytWol wsp fragment, was absent (lane 2). Untreated male DNA

displayed an additional band of 1500 bp, indicating the presence

of insertions on the Y chromosome (Lane 4). This banding pattern

suggests the presence of at least five independent wsp chromosomal

insertions, including one on the Y chromosome, supporting the in

silico analyses.

Table 4. IS-elements identified in the wGmm genome.

Locus Family contig

wGmm 0025 IS5 002

wGmm 0026 IS5 002

wGmm 0027 IS5 002

wGmm 0028 IS5 002

wGmm 0191 IS3 014

wGmm 0310 IS5 031

wGmm 0628 ISWPi6 082

wGmm 1201 Transposase Tn5 related 0187

wGmm 1200 Transposase Tn5 related 0187

wGmm 0961 Putative uncharacterized 0163

doi:10.1371/journal.pntd.0002728.t004

Figure 2. Circular map of the wGmm genome (red) and the chromosomal insertions in Gmm genome (orange and light yellow). The
outermost circle represents the scale in Kbp. Contigs comprising the two identified chromosomal insertions are presented as boxes while the position
of the third insertion relatively to the wGmm contigs is presented as blue boxes just below the outmost circle. In the second circle CDSs identified for
the wGmm genome are colored according to the Clusters of Orthologous Groups (COG) categories and represented as lines and boxes. Genes
identified in the insertions (orange and light yellow) of wGmm in the tsetse fly genome are represented as lines and boxes. Pseudogenes are
presented in red while in green coding DNA. Circles three presents the position of ankyrins (blue), prophages (yellow) and transposons (orange), in
wGmm, and the chromosomal insertions. Finally, the wGmm genome and the two insertions in the tse-tse fly genome are arranged around the circle,
with bands connecting regions of homology. Blue ribbons are composed of synteny regions, identified using Mauve and Mummer 3.0, between
wGmm genome and the first set of identified insertions in the tsetse genome. Orange ribbons are composed of synteny regions, identified using
Mauve and Mummer 3.0, between wGmm genome and the second set of identified insertions in the tsetse genome.
doi:10.1371/journal.pntd.0002728.g002
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chrWol insertions as determined by FISH
To determine the location of Wolbachia insertions on Gmm

chromosomes, we performed FISH analyses on mitotic spreads

using wsp, 16S rRNA and fbpA specific probes. The Gmm mitotic

complement, comprising the supernumerary dispensable chromo-

somes (B chr) [78] is depicted in Figure 5, where the AT-rich

heterochromatic nature of Y and B chromosomes is indicated by

the strong DAPI-staining. The two autosomes, L1 and L2, as well

as the X chromosome, appear to contain heterochromatic regions

on both sides of the centromere. FISH results indicate that the

Wolbachia genes 16S, fbpA, and wsp consistently display a biased

location on the distal part of the X, Y and B chromosomal arm.

Although tyramide labeling generates strong and site-specific

signals, it is difficult to detect the presence of multiple insertions on

one chromosome if these events are localized in close proximity.

The 16S rRNA signal detected on the short arm of the X

chromosome appears to be particularly strong and diffused, and

may thus represent more than one insertion event in that region.

Figure 3. wGmm chromosomal genome properties in terms of the number of identified pseudogenes (blue) and putative functional
coding sequences (red).
doi:10.1371/journal.pntd.0002728.g003

Table 5. Sequence identity between chromosomal and cytoplasmic genes.

Insertion set A (coding genes) wGmm wRi wMel wPip

Type IV secretion protein virB10 98.3 87.1 95.9 78

Type IV secretion protein virB11 99.7 98.6 98.3 88

prophage LambdaW1 98.5 80.7 87.5 91.4

ankyrin repeat-containing gene 97.9 67 80.7 67.8

prophage LambdaW5 site-specific recombinase resolvase 99.5 84.9 87.5 92.5

Insertion set B (coding genes) wGmm wRi wMel wPip

Type IV secretion protein virB8 99.1 93.2 98.7 88.4

Type IV secretion protein virB10 99.1 83.5 98.5 77.1

Type IV secretion protein virB11 99.7 98.3 98 87.7

Type IV secretion protein virB6 99 98.7 95.8 90

ankyrin repeat-containing prophage LambdaW1 99.6 88.1 88.5 90.5

prophage LambdaW5 99.7 81.2 81.2 97.9

doi:10.1371/journal.pntd.0002728.t005
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HGT events in natural populations of Gmm
Our previous characterization of the laboratory Gmm strain by

Wolbachia-specific 16S rRNA-based PCR screening, the wsp-based

and the MLST typing system revealed several HGT events [45].

Our results presented above indicate that these transfer events are

in fact more extensive than previously considered. We next

investigated the presence of HGT events in natural populations of

Gmm originating from Zambia, Tanzania and Zimbabwe. We

detected the pseudogenized fragment of the 16S rRNA gene

carrying a deletion of 142 bp (Figure 6), similar to that we

described in Gmm colony DNA prepared from the tetracycline-

treated (cytWol-free) samples [41,45]. We observed a similar

phenomenon for fbpA, where a pseudogenized gene fragment

could be amplified containing two deletions of 47 and 9 bp from

the same four natural populations, as well as from the cytWol-free

Gmm laboratory strain DNA sample. Finally, the HGT event of the

Wolbachia wsp gene, which has been pseudogenized through a

deletion of 7 bp, was also detected in two natural samples

(Figure 6). Unlike the laboratory line of Gmm, in which all

individuals analyzed carried the cytWol strain (100% infected), the

Figure 4. Southern blot analysis showing wsp hybridizing
fragments. DNA cleaved with HindIII restriction enzyme from normal
females (lanes 1 and 3), tetracycline-treated females (lane 2) and normal
males (lane 4) are shown. The sizes of the hybridizing bands are shown.
The ,2700 bp band (indicated by arrows) may represent the
cytoplasmic wsp containing fragment (lanes 1 and 3) which is absent
in the tetracycline treated females (lane 2). The,1500 bp band present
only in the male (lane 4) is indicated by an arrow.
doi:10.1371/journal.pntd.0002728.g004

Figure 5. Fluorescent in situ hybridisation (FISH) on Gmm
mitotic chromosomes. The chromosomes are numbered as de-
scribed by Willhoeft (1997) [70]. A–B. Banding pattern of (DAPI)-stained
chromosome spreads (A–B). The DAPI positive regions indicate the
heterochromatic patterns. B-chromosomes vary in number. FISH on
female and male chromosomes with fbpA probe (C–D),16S rDNA probe
(E–F), and wsp probe on chromosomes from a male individual (G).
doi:10.1371/journal.pntd.0002728.g005
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prevalence ofWolbachia varied in the different populations and was

not fixed (Table 1).

Discussion

Here we report on a newly sequenced genome of cytoplasmic

Wolbachia strain associated with the tsetse fly G. m. morsitans.

Previous studies have shown that wGmm belongs to Wolbachia

supergroup A [79] and functional investigations have demonstrat-

ed that this Wolbachia strain can induce strong CI in the Gmm

laboratory line [41]. Our comparative analysis confirms that

wGmm belongs to Wolbachia supergroup A, and is most similar to

wMel, based on the extensive synteny between their genomes. We

also show evidence for extensive chromosomal insertions of

wGmm in the host genome: with at least two large insertions of

527,507 and 484,123 bp identified from WGS data. Southern blot

hybridizations confirmed the presence of Wolbachia insertions in

the Gmm genome, and FISH revealed their biased location on the

two sex chromosomes (X and Y), as well as on the supernumerary

B-chromosomes.

The genome sequence of the cytoplasmic wGmm strain, when

compared to Wolbachia genomes from other ecdysozoans, revealed

the following striking features: (a) genome size comparable to that

of the wBm infecting the filarial nematode B. malayi,(b) genome

size significantly smaller from all other insect Wolbachia strains and

particularly from the wPip infecting the mosquito Culex pipiens; (c)

reduced number of repetitive sequences including ISs, mobile II

introns and phages, and (d) absence of functional phage copies. It

is worth noting that the genome reduction has not affected the

stable symbiotic association, including the expression of strong CI

phenomena, as has been documented in vitro [41,80].

Previous research has demonstrated that Wolbachia genomes

undergo frequent rearrangements and rapid evolution due to the

high number of transposable elements and repeat regions, which

can provide sites for homologous recombination [18,81,82]. The

rearrangements in Wolbachia may have arisen from the introduc-

tion and expansion of the repeat element families that could serve

as sites for intragenomic recombination, as has been shown to

occur for some other bacterial species [27,82,83].

Phylogenetic analysis suggests that the phage of cytWol (wGmm-

WO) and the phage regions present on the two main chromosomal

insertions are closely related, implying that the chromosomal

phage sequences most likely originated from the cytoplasmic

Wolbachia phage. However, it appears that the wGmm phage

copies are more closely related to the wMel and wRi than the wPip

phages. Given that the Wolbachia prophages can laterally transfer

between Wolbachia strains shaping the bacterial genome evolution

[84–88], the origin of the wGmm phage copies remains an open

question.

Of particular interest for host-symbiont interactions are the

number of genes that encode proteins that contain ankyrin repeat

domains. The ankyrin repeat domain (ANK)-containing proteins,

tandem motifs of around 33 amino acids that are involved in

protein-protein interactions, are mainly found in eukaryotes and

viruses [89]. In eukaryotes, ANK proteins are known to participate

in diverse pathways affecting the structure and function of cells

regulating host cell cycle or cell division or interacting with the

host cytoskeleton [89–91]. In addition, they have been shown to

act as T4SS effectors participating in host-pathogen interactions

[92]. For example, in the intracellular pathogen Anaplasma

phagocytophilum, AnkA, which is secreted through T4SS, interacts

with the host chromatin and regulates gene transcription, while in

Legionella pneumophila, the AnkX protein prevents microtubule-

dependent endocytic maturation of pathogen-occupied vacuoles

[92]. While ANK proteins have been reported from bacteria, they

are usually present in only a few copies per species [93]. wGmm

Figure 6. 16S rRNA, fbpA and wsp gene fragments from tsetse Wolbachia chromosomal insertions sequenced from Gmm laboratory
and natural populations aligned with the corresponding regions of wGmm. Black lines represent the deleted region. The numbers show
the positions before and after the deletions in respect to the wMel genome and the right-left white arrows below the number indicate the size of
deletion in base pairs.
doi:10.1371/journal.pntd.0002728.g006
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has 10 putative ANK proteins, comparable to the number

reported for other insect Wolbachia strains (23 in wMel, 35 in

wRi and 60 in wPip). ANK proteins have been considered to play

an important role in host-Wolbachia interactions, including the

establishment of symbiosis. However, their role in the induction of

reproductive abnormalities such as CI has not been confirmed as

yet [76,94,95].

Several studies clearly suggest that the occurrence of HGT

events in host-Wolbachia symbiotic associations is more widespread

than previously thought [18–24]. Our results provide evidence of

extensive HGT events between Wolbachia and tsetse genome, and

further advance our knowledge on HGT during their co-evolution.

From in situ hybridization results, it appears that at least three

Wolbachia genes, 16S rRNA, fbpA, and wsp are located on X, Y and

multiple B supernumerary chromosomes. Under the canonical

model of sex chromosome evolution, X and Y are believed to have

originated from an autosome pair via a three-step process

beginning with the acquisition of one or more sex-determining

genes [96–99]. X and Y are thought to have diverged due to

sexually antagonist selection [100,101]. The suppression of

recombination between the two sex chromosomes would be

favored by chromosomal inversions and other genetic changes

[102–105]. As the X became progressively haploid in males

(hemizygous), selection may have favored increased transcription

of X-linked genes in males through dosage compensation

mechanisms [106,107]. In the later stages, lack of recombination

between X and Y allowed for genetic degeneration of the Y, which

is usually heterochromatic, accumulating large amounts of

repetitive DNA [104,108,109]. Due to the highly repetitive nature,

the accumulation of Wolbachia sequences may not be deleterious

for Y functionality, and thus the inserted sequences are not

eliminated. The presence of Wolbachia HGT events on the B

chromosomes may reflect the common evolutionary origin of B

and Y chromosomes. Indeed, in Glossina species homology

between the supernumerary and sex chromosomes has been

reported, suggesting the formation of B via Y chromosome

duplication and subsequent accumulation of repetitive DNA

sequences [110]. However, Carvalho and colleagues (2009) [97]

do not exclude the alternative evolutionary scenario of Y

originating from B.

The localization of the Wolbachia inserts in heterochromatic

regions might protect them against the negative selection that

would otherwise arise if they were inserted into functional genes, as

occurs for transposable elements [111]. However, the heterochro-

matic location of the insertions may not necessarily imply loss of

function, especially for those that are inserted in the facultative

heterochromatin. It has been suggested for other insects [23] that

Wolbachia genes transferred to host chromosomes are structurally

disrupted, and functionally impaired via pseudogenization.

Through the acquisition of point mutations, insertions and/or

deletions, these insertions may be destined to become junk DNA in

the insect genome [18]. It has been reported that some

horizontally transferred genes can be transcribed in the insect

hosts. In the case of the pea aphid Acyrthosiphon pisum [112], and the

mosquito Aedes aegypti, the transferred genes have been found to be

transcriptionally active in the salivary glands [18,19]. In the

tripartite mealybug symbiosis, at least twenty-two highly expressed

genes have been identified from multiple diverse bacteria [113]. In

addition, almost 2% of theWolbachia genes that were transferred to

the second chromosome of D. ananassae are transcribed [22]. In the

case of the nematode Onchocerca flexuosa, which does not carry a

cytoplasmic Wolbachia infection, Wolbachia-like DNA sequences

have been identified in the nuclear genome [114]. Despite the fact

that several of these sequences are degenerate, many are expressed

at both the RNA and protein levels [115]. The only case of

Wolbachia genes transferred to the X chromosome has been

reported in the adzuki bean beetle C. chinensis, where the insertion
was presumably transcriptionally inactive [23,24]. The present

study showed that only a few specific genes may be expressed at

low levels from chrWol, however, further studies are required to

confirm potential expression of these and or other genes in a

temporal and spatial manner. Given the biological interdepen-

dence between insect hosts and bacterial symbionts, transfer of

symbiont genes of functional (possibly regulatory) relevance may

be beneficial for the host. Thus, it is of importance to clarify the

potential functional role(s) these inserted sequences may play on

host Gmm physiology. In addition, whether Wolbachia fragments in

the Glossina genome may be on an evolutionary trajectory of

degradation and loss [18] needs to be verified, especially given the

large size of the inserts we detected, which may indicate a

relatively recent origin for these events.

The origin of horizontal transfer of Wolbachia genes in Gmm is of

evolutionary significance. The phylogenetic analysis presented in

Figure S3 shows a long branch from wGmm and short distance

between insertion A and insertion B, which strongly support a

single transfer event. Also, the genetic distance between several

genes present in the cytWol and their homologues in the chrWol

insertions is minimal, thus making it difficult to assess the history of

the insertion events. While speculative, it is most likely that the

common ancestor for the two chromosomal insertions we detect is

the wGmm cytoplasmic strain (Table 5).

It is thought that Wolbachia induced CI can promote reproduc-

tive isolation in host insects that can potentially lead to speciation

[1,116]. While the genetic mechanism and specific genes involved

in CI are currently unknown, if genes involved in CI integrated

into the host chromosome were functional, this could result in

reproductive isolation and speciation. Unpredictable rates of CI

expression could complicate Wolbachia-based strategies for tsetse

control, if genes involved in the CI mechanism are expressed from

chromosomal loci. The results presented here could be used as

part of future research to test this hypothesis in tsetse, once the

molecular mechanism behind CI has been further defined.

Our analysis with Gmm individuals from natural populations

indicates the presence of the chromosomal insertions in the field

populations as well. Interestingly not all individuals in the field

carried the cytoplasmic infections, despite the presence of

chromosomal insertions. We can speculate that maternal trans-

mission of Wolbachia may be less than perfect in the field, resulting

in individuals with no infections. In addition, Wolbachia densities

have been shown to vary as a function of host age [117,118], but

the field samples could not be scored for relative age. Alternatively,

recent studies have identified low-density infections in several

tsetse flies including subspecies of G. morsitans [45,116,119], which
could not be detected using the PCR conditions that were

employed in this study. Studies that determine infection preva-

lence or infection densities in natural populations could be

compromised if chromosomal sequences are mistaken for

cytoplasmic infections. The results raise the question of whether

HGT events as shown here are common in other species of tsetse

flies, and ongoing WGS of other tsetse species will provide

important insights. Future work should focus on determining the

prevalence and ancestry of the chromosomal insertions in tsetse.

List of genes, locus tags and GI numbers
wMel genome (AE017196), wRi genome (CP001391), wPip

genome (AM999887), wBm genome (AE017321), DNA-directed

RNA polymerase (WD_0024/GI 42409679, WRi_000230/GI:

225591874, WP0554/GI:190357240, Wbm0647/GI:58419220),
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DNA polymerase III (alpha subunit) (WD_0780/GI:42410358, WRi_

006220/GI:225592374, WP0658/GI:190357336, Wbm0499/

GI:58419072), DNA gyrase B (WD_0112/GI:42409755, WRi_

001420/GI:225591969, WP1103/GI:190357759, Wbm0764/

GI:58419337), translation elongation factor G (WD_0016/

GI:42409671, WRi_000140/GI:225591866, WP0562/

GI:190357248, Wbm0344/GI:58418918), aspartyl-tRNA synthetase

(WD_0413/GI:42410026, WRi_003280/GI:225592127, WP0387/

GI:190357090, Wbm0012/GI:58418589), CTP synthase (WD_

0468/GI:42410077, WRi_002850/GI:225592086, WP1235/

GI:190357884, Wbm0169/GI:58418745), glutamyl-tRNA(Gln)

amidotransferase B (WD_0146/GI:42409786, WRi_003090/GI:

225592108, WP0087/GI:190356829, Wbm0445/GI:58419018),

GTP-binding protein (WD_1098/GI:42410645, WRi_012740/

GI:225592933, WP0891/GI:190357560, Wbm0032/

GI:58418609), cell division protein FtsZ (WD_0723/GI:42410305,

WRi_007520/GI:225592482,WP0577/GI:190357261,Wbm0602/

GI:58419175),fructose-bisphosphate aldolase (WD_1238 GI:

42410776, WRi_012130/GI:225592879, WP1081/GI:190357738,

Wbm0097/GI:58418674), HK97 family phage major capsid protein

(WD_0458/GI:42410067, WRi_002750/GI:225592077, WP0102/

GI:190356840), phage integrase family site-specific recombinase

(WD_1148/GI:42410690, WRi_009900/GI:225592678, WP0980/

GI:190357644), phage SPO1 DNA polymerase-related protein

(WD_0164/GI:42409803, WRi_000900/GI:225591926, WP0922/

GI:190357589), prophage LambdaW5 baseplate assembly proteinW

(WD_0640/GI:42410229, WRi_005480/GI:225592306, WP0303/

GI:190357018), prophage LambdaW1, baseplate assembly protein J

(WD_0639/GI:42410228, WRi_010130/GI:225592699, WP0302/

GI:190357017) and a prophage LambdaW1 site-specific recombi-

nase resolvase protein (WD_0634/GI:42410223, WRi_005400/

GI:225592300, WP0342/GI:190357056)

Supporting Information

Figure S1 Maximum Likelihood phylogeny based on phage

concatenated genes (5,912 bp). The topology resulting from the

Neighbor-Joining method was identical. Strains are characterized

by the names of their host species. ML bootstrap values based on

1000 replicates are given.

(TIF)

Figure S2 Circular map of the Type IV genes present in

wGmm, wMel, wRi, and wPip. The outermost circle represents the

scale in Kbp. In the second circle Type IV genes are colored based

on their homology. Regions of homology are connected with

bands. Blue ribbons are composed of synteny regions identified

using MAUVE and Mummer 3.0 between wMel and wPip. Blue

ribbons are composed of synteny regions identified using MAUVE

and Mummer 3.0 between wMel and wPip. Light orange ribbons
are composed of synteny regions identified using MAUVE and

Mummer 3.0 between wMel and wRi. Light grey ribbons are

composed of synteny regions, identified using Mauve and

Mummer 3.0, between wMel and wGmm.

(TIF)

Figure S3 Maximum Likelihood phylogeny based on ten

concatenated genes (25,578 bp). The topology resulting from the

Neighbor-Joining method was identical. Strains are characterized

by the names of their host species. ML bootstrap values based on

1000 replicates are given.

(TIF)

Figure S4 LASTZ identity plots based on genomic pairwise

alignment between (A) wGmm and insertion A, (B) wGmm and

insertion B, and (C) insertion A and insertion B. For plots (A) and

(B) the size of the wGmm genome is given in x-axis, while for plot

(C) the size of insertion A. High-scoring segment pairs are

presented as blue dots while low-scoring segment pairs are

presented as red dots.

(TIF)

Table S1 Assembly statistics after each major stage of the

assembly process of wGmm draft genome.

(DOCX)

Table S2 Number of unique genes present in wGmm compared

with the genomes of wMel, wRi, wPip and wBm.

(DOCX)

Table S3 Missing regions and genes from the wGmm genome in

respect to wMel. Regions have been identified after alignment of

the two genomes with MAUVE using the default settings of the

program. Gaps in the genomes were identified using Geneious.

(DOCX)

Table S4 Missing regions and genes from the wGmm genome in

respect to wRi. Alignment of the two genomes was performed with

MAUVE using the default settings of the program. Gaps in the

genomes were identified using Geneious v. 5.4.

(DOCX)

Table S5 Features and comparisons of the wGmm genome and

chromosomal insertions with other sequenced Wolbachia genomes.

Alignment of the two genomes was performed with MAUVE using

the default settings of the program. Gaps in the genomes were

identified using Geneious v. 5.4.

(DOCX)

Table S6 Description of the first set ofWolbachia inserted regions

into the G. m. morsitans chromosomes.

(DOCX)

Table S7 Description of the second set of Wolbachia inserted
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(DOCX)
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