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Abstract

This study presents evidence, using sequences of ribosomal 16S and COI mtDNA, for the presence of two mitochon-

drial genomes in Perumytilus purpuratus. This may be considered evidence of doubly uniparental mtDNA inheri-

tance. The presence of the two types of mitochondrial genomes differentiates females from males. The F genome

was found in the somatic and gonadal tissues of females and in the somatic tissues of males; the M genome was

found in the gonads and mantle of males only. For the mitochondrial 16S region, ten haplotypes were found for the F

genome (nucleotide diversity 0.004), and 7 haplotypes for the M genome (nucleotide diversity 0.001), with a distance

Dxy of 0.125 and divergence Kxy of 60.33%. For the COI gene 17 haplotypes were found for the F genome (nucleo-

tide diversity 0.009), and 10 haplotypes for the M genome (nucleotide diversity 0.010), with a genetic distance Dxy of

0.184 and divergence Kxy of 99.97%. Our results report the presence of two well-differentiated, sex-specific types of

mitochondrial genome (one present in the male gonad, the other in the female gonad), implying the presence of DUI

in P. purpuratus. These results indicate that care must be taken in phylogenetic comparisons using mtDNA se-

quences of P. purpuratus without considering the sex of the individuals.
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Introduction

In most animal species, mitochondrial DNA

(mtDNA) is inherited maternally (Avise et al., 1987; Birky,

1995). Nevertheless, a different inheritance mode has been

described in bivalves, known as doubly uniparental inheri-

tance or DUI, (Skibinski et al., 1994; Zouros et al., 1994a;

Zouros, 2000, 2013; Passamonti and Ghiselli, 2009; Breton

et al., 2007). This type of mitochondrial inheritance has

been found in seven families of bivalves (Theologidis et al.,

2008), and in five of the 33 genera of the Mytilidae family

(Teske et al., 2012), including Mytilus, Geukensia,

Musculista and Brachidontes (Theologidis et al., 2008).

Among Mytilidae, the DUI mechanism has been well stud-

ied in Mytilus (Hoeh et al., 1997; Quesada et al., 1999;

Zbawicka et al., 2003). This inheritance is characterized by

the presence of two highly divergent mtDNAs, known as F

(Female) and M (Male) mitochondrial genomes (Fisher and

Skibinski, 1990; Hoeh et al., 1991; Skibinski et al., 1994;

Zouros et al., 1994b).

In DUI species, the F genome is transmitted by fe-

males to their male and female offspring, whereas the M ge-

nome is transmitted by males, and generally only to male

offspring. Consequently, females are homoplasmic for the

F genome and males contain both genomes (F and M), al-

though their spermatozoa may be homoplasmic for the M

genome (Venetis et al., 2006; Ghiselli et al., 2011). In fe-

males, the M genome is generally lost after successive cell

divisions, although it can be detected in small quantities in

somatic tissues in adult females (Stewart et al., 1995; Gar-

rido-Ramos et al., 1998; Dalziel and Stewart, 2002; Ghi-

selli et al., 2011; Zouros, 2013). The distribution of mito-

chondria inherited from sperm shows two different patterns

in embryos. In the case of male embryos, mitochondria are

aggregated in a single blastomere, which is the precursor of

the male germ lineage, while in female embryos, mitochon-

dria inherited from males are dispersed and disaggregated

(Cao et al., 2004; Obata and Komaru, 2005; Cogswell et

al., 2006; Milani et al., 2011, 2012), meaning that usually

only the F genome is present in their somatic tissues. It has

also been proposed that the mechanism is due to the pres-

ence of a factor known as Z, controlled by a nuclear locus

with two alleles, Z and z (Kenchington et al., 2002). Fe-

males with the Z allele produce eggs that allow the retention

of sperm mitochondria and their aggregation in the germ

line of embryos that will become male. Females with the zz
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genotype produce eggs without the Z factor; as a result, the

mitochondria of the fertilizing spermatozoon are dispersed

or lost, and the embryos will all be female (see reviews by

Kenchington et al., 2002, 2009; Passamonti and Ghiselli,

2009; Zouros, 2013).

Theologidis et al. (2008) cite 36 bivalve species

known at that date to have DUI, all of North Atlantic origin;

however Boyle and Etter (2013) reported DUI in a cosmo-

politan species recorded in the South Pacific. Nevertheless

there are few studies which report this process in species

distributed in the southern hemisphere. The aim of this

study was therefore to determine whether the mytilid

Perumytilus purpuratus (Mytilidae), an endemic species of

the southern cone of South America, displays DUI. This

species is of ecological importance, shaping community

structure and acting as a bioengineer in the rocky intertidal;

its geographical distribution ranges from the Pacific (Ecua-

dor to Chile) to the Western Atlantic, as far north as La

Lobería, Argentina (Guiñez and Castilla, 1999; Lancellotti

and Vasquez, 2000; Prado and Castilla, 2006; Acevedo et

al., 2010; Caro et al., 2011). The species belongs to a

monospecific genus, phylogenetically close to the genus

Brachidontes (Aguirre et al., 2006; Trovant et al., 2013). In

this study, fragments of the mitochondrial genes 16S and

COI were sequenced from various female and male adult

tissues of P. purpuratus. The 16S and COI mtDNA were

used as molecular markers representing the mitochondrial

genome.

Materials and Methods

Sampling area

Adults of both sexes of Perumytilus purpuratus were

collected from the rocky intertidal of Pelluco (41°12’S;

72°53’W; Puerto Montt, Chile) during the spring (Novem-

ber and December). Each individual was sexed by observa-

tion of its gonads under a stereo microscope, and tissue

samples were taken from the mantle and gonads of sexually

mature adults. Samples were labeled and conserved in etha-

nol (95%) at 4°C.

DNA extraction

Total DNA was extracted from 30 mg of mantle and

gonad tissues from adults using the standard phenol method

(Doyle and Doyle, 1987). The quality and quantity of DNA

were assessed by electrophoresis in 1% agarose gels

stained with SYBR safe (Invitrogen).

PCR amplification

The 16S region of mtDNA was amplified with the

universal primer pair 16S-AR and 16S-BR (Palumbi et al.,

1991). The cytochrome oxidase subunit I (COI) was ampli-

fied using the primers COIaF and COIaR designed by

Trovant et al. (2013). These amplifications were carried out

in a final volume of 30 �L of solution containing: 50 ng

DNA template for each individual adult, 2 �L of 10X PCR

Rxn Buffer, 0.2 mM of dNTPs, 2.5 mM of MgCl2, 0.2 �M

of each primer and 1 U of Taq DNA polymerase. The am-

plification protocol consisted of an initial denaturation at

95 °C for 9 min, followed by 35 cycles of 95 °C for 1 min,

40 °C for 1 min (for the 16S gene) or 45 °C for 1 min (for

the COI gene) and 72 °C for 1 min, followed by a final ex-

tension at 72 °C for 9 min. The amplified products were vi-

sualized under UV light with SYBR safe dye in 1.5%

agarose gels. The PCR products were purified with the

Purelink PCR purification kit (Life Technologies) and

sequenced using an automatic ABI Prism 377 sequencer

(Applied Biosystems). Different annealing conditions were

evaluated to facilitate amplification and obtain different

mitochondrial genomes.

Sequence analysis

The sequences obtained were edited using the

BLAST-2 and BIOEDIT 5.0.9 softwares (Hall, 1999), and

multiple alignment was carried out with the CLUSTAL X

program (Thompson et al., 1994).

The number of polymorphic sites, number of haplo-

types, haplotype diversity, nucleotide diversity and the av-

erage number of different nucleotides were estimated using

the DnaSP software version 5.53 (Librado and Rozas,

2009).

To detect differences in the number of mutations ac-

cumulated between sample types, and so establish the ex-

pansion history of each genome, an analysis of mutation

frequency between sequence pairs (mismatch distribution)

(Rogers and Harpending, 1992) was applied using the

DnaSP software version 5.53 (Librado and Rozas, 2009).

The Neighbor Joining method (Saitou and Nei, 1987)

implemented in MEGA 5 software (Tamura et al., 2011)

was used to represent the degree of similarity of sequences.

For the 16S sequences, a Brachidontes sequence retrieved

from GenBank (accession n° DQ836016) was used as ex-

ternal group. To determine the distance between female and

male sequences, we calculated the number of base substitu-

tions per site by averaging all sequence pairs between

groups with standard error using the Maximum Composite

Likelihood model and 1000 bootstrap replicates. The varia-

tion rate among sites was modeled with a gamma distribu-

tion (shape parameter = 1).

The DNA divergence between F and M genomes was

estimated by using the average number of nucleotide sub-

stitutions per site between genomes (Dxy) (Nei, 1987) with

chi-square test (haplotype data) (Nei, 1987; Hudson et al.,

1992) and a permutation test (Hudson et al., 1992). The av-

erage number of nucleotide differences between popula-

tions (Kxy) was estimated using the DnaSP software. The

neutrality of each genome was evaluated with Fu and Li’s

Test, implemented in DnaSP software version 5.53 (Libra-

do and Rozas, 2009).
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To evaluate the origin of DUI and the complex rela-

tionships between the F and the M mitochondrial mole-

cules, two phylogenies were constructed based on 16S and

COI sequences obtained for P. purpuratus and sequences

of F and M genomes from Brachidontes variabilis, Mytilus

edulis, M, californianus and M. galloprovincialis.

Results

A total of 105 sequences, from both tissues and both

mitochondrial markers, were obtained from 35 samples of

P. purpuratus: 14 females and 21 males (details in Tables 1

and 2). Somatic and gonadal tissue for each individual was

analyzed. A total of 65 sequences of 486 bp from the 16S

region of mtDNA in P. purpuratus were obtained, repre-

senting the somatic tissues of 14 females and 20 males, and

the gonadal tissues of 13 females and 18 males. For the COI

gene, a total of 40 sequences of 540 bp were analyzed, cor-

responding to the somatic tissues and the gonadal tissues of

10 females and 10 males. Only in two cases both genomes

were amplified in a single individual and unfortunately

these sequences were impossible to read (Phenograms in

Figure S1). All the sequences of the 16S region were depos-

ited in GenBank under accession numbers KF159809 to

KF159878 and KF661909 to KF661918 and all the se-

quences of COI gene under accession numbers KF661919

to KF661973 (sequence alignments are shown in Figu-

re S2).

Two mitochondrial genomes were obtained in P.

purpuratus mussels. In females only one type of genome

was amplified (F genome) for both mitochondrial genes, in

both somatic and gonadal tissues. In males, two kinds of

genomes were found (F and M) for both mitochondrial

genes. Specifically, in the gonadal tissues of males only the

M genome was found, for both mitochondrial genes, while

somatic tissue of males either the F or the M genome was

found for 16S, and only the F genome was obtained with

the COI primers used. In male mantles, 16S primers ampli-

fied the M genome in 15 samples and the F genome in five

others (Figure 1); the COI primers amplified only the F ge-

nome in all the samples of male mantle tissues analyzed,

while the M genome was amplified in all the male gonadal

tissues.

A total of 65 sequences were analyzed for the 16S re-

gion; 17 haplotypes were identified, showing 67 polymor-

phic sites (S) with haplotype diversity h = 0.856; nucleotide

diversity was � or Pi = 0.064. For the F genome, 32 se-

quences were obtained and 10 haplotypes were identified,

with nine polymorphic sites; haplotype diversity was

h = 0.833 and nucleotide diversity Pi = 0.004. For the M ge-

nome, 33 sequences were obtained and seven haplotypes

were identified, with seven polymorphic sites; haplotype

diversity was h = 0.589 and nucleotide diversity Pi = 0.001

(Table 1). In total, nine haplotypes were obtained in female

individuals and 10 in males; there are therefore two haplo-
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Table 1 - Indices of genetic variability based on mtDNA (16S) sequences F and M genomes, for females and males (gonadic and somatic tissues together)

and total in the mussel P. purpuratus.

Genome F Genome M Females Males Total

Number of sequences 32 33 27 38 65

Sequence length (bp) 486 486 486 486 486

S (polymorphic sites) 9 7 8 67 67

Number of haplotypes 10 7 9 10 17

Haplotype diversity � sd 0.83 � 0.04 0.59 � 0.1 0.84 � 0.04 0.69 � 0.08 0.86 � 0.03

Nucleotide diversity P 0.004 0.001 0.004 0.031 0.064

N° different nucleotides K 2.046 0.818 2.148 15.065 31.327

Table 2 - Indices of genetic variability based on mtDNA (COI) sequences for F and M genome, females and males (gonadic and somatic tissues together)

and total in the mussel P. purpuratus.

Genome F Genome M Females Males Total

Number of sequences 30 10 20 20 40

Sequence length (bp) 542 542 542 542 542

S (polymorphic sites) 27 18 21 116 118

Number of haplotypes 17 10 12 20 27

Haplotype diversity � sd 0.97 � 0.01 1 � 0.05 0.95 � 0.03 1 � 0.02 0.98 � 0.01

Nucleotide diversity P 0.009 0.010 0.009 0.102 0.076

N° different nucleotides K 5.074 5.911 5.021 55.484 41.621



types shared between males and females, which are present

in four out of five males that presented the F genome in

mantle tissue.

A total of 40 sequences were analyzed for the COI

gene; 27 haplotypes were identified with 118 polymorphic

sites (S); haplotype diversity was h = 0.981 and nucleotide

diversity Pi = 0.076. In the F genome, 30 sequences were

obtained and 17 haplotypes were identified, with 27 poly-

morphic sites; haplotype diversity was h = 0.966 and nucle-

otide diversity Pi = 0.009. In the M genome, 10 sequences

were obtained and 10 haplotypes were identified, with 18

polymorphic sites; haplotype diversity was h = 0.997 and

nucleotide diversity Pi = 0.010 (Table 2). In total, 12 haplo-

types were found in female individuals and 20 haplotypes

in males; there are therefore five haplotypes shared be-

tween males and females, which are present in five out of

10 males that presented the F genome in mantle tissue.

The F genome (found in females and males) showed

higher genetic diversity than the M genome (found in

males), for both mitochondrial genes (16S and COI) mainly

in polymorphic loci, the number of haplotypes, haplotype

diversity and different nucleotides (Table 1 for 16S region;

Table 2 for COI gene).

Distribution of pairwise differences between haplo-

types (mismatch distributions) was used to estimate past

population expansions by haplotypes. In this case, the F ge-

nome of P. purpuratus displayed a larger number of accu-

mulated mutations than the M genome in its 16S sequences.

However this pattern was less evident in the COI gene se-

quences (Figures 2A and 2B, respectively).

Based on a high bootstrap value for both genes ana-

lyzed, the sequences were segregated into two well-defined

and well-supported clades (Figure 3). One of the clades

grouped female haplotypes (F) and somatic tissue of five

males together, while the other clade grouped male haplo-

types (M) alone, with no differences with regard to tissue

type (somatic or gonadal). A significant genetic divergence

was detected between F and M haplotypes: in the 16S re-

gion sequences the genetic distance was Dxy = 0.125 and

genetic differentiation Kxy was 60.33%, with high signifi-

cance value (p < 0.001), estimated by permutations test.

The corresponding values for the COI gene sequences were

Dxy = 0.184 and genetic differentiation Kxy was 99.97%

(p < 0.001).
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Figure 1 - Distribution of mitochondrial genomes by tissue-type and sex

in the Chilean mussel Perumytilus purpuratus evaluated with sequences

of the 16S region. F: F-genome; M: M-genome.

Figure 2 - Frequency distribution graphs of the number of mutations between pairs of sequences (mismatch distribution), obtained from the 16S mito-

chondrial gene (A) and COI gene (B) for the two genome types, F and M.



Finally, in order to understand the origin of DUI, we

analyzed both genomes (F and M haplotypes) from P.

purpuratus in comparison with F and M haplotypes from

other DUI species. The haplotypes were segregated by spe-

cies of origin (taxon-joining pattern by Zouros, 2013), and

a single clade was observed for each of the P. purpuratus

mitochondrial genes (Figure 4). Phylogenetic reconstruc-

tion showed that species formation predated the differentia-

tion of the mitochondrial genomes (gender-joining pattern)

in P. purpuratus. This was most obvious from the COI data

(Figure 4 B).

Discussion

The phylogenetic reconstruction from both genes dis-

tinguishes two clades: one specific to M haplotypes, ob-

tained from males, present in 100% of the gonadal tissue

samples for both genes and in somatic tissues for 16S; the

other specific to F haplotypes, obtained from female so-

matic and gonadal tissues and male somatic tissues. This

conclusion is supported by high values of consistency and

significant genetic divergence, displaying robust separa-

tion between female (F) and male (M) haplotypes.
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Figure 3 - Neighbour-joining tree of mitochondrial haplotypes in P. purpuratus, based on (A) the mitochondrial gene 16S and (B) COI gene. M: mantle

tissue; G: gonadal tissue.



This indicates the presence of DUI in P. purpuratus.

As expected for DUI species, males are heteroplasmic for

both F and M genomes, and females are homoplasmic for

the F genome only (Hoeh et al., 1996, 1997, 2002; Quesada

et al., 1999; Zbawicka et al., 2003). Each sex presents only

the sex-specific genome in its gonad. In general, differenti-

ation at the mitochondrial genome level between F and M

has been estimated at up to 20% in the Mytilidae family

(Passamonti et al., 2003; Cao et al., 2004; Mizi et al., 2005;

Breton et al., 2006; Theologidis et al., 2008), and as high as

50% in fresh water species of the Unionidae family

(Doucet-Beaupré et al., 2010). In P. purpuratus, this value

was found to be between 60% and 99%, depending on the

mitochondrial gene. This is higher than has been observed

for other species with DUI, and may result from the lower

occurrence of the F genome detected in the male mantle

with 16S primers, and non-detection of the M genome in

the male mantle for the COI gene. Detection may be im-

proved in the future by the design of specific genome prim-

ers.

Terranova et al. (2007) observed intraspecific vari-

ability in Brachidontes variabilis for differentiation be-

tween F and M haplotypes, and therefore in DUI ocurrence.

This variability resulted from differences observed be-

tween F and M haplotypes present in females and males re-

spectively, similar to P. purpuratus. However this pattern

was only observed in samples collected in the Indian

Ocean, and was not apparent in samples collected in either

the Pacific, the Red Sea or the Mediterranean (Terranova et

al., 2007). The authors argued that this may be due to the

presence of three cryptic species with allopatric distribu-

tion in each location.

Moreover, P. purpuratus displayed greater variability

in 16S F haplotypes than in M haplotypes, whether mea-

sured by the number of accumulated mutations in its ge-

nome over time (Figure 2) or by genetic variability indica-

tors (Tables 1 and 2). Similar observations are reported in

the mytilid Musculista senhousia (Passamonti, 2007),

which may be explained by an older evolutionary history of

the F genome than the M genome, with the latter appearing

at a more recent date. However this deviation may also be

due to the lower frequency with which the M genome is ob-

served, meaning that its diversity may be underestimated.

The pattern observed for the COI gene was more complex,

since some indicators showed the same pattern, while oth-

ers presented greater diversity in the M genome. The expla-

nation suggested for M. senhousia is that this mechanism

has evolved to protect mtDNA in females (e.g. antioxidant

gene complexes) while selection could be relaxed in males

(Passamonti, 2007; Zouros, 2013). In other mytilid species,

however, it has been observed that M genomes are more

variable than F genomes (Rawson and Hilbish, 1995; Stew-

art et al., 1995; Zouros, 2013). Greater genetic diversity of

the M genome may be due to several mechanisms, such as

greater M mitochondrial replication rates during the early

development of male embryos, differences in selection

pressures, or the result of different effective sizes between

genomes, as proposed by some authors (Skibinski et al.,

1994; Stewart et al., 1996; Schmidt et al., 1997; Hasegawa

et al., 1998; Ballard, 2000a,b).

The results obtained from the mismatch distribution

indicate that the F genome has a longer history than the M

genome, based on the greater number of accumulated muta-

tions. This is more evident in the results for the 16S gene

than the COI gene, as shown in the mismatch distribution
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Figure 4 - Neighbour-joining tree for evolutionary relationships of the F

and M genomes of P. purpuratus and other species of Mytilus, based on

(A) the mitochondrial gene 16S and (B) gene COI genome. M: mantle tis-

sue; G: gonadal tissue.



graphs (Figure 2). An empirical mismatch distribution that

does not deviate from a unimodal distribution of pairwise

differences among haplotypes and presents smooth distri-

bution (Harpending, 1994) suggests recent expansion (Ro-

gers and Harpending, 1992).

In addition to the evidence mentioned above, which

indicates the presence of two mitochondrial genomes and

the presence of DUI, the heteroplasmy (two genomes in the

same individual) found in five males for the 16S region and

10 males for the COI gene confirms this mode of inheri-

tance in P. purpuratus. The presence of M haplotypes in

male tissues only (gonadal and somatic), and F haplotypes

in both female tissue types and in male somatic tissues,

confirms the existence of heteroplasmy in males of P.

purpuratus, as expected for a DUI species (Mizi et al.,

2005; Breton et al., 2006; Venetis et al., 2006; Theologidis

et al., 2008; Cao et al., 2009; Passamonti and Ghiselli,

2009). However the M haplotype was more often amplified

from gonadal tissues of P. purpuratus males with 16S and

COI primers (100%) and less often from somatic tissues of

males with 16S primers (75.0%). This has previously been

observed by Passamonti and Scali (2001) and Ghiselli et al.

(2011) using cloning and Real-Time qPCR, respectively,

and in the results reported by Terranova et al. (2007), who

detected evidence for DUI only with 16S-rDNA but not

with COI. Previous studies have found evidence for such

situations, where somatic tissues in males can be dominated

by the F genome, with the occasional presence of small

quantities of the M genome (Garrido-Ramos et al., 1998;

Dalziel and Stewart, 2002; Ghiselli et al., 2011). This dif-

ferent pattern may be tentatively related to the specific seg-

regation mechanism of sperm mitochondria during male

embryo development in DUI species (Cao et al., 2004;

Obata and Komaru, 2005; Cogswell et al., 2006; Milani et

al., 2011, 2012), which drives sperm-derived mitochondria

into the primordial mesodermal fate blastomeres (from

which the adductor derives), whereas it allows only sto-

chastic leakage into ectodermal fate blastomeres (from

which the mantle originates). Our data for the M genome

detected in the mantles of some males but not in others,

may tentatively be explained by such stochastic events. In

future work we propose to design new M- and F-specific

primers to establish the degree of heteroplasmy with fre-

quency estimators in this species.

Theologidis et al. (2007) demonstrated that in the

original study by Saavedra et al. (1997), detection of the M

genome in males of Mytilus galloprovincialis was impossi-

ble due to problems linked to mutations in primer annealing

sites of the M genome. The fact that a greater number of

both genomes was observed using 16S amplification than

with COI primers may therefore result from a similar prob-

lem to that encountered by Saavedra et al. (1997). For ex-

ample, in our results, the M genome was amplified in males

1, 5, 6 and 9 using 16S primers, but not using COI primers

(Figure 3). The next step required is to develop a research

strategy that will enable us to perform more detailed and in

depth analyses of DUI in P. purpuratus.

Phylogenetic reconstruction carried out in order to

understand the timing of P. purpuratus species formation

vs. the separation between the two genomes and the origin

of DUI showed a taxon-joining pattern. This may indicate

that species formation predated genome differentiation in

P. purpuratus. Nonetheless, the loss of closely related spe-

cies may in some way hide the presence of a gender-joining

pattern, according to which DUI origin would be the first

event. This differs from the pattern observed by Rawson

and Hilbish (1995) and Zouros (2013) in Mytilus, where a

gender-joining pattern was found. The hypothesis proposed

is that DUI in the genus Mytilus had a single origin. In the

case of the monospecific genus Perumytilus, the absence of

closely related species makes it difficult to evaluate whe-

ther the process of speciation was earlier or later than dif-

ferentiation of the inheritance of mitochondrial genomes.

To conclude, the evidence presented here reveals the

presence of two mitochondrial genomes that differentiate

females (F haplotypes) from males (M and F haplotypes).

These results not only confirmed the existence of two mito-

chondrial genomes in this species, but also enabled us to de-

tect the presence of sex-specific genomes in gonadal tissue

of each type of sample (males and females). This indicates

that caution must be taken when phylogenetic and phylo-

geographic comparisons are done using mtDNA sequences

of Perumytilus purpuratus without considering the sex of

the individuals.
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