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Abstract

The PresenceAbsence package for R provides a set of functions useful when evaluating
the results of presence-absence analysis, for example, models of species distribution or
the analysis of diagnostic tests. The package provides a toolkit for selecting the opti-
mal threshold for translating a probability surface into presence-absence maps specifically
tailored to their intended use. The package includes functions for calculating threshold
dependent measures such as confusion matrices, percent correctly classified (PCC), sen-
sitivity, specificity, and Kappa, and produces plots of each measure as the threshold is
varied. It also includes functions to plot the Receiver Operator Characteristic (ROC)
curve and calculates the associated area under the curve (AUC), a threshold independent
measure of model quality. Finally, the package computes optimal thresholds by multiple
criteria, and plots these optimized thresholds on the graphs.

Keywords: binary classification, ROC, AUC, sensitivity, specificity, threshold, species distri-
bution models, diagnostic tests.

1. Introduction

Binary classification is a technique crucial to multiple areas of study. In the medical field
these techniques are used to evaluate diagnostic tests (Greiner et al. 2000; Cantor et al. 1999)
and in radiology (Hanley and McNeil 1982). Ecological applications include predicting and
mapping species distributions (Guisan and Thuiller 2005; Moisen et al. 2006; Anderson et al.
2003), conservation planning (Wilson et al. 2004; Fielding and Bell 1997), remote sensing
(Congalton 1991), habitat modeling (Hirzel et al. 2006; Pearce and Ferrier 2000; Reineking
and Schröder 2003), and wildlife biology (Manel et al. 1999; Guisan and Hofer 2003).

Many modeling techniques for binary classification problems result in predictions that are
analogous to a probability of presence. To translate this to a simple 0/1 classification it is
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necessary to specify a choice of threshold, or cut-off probability beyond which something is
classified as present. The selection of this threshold value can have dramatic effects on model
accuracy and predicted prevalence (the overall proportion of locations where the variable is
predicted to be present). The traditional default is to simply use a threshold of 0.5 as the
cutoff, but this does not necessarily preserve the prevalence or result in the highest prediction
accuracy, especially for data sets with very high or very low prevalence.

The PresenceAbsence package (Freeman 2007) in R (R Development Core Team 2007) is a
collection of tools (both analytical and graphical) for evaluating the performance of binary
classification models and determining the optimum threshold for translating a probability
surface to a presence-absence map. The PresenceAbsence package includes functions for cal-
culating threshold dependent accuracy measures such as confusion matrices, percent correctly
classified (PCC), sensitivity, specificity, and Kappa, and produces several types of graphical
plots illustrating the effect on each measure as the threshold is varied. The package calculates
optimal thresholds by multiple criteria, and plots these optimized thresholds on the graphs.
It also includes functions to plot the Receiver Operator Characteristic (ROC) curve and cal-
culates the associated area under the curve (AUC), a threshold independent measure of model
quality (Hanley and McNeil 1982; Swets 1988). The package produces calibration plots to
assess the accuracy of the predicted probabilities. Finally, it includes a function that uses
beta distributions to produce simulated presence-absence data.

There are stand alone software applications for evaluating binary classification models. Ex-
amples range from full featured ROC analysis tools such as ROC AUC (Schröder 2006), to
general purpose model evaluation tools such as PERF (Caruana 2004), to the Web-based
ROC calculators ROCOn (Farrand and Langford 2002) and jrocfit.org (Eng 2006). In R, it
is possible to calculate the AUC from the Wilcox test provided in the stats package, part of
a standard installation of R. There are also several R packages available that will produce
ROC plots and calculate performance measures such as the AUC. These include the packages
ROCR (Sing et al. 2005) and the ROC (Carey and Redestig 2007), as well as the roc.area and
roc.plot functions from verification package (NCAR - Research Application Program 2007),
the colAUC function from the caTools package (Tuszynski 2007), the ROC function from the
Epi package (Carstensen et al. 2007), and the auROC function from the limma package (Smyth
2005). Some of these R packages will optimize the threshold choice by one or more techniques
and plot this threshold on the ROC plot, or produce plots of sensitivity and specificity as
a function of threshold. In S-PLUS (Insightful Corp. 2003), the roc package (Atkinson and
Mahoney 2004) goes beyond the PresenceAbsence package by providing significance testing
of correlated ROC curves.

The PresenceAbsence package, however, provides multiple graph types, model evaluation
statistics, and threshold optimization criteria in a single integrated unit. It allows researchers
to carry out a complete analysis of their model results, and immediately see the effects of their
threshold selections on all aspects of the prediction accuracy. Thresholds can be optimized
by 12 different techniques, and these optimized thresholds can be plotted automatically on
the graphs. It also provides tools, both analytical and graphical, to examine the relationships
between prevalence, model accuracy, and threshold selection.

If the model building is being carried out in R, then using the PresenceAbsence package
(rather than stand alone ROC software) streamlines the model evaluation process. And if
the final presentation of the results is created as a Sweave document, the entire analysis and
document creation can be carried out in a single step, allowing for automatic updates of the
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Symbol Latin Name Common Name
ABCO Abies concolor white fir
ABLA Abies lasiocarpa subalpine fir
ACGR3 Acer grandidentatum bigtooth maple
CELE3 Cercocarpus ledifolius curlleaf mountain-mahogany
JUOS Juniperus osteosperma Utah juniper
JUSC2 Juniperus scopulorum Rocky Mountain juniper
PICO Pinus contorta lodgepole pine
PIED Pinus edulis common or twoneedle pinyon
PIEN Picea engelmannii Englemann spruce
PIPO Pinus ponderosa Ponderosa pine
POTR5 Populus tremuloides quaking aspen
PSME Pseudotsuga menziesii Douglas-fir
QUGA Quercus gambelii Gambel oak

Table 1: Species codes for the 13 tree species.

figures for new data or slight changes in analysis.

In this paper, we give a demonstration of a basic exploratory analysis of a presence-absence
dataset using this package. The PresenceAbsence package is available from the Comprehen-
sive R Archive Network (http://CRAN.R-project.org/).

2. Dataset

This demonstration dataset is included in the PresenceAbsence package. It is the validation
dataset from Moisen et al. (2006), and more detailed information can be found in this paper.
In brief, presence-absence data for 13 tree species (Table 1) were collected by the USDA Forest
Service, Forest Inventory and Analysis Program in a six million ha study area predominately
in the mountains of northern Utah. These species presence data were modeled as functions
of satellite imagery and bioclimatic information using three different types of models. These
models included generalized additive models implemented in R, a variant on classification and
regression trees implemented in Rulequest’s See5 package, and stochastic gradient boosting
implemented in R, using the gbm package (Ridgeway 2006) (hereafter GAM, See5, and SGB,
respectively). The demonstration data used here contains presence-absence predictions for the
13 tree species at 386 independent model validation sites. Specifically, the data set consists of
species, observed presence-absence values (1 or 0), and the predicted probability of presence
from each of the three modeling techniques.

After installing the PresenceAbsence package, load the dataset for this demo:

R> library("PresenceAbsence")

R> data("SPDATA")

Begin by examining the data structure:

R> head(SPDATA)

http://CRAN.R-project.org/
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SPECIES OBSERVED GAM See5 SGB
1 ABCO 0 0.03072217 0.0001 0.02615349
2 ABCO 0 0.09418715 0.0600 0.03536900
3 ABCO 0 0.00010000 0.0001 0.05954248
4 ABCO 0 0.08465268 0.1700 0.04357160
5 ABCO 1 0.69945011 0.2900 0.40515515
6 ABCO 0 0.99999111 0.1700 0.12727683

Column 1 is for the row ID’s. In this case, The ID column is made up by the species code of
each observation. Column 2 is the observed values where 0 = absent and 1 = present. If the
observed values had been actual values (for example, basal area or tree counts) any values
other than zero would have been treated by the functions as present. The remaining columns
are for model predictions. Preferably these will be predicted probabilities ranging from zero
to one. If all that is available are predicted presence-absence values, basic accuracy statistics
can still be calculated, but you loose the ability to examine the effect of threshold choice, and
most of the graphs are not meaningful. In this dataset, these are the model predictions from
the three types of models: GAM, See5, and SGB.

Note that the functions rely on column order to identify the observed and predicted values,
not on the column names. Therefore, as long as the columns are in the correct order, column
names can be anything you choose. The only time the functions use the column names is for
the default labels on graphs.

We will define a few variables for later use:

R> species <- as.character(unique(SPDATA$SPECIES))

R> model.names <- as.character(names(SPDATA)[-c(1, 2)])

R> N.models <- ncol(SPDATA) - 2

R> N.sp <- length(species)

R> N.obs <- length(SPDATA$SPECIES[SPDATA$SPECIES == species[1]])

R> Obs.prev <- table(SPDATA$SPECIES, SPDATA$OBSERVED)[, 2]/N.obs

R> Obs.prev <- round(Obs.prev, digits = 2)

3. Initial exploration

The presence.absence.hist function produces a bar plot of observed values as a function
predicted probability. These plots make prevalence dramatically obvious. Many of the tradi-
tional accuracy measures (such as PCC, sensitivity and specificity) are highly dependent on
species prevalence. Therefore, it is important to check prevalence early in an investigation.

Consider three models for a single species (Figure 1):

R> par(oma = c(0, 0, 3, 0), mar = c(4, 4, 4, 1), mfrow = c(1, 3), cex = 1)

R> sp <- 1

R> DATA <- SPDATA[SPDATA$SPECIES == species[sp], ]

R> for (mod in 1:N.models) {

+ presence.absence.hist(DATA, which.model = mod, legend.cex = 1,

+ N.bars = 20)
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Figure 1: Presence-Absence histogram for three models and one species.

+ }

R> mtext(species[sp], side = 3, line = 0.5, cex = 1.5, outer = TRUE)

It is immediately obvious that this is a low prevalence species. This is important to note as
extra care must be used when analyzing species with very low or very high prevalence. Many
of the traditional measures of accuracy, such as percent correctly classified (PCC), sensitivity,
and specificity are highly dependent on prevalence. Even some of the threshold optimization
criteria can be affected by species prevalence (Manel et al. 2001).

The immediate effect of low prevalence on this particular plot is that the zero bar is so
much taller than the other bars that it is difficult to see any other details of the species
distributions. Setting the argument truncate.tallest = TRUE will truncate the tallest bar
to fit better in the plot region and allow examination of finer structures in the histogram.
If truncate.tallest = TRUE and the tallest bar is more than twice the height of the other
bars, it is truncated so that it is 20 percent taller than the next bar, the truncated bar is
cross hatched, and the true count is printed at the top of the bar. Note though, that the
truncate.tallest option can visually obscure the true prevalence (Figure 2).

R> par(oma = c(0, 0, 3, 0), mar = c(4, 4, 4, 1), mfrow = c(1, 3), cex = 1)

R> sp <- 1

R> DATA <- SPDATA[SPDATA$SPECIES == species[sp], ]

R> for (mod in 1:N.models) {

+ presence.absence.hist(DATA, which.model = mod, legend.cex = 1,
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Figure 2: Presence-Absence histogram for three models and one species, with tallest bar
truncated.

+ N.bars = 15, truncate.tallest = TRUE)

+ }

[1] "height of tallest bar truncated to fit on plot"
[1] "height of tallest bar truncated to fit on plot"
[1] "height of tallest bar truncated to fit on plot"

R> mtext(species[sp], side = 3, line = 0.5, cex = 1.5, outer = TRUE)

Next, we will compare the graphs of 3 species with differing prevalence (in this case the
truncate.tallest argument is set to FALSE to avoid obscuring the true prevalence, see
Figure 3):

R> par(oma = c(0, 0, 3, 0), mar = c(4, 4, 4, 1), mfrow = c(1, 3), cex = 1)

R> mod <- 2

R> for (sp in c("ACGR3", "PIEN", "POTR5")) {

+ presence.absence.hist(DATA = SPDATA[SPDATA$SPECIES ==

+ sp, ], which.model = mod, legend.cex = 1, N.bars = 15,

+ main = sp)

+ }

R> mtext(model.names[mod], side = 3, line = 0, cex = 1.5, outer = TRUE)
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Figure 3: Presence-Absence histogram for the See5 model for three species with increasing
prevalence.

These plots are also a good visual indicator of model quality. A more accurate model (such
as the See5 model for PICO) will have a distinctly double humped histogram. Choosing a
threshold in the valley will divide the data cleanly into observed present and observed absent
groups. A less accurate model (such as the See5 model for JUSC2) will have considerable
overlap between observed present and observed absent, and no threshold exists that will
cleanly divide the data into observe present and observed absent. The challenge here is to
find a threshold that offers the best compromise. There are several methods available to
optimize the choice of threshold, but this will be dealt with in a later section.

Compare the histograms for the See5 models for three species with similar prevalence, but
increasing model quality (Figure 4):

R> par(oma = c(0, 0, 3, 0), mar = c(4, 4, 4, 1), mfrow = c(1, 3), cex = 1)

R> mod <- 2

R> for (sp in c("JUSC2", "ABCO", "PICO")) {

+ presence.absence.hist(DATA = SPDATA[SPDATA$SPECIES ==

+ sp, ], which.model = mod, legend.cex = 1, N.bars = 15,

+ truncate.tallest = TRUE, main = sp)

+ }

[1] "height of tallest bar truncated to fit on plot"
[1] "height of tallest bar truncated to fit on plot"
[1] "height of tallest bar truncated to fit on plot"
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Figure 4: Presence-Absence histogram for the See5 model for three species with similar preva-
lence but increasing model quality.

R> mtext(model.names[mod], side = 3, line = 0, cex = 1.5, outer = TRUE)

4. Tables and calculations

4.1. Predicted prevalence

If it is important that the model predicts the prevalence of a species correctly, you can
choose a threshold where the predicted prevalence equals the prevalence threshold. The
function predicted.prevalence calculates a table showing the effect of threshold choice on
the predicted prevalence of the models.

Begin with the standard cutoff of threshold = 0.5, for declaring a species present or absent:

R> DATA <- SPDATA[SPDATA$SPECIES == species[1], ]

R> pred.prev <- predicted.prevalence(DATA = DATA)

R> for (sp in 2:N.sp) {

+ DATA <- SPDATA[SPDATA$SPECIES == species[sp], ]

+ pred.prev <- rbind(pred.prev, predicted.prevalence(DATA = DATA))

+ }

R> pred.prev <- cbind(species = species, pred.prev)
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R> pred.prev[, 3:6] <- round(pred.prev[, 3:6], digits = 2)

R> pred.prev

species threshold Obs.Prevalence GAM See5 SGB
1 ABCO 0.5 0.11 0.10 0.06 0.05
11 ABLA 0.5 0.19 0.17 0.18 0.15
12 ACGR3 0.5 0.06 0.08 0.02 0.02
13 CELE3 0.5 0.08 0.08 0.03 0.01
14 JUOS 0.5 0.27 0.26 0.26 0.25
15 JUSC2 0.5 0.12 0.05 0.02 0.01
16 PICO 0.5 0.11 0.13 0.13 0.10
17 PIED 0.5 0.24 0.24 0.26 0.24
18 PIEN 0.5 0.14 0.14 0.15 0.12
19 PIPO 0.5 0.10 0.09 0.07 0.07
110 POTR5 0.5 0.30 0.25 0.28 0.25
111 PSME 0.5 0.23 0.16 0.11 0.13
112 QUGA 0.5 0.15 0.14 0.08 0.10

We can look even closer at individual species to examine the effect of threshold choice on
prevalence:

R> sp <- 1

R> DATA <- SPDATA[SPDATA$SPECIES == species[1], ]

R> pred.prev <- predicted.prevalence(DATA = DATA, threshold = 11)

R> pred.prev[, 2:5] <- round(pred.prev[, 2:5], digits = 2)

R> print(paste("Species:", species[sp]))

[1] "Species: ABCO"

R> pred.prev

threshold Obs.Prevalence GAM See5 SGB
1 0.0 0.11 1.00 1.00 1.00
2 0.1 0.11 0.30 0.33 0.27
3 0.2 0.11 0.21 0.25 0.15
4 0.3 0.11 0.18 0.15 0.10
5 0.4 0.11 0.13 0.10 0.07
6 0.5 0.11 0.10 0.06 0.05
7 0.6 0.11 0.08 0.04 0.03
8 0.7 0.11 0.05 0.02 0.02
9 0.8 0.11 0.03 0.01 0.01
10 0.9 0.11 0.02 0.00 0.00
11 1.0 0.11 0.00 0.00 0.00

Setting threshold = 11 causes the function to calculate 11 evenly spaced thresholds between
zero and one. If it is important that the model predicts the prevalence of a species correctly,
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you can use this table to choose a threshold where the predicted prevalence equals the observed
prevalence. To calculate the prevalence at particular thresholds, the threshold argument can
be set to the values of interest, for example threshold = c(0.23,0.6,0.97)

4.2. Accuracy tables

The function presence.absence.accuracy calculates basic accuracy measures (PCC, sensi-
tivity, specificity, Kappa, and AUC) for presence-absence data, and (optionally) the associ-
ated standard deviations. The PresenceAbsence package uses the method from DeLong et al.
(1988) to calculate AUC and its associated standard deviation. By default the function will
calculate all basic accuracy measures at the threshold of 0.5:

R> sp <- 1

R> DATA <- SPDATA[SPDATA$SPECIES == species[sp], ]

R> accu <- presence.absence.accuracy(DATA)

R> accu[, -c(1, 2)] <- signif(accu[, -c(1, 2)], digits = 2)

R> print(paste("Species:", species[sp]))

[1] "Species: ABCO"

R> accu

model threshold PCC sensitivity specificity Kappa AUC PCC.sd
1 GAM 0.5 0.90 0.50 0.95 0.47 0.88 0.016
2 See5 0.5 0.91 0.36 0.98 0.44 0.86 0.014
3 SGB 0.5 0.91 0.34 0.99 0.44 0.91 0.014
sensitivity.sd specificity.sd Kappa.sd AUC.sd

1 0.076 0.0120 0.072 0.025
2 0.073 0.0071 0.078 0.028
3 0.072 0.0058 0.079 0.023

The standard deviations can be suppressed by setting st.dev=FALSE. Note that the standard
deviations calculated by presence.absence.accuracy are only appropriate for examining
each model individually. To do significance testing for differences between models it is neces-
sary to take into account correlation. DeLong et al. (1988) examines this issue and describes
a method for comparing the AUC from two or more correlated models. This method is not
included in the PresenceAbsence package, but can be found in the S-PLUS roc library from
the Mayo clinic (Atkinson and Mahoney 2004). See help(auc) for further details.

While the default for presence.absence.accuracy is to calculate accuracy measures for all
models at threshold = 0.5, the threshold argument can be used to set other thresholds.
When the table is being produced for multiple models, threshold must be either a single
threshold used for all models, or it must be a vector of thresholds of the same length as the
number of models in the table. In the later case, the first threshold will be used for the
first model, the second threshold for the second row, and so on. On the other hand, when
examining a single model (the which.model argument can be used to specify the model),
multiple thresholds can be calculated. This allows us to discover how the accuracy measures
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change as a function of threshold. Thus when producing a table for a single model, the
threshold argument can be given as a single threshold between zero and one, a vector of
thresholds between zero and one, or a positive integer representing the number of evenly
spaced thresholds to calculate.

R> sp <- 1

R> DATA <- SPDATA[SPDATA$SPECIES == species[sp], ]

R> accu <- presence.absence.accuracy(DATA, which.model = 3, threshold = 11,

+ st.dev = FALSE)

R> accu[, -c(1, 2)] <- signif(accu[, -c(1, 2)], digits = 2)

R> print(paste("Species:", species[sp]))

[1] "Species: ABCO"

R> accu

model threshold PCC sensitivity specificity Kappa AUC
1 SGB 0.0 0.11 1.000 0.00 0.000 0.91
2 SGB 0.1 0.81 0.840 0.80 0.400 0.91
3 SGB 0.2 0.89 0.660 0.92 0.510 0.91
4 SGB 0.3 0.92 0.570 0.96 0.570 0.91
5 SGB 0.4 0.91 0.430 0.98 0.490 0.91
6 SGB 0.5 0.91 0.340 0.99 0.440 0.91
7 SGB 0.6 0.91 0.200 1.00 0.300 0.91
8 SGB 0.7 0.90 0.160 1.00 0.250 0.91
9 SGB 0.8 0.89 0.045 1.00 0.078 0.91
10 SGB 0.9 0.89 0.000 1.00 0.000 0.91
11 SGB 1.0 0.89 0.000 1.00 0.000 0.91

R> accu <- presence.absence.accuracy(DATA, which.model = 3,

+ threshold = c(0.2, 0.4, 0.5, 0.89), st.dev = FALSE)

R> accu[, -c(1, 2)] <- signif(accu[, -c(1, 2)], digits = 2)

R> print(paste("Species:", species[sp]))

[1] "Species: ABCO"

R> accu

model threshold PCC sensitivity specificity Kappa AUC
1 SGB 0.20 0.89 0.66 0.92 0.51 0.91
2 SGB 0.40 0.91 0.43 0.98 0.49 0.91
3 SGB 0.50 0.91 0.34 0.99 0.44 0.91
4 SGB 0.89 0.89 0.00 1.00 0.00 0.91

In these tables, the AUC is constant for all thresholds. The AUC is the only one of these basic
accuracy statistics that is threshold independent. Calculating the AUC for large datasets can
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Figure 5: Graph of error measures (sensitivity, specificity, and Kappa) as a function of thresh-
old for two species with similar prevalence but differing model quality.

be very memory intensive. Setting the argument find.auc = FALSE will turn off the AUC
calculations, and increase the speed.

5. Graphing the error statistics as a function of threshold

Tables are useful for looking up specific values, but often it is easier to spot patterns visually
in a graph. The PresenceAbsence package provides visual displays of error statistics.

In this dataset, JUSC2 and PICO have the same prevalence, but PICO has better model
quality for all three models. This can be seen in these graphs in several ways. For PICO,
Kappa reaches a higher maximum value, and Kappa stays at higher values for a greater range
of possible thresholds. Also, the lines representing sensitivity and specificity cross at higher
value, thus it is possible to choose a threshold that gives a high level of sensitivity without
sacrificing specificity, and vice versa (Figure 5).

R> par(oma = c(0, 5, 0, 0), mar = c(3, 3, 3, 1), mfrow = c(2, 3),

+ cex = 0.7, cex.lab = 1.4, mgp = c(2, 0.5, 0))

R> sp <- c("JUSC2", "PICO")
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R> for (i in 1:2) {

+ DATA = SPDATA[SPDATA$SPECIES == sp[i], ]

+ for (mod in 1:3) {

+ if (i == 2 & mod == 3) {

+ legend.flag <- TRUE

+ }

+ else {

+ legend.flag <- FALSE

+ }

+ error.threshold.plot(DATA, which.model = mod, color = TRUE,

+ add.legend = legend.flag, legend.cex = 1.3)

+ if (mod == 1) {

+ mtext(sp[i], side = 2, line = 6.3, cex = 1.6)

+ mtext(paste("(", Obs.prev[names(Obs.prev) == sp[i]],

+ "Prevalence )"), side = 2, line = 4.3, cex = 1.3)

+ }

+ }

+ }

6. ROC plots and the AUC

ROC plots, with their associated AUC provide a threshold independent method of assessing
model performance. ROC plots are produced by assessing the ratio of true positives to false
positives for all possible thresholds. The AUC is equivalent to the chance that a randomly
chosen plot with an observed value of present will have a predicted probability higher than
that of a randomly chosen plot with an observed value of absent.

The plot from a good model will rise steeply to the upper left corner then level off quickly,
resulting in an AUC near 1.0. A poor model (i.e. a model that is no better than random
assignment) will have a ROC plot lying along the diagonal, with an AUC near 0.5 (Figure 6).

R> par(oma = c(0, 0, 0, 0), mfrow = c(1, 2), cex = 0.7, cex.lab = 1.5)

R> sp <- c("ACGR3", "POTR5")

R> for (i in 1:2) {

+ DATA <- SPDATA[SPDATA$SPECIES == sp[i], ]

+ auc.roc.plot(DATA, color = TRUE, legend.cex = 1.4, main = "")

+ mtext(sp[i], side = 3, line = 2.5, cex = 1.6)

+ mtext(paste(Obs.prev[names(Obs.prev) == sp[i]], "Prevalence"),

+ side = 3, line = 0.5, cex = 1.3)

+ }

Thresholds are not evenly spaced along the ROC plot, therefore it can be helpful to see where
individual thresholds lie along the curve. The mark argument will mark particular thresholds
along each models ROC plot. Notice how evenly spaced thresholds do not end up equal
distances apart along a ROC plot (Figure 7):
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Figure 6: ROC plot for two species with similar model quality but differing prevalence.

R> par(oma = c(0, 0, 0, 0), mfrow = c(1, 2), cex = 0.7, cex.lab = 1.5)

R> sp <- c("ACGR3", "POTR5")

R> for (i in 1:2) {

+ DATA <- SPDATA[SPDATA$SPECIES == sp[i], ]

+ auc.roc.plot(DATA, color = TRUE, legend.cex = 1.4, mark = 5,

+ which.model = 3, main = "")

+ mtext(sp[i], side = 3, line = 2.5, cex = 1.6)

+ mtext(paste(Obs.prev[names(Obs.prev) == sp[i]], "Prevalence"),

+ side = 3, line = 0.5, cex = 1.3)

+ }

ROC plots make model quality visually dramatic. Here, three species with the same prevalence
have very different model quality(Figure 8):

R> par(oma = c(0, 0, 2, 0), mar = c(4, 4, 4, 1), mfrow = c(1, 3),

+ cex = 0.7, cex.lab = 1.4, mgp = c(2, 0.5, 0))

R> sp <- c("JUSC2", "ABCO", "PICO")

R> for (i in 1:3) {

+ DATA <- SPDATA[SPDATA$SPECIES == sp[i], ]

+ auc.roc.plot(DATA, color = TRUE, legend.cex = 1.2, main = "")

+ mtext(sp[i], side = 3, line = 2, cex = 1.6)

+ mtext(paste(Obs.prev[names(Obs.prev) == sp[i]], "Prevalence"),

+ side = 3, line = 0.5, cex = 1.3)

+ }
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Figure 7: ROC plot for two species with similar model quality but differing prevalence, with
evenly spaced thresholds marked along the ROC curves.
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Figure 8: ROC plot for three species with similar prevalence but increasing model quality.
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7. Optimizing thresholds

7.1. Calculating the optimal thresholds

It is possible to get rough ideas of good threshold choices by looking at the error graphs, and
the accuracy and prevalence tables, however the PresenceAbsence library also includes the
function optimal.thresholds to calculate tables of optimized thresholds, by a choice of 12
different criteria (Table 2).

By default, optimal.thresholds checks 101 thresholds evenly spaced between zero and one,
and thus finds the optimal threshold to 2 significant digits. Some of the optimization criteria
(Sens=Spec, MaxSens+Spec, MaxKappa, MaxPCC, PredPrev=Obs, MinROCdist, Cost) can result
in tied threshold values. In these cases the ties are averaged to find the optimal threshold.
With criteria that are optimized by finding minimum or maximum values, the smoothing
argument can also be employed to deliberately average the best thresholds. Set smoothing=10,
for example, to find the average of the ten best thresholds for a given criterion.

If the sample size is large, the precision can be increased by setting the argument threshold
to larger numbers. Instead of the default threshold=101, set it to threshold=1001, or
threshold=10001. Note that the precision will still be limited by the sample size, as the
upper limit on precision is set by the number of unique thresholds in the data set.

To find the theoretically ‘best’ thresholds, would require calculating every possible unique
threshold (not necessarily evenly spaced). This is not included in the package, but if these
were calculated, they could be fed into the function optimal.thresholds via the threshold
argument.

criterion
ID

number criterion name threshold description
1 Default threshold set to 0.5
2 Sens=Spec threshold where sensitivity equals specificity
3 MaxSens+Spec threshold that maximizes sum of sensitivity and

specificity
4 MaxKappa threshold that maximizes Kappa
5 MaxPCC threshold that maximizes PCC
6 PredPrev=Obs threshold where predicted prevalence equals

observed prevalence
7 ObsPrev threshold set to Observed prevalence
8 MeanProb threshold set to mean predicted probability
9 MinROCdist threshold where ROC curve makes closest approach to (0,1)
10 ReqSens highest threshold where sensitivity meets user defined

requirement
11 ReqSpec lowest threshold where specificity meets user defined

requirement
12 Cost threshold based on user-defined relative costs ratio

Table 2: Possible optimization criteria
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The twelve possible criteria for optimizing thresholds are summarized in (Table 2). The
opt.methods argument is specified by a vector of criteria from this list. The methods can be
given by number, for example opt.methods=1:10 or opt.methods=c(1,2,4). They can also
be given by name, for example opt.methods = c("Default", "Sens=Spec", "MaxKappa").

The 12 criteria in more detail:

Default — The default criterion of setting threshold = 0.5.

Sens=Spec — The second criterion for optimizing threshold choice is by finding the thresh-
old where sensitivity equals specificity. In other words, find the threshold where positive
observations are just as likely to be wrong as negative observations.

MaxSens+Spec — The third criterion chooses the threshold that maximizes the sum of sensi-
tivity and specificity. In other words, it is minimizing the mean of the error rate for positive
observations and the error rate for negative observations. This is equivalent to maximizing
(sensitivity + specificity − 1)), otherwise know as the Youden’s index, or the True Skill Statis-
tic. Note that while Youden’s Index is independent of prevalence, Manel et al. (2001) found
that using the sum of sensitivity and specificity to select a threshold does have an effect on the
predicted prevalence, causing rare species to be given much lower thresholds than widespread
species, as a result, the distribution of rare species can be over predicted.

MaxKappa — The forth criterion for optimizing the threshold choice finds the threshold that
gives the maximum value of Kappa. Kappa makes full use of the information in the confusion
matrix to asses the improvement over chance prediction.

MaxPCC — The fifth criterion is to maximize the total accuracy PCC. A warning: while it may
seem like maximizing total accuracy would be the obvious goal, there are many problems with
using PCC to assess model accuracy. For example, with species with very low prevalence, it
is possible to maximize PCC simply by declaring the species absent at all locations. This is
not a very useful prediction.

PredPrev=Obs — The sixth criterion is to find the threshold where the predicted prevalence
is equal to the observed prevalence. This is a useful method when preserving prevalence is
of prime importance. If you have observed prevalence data from another source, you can use
the argument obs.prev to set the observed prevalence. Otherwise, obs.prev defaults to the
observed prevalence from DATA.

ObsPrev — The seventh criterion is an even simpler variation, where you simply set the thresh-
old to the Observed prevalence. It is nearly as good at preserving prevalence as method 6 and
requires no computation. Again, if you have observed prevalence data from another source,
you can use the argument obs.prev to set the observed prevalence. Otherwise, obs.prev
defaults to the observed prevalence from DATA.

MeanProb — The eighth criterion sets the threshold to the mean probability of occurrence
from the model results.

MinROCdist — The ninth criterion is to find the threshold that minimizes the distance between
the ROC plot and the upper left corner of the unit square.

ReqSens — The tenth criterion allows the user to set a required sensitivity, and then finds
the highest threshold (i.e. with the highest possible specificity) that still meets the required
sensitivity. The user can decide that the model must miss no more than, for example 15% of
the plots where the species is observed to be present. Therefore they require a sensitivity of
at least 0.85. This will then find the threshold that has the highest possible specificity while
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still meeting the required sensitivity. This may be useful if, for example, the goal is to define
a management area for a rare species, and one wants to be certain that the management area
does not leave populations unprotected.

ReqSpec — The eleventh criterion allows the user to set a required specificity, and then finds
the lowest threshold (i.e. with the highest possible sensitivity) that still meets the required
specificity. The user can decide that the model must miss no more than, for example 15% of
the plots where the species is observed to be absent. Therefore they require a specificity of at
least 0.85. This will then find the threshold that has the highest possible sensitivity while still
meeting the required specificity. This may be useful if, for example, the goal is to determine
if a species is threatened, and one wants to be certain not to over inflate the population by
over declaring true absences as predicted presences.

Note: For the ReqSens and ReqSpec criteria, the required sensitivity (or specificity) can
be changed to meet specific user requirements by the use of the req.sens and req.spec
arguments. If unspecified, the defaults are req.sens = 0.85 and req.spec = 0.85. Be
aware, though, that if the model is poor, and the requirement is too strict, it is possible that
the only way to meet it will be by declaring every single plot to be present (for ReqSens) or
absent (for ReqSpec), which is not a very useful method of prediction.

Cost — The twelfth criterion balances the relative costs of false positive predictions and
false negative predictions, as described by Fielding and Bell (1997). A slope is calculated
as (FPC/FNC ) ((1− prevalence) /prevalence), where FPC is false positive costs and FNC is
false negative costs. To determine the threshold, a line of this slope is moved from the top
left of the ROC plot, till it first touches the ROC curve. If the arguments for false positive
costs FPC and FNC are missing, the function will assume costs are equal.

Once again, if you have observed prevalence data from another source, you can use the
argument obs.prev to set the observed prevalence. Otherwise, obs.prev defaults to the
observed prevalence from DATA.

The criterion Cost can also be used for C/B ratio analysis of diagnostic tests. In this case FPC
is equivalent to C (the net costs of treating non-diseased individuals) and FNC is equivalent
to B (the net benefits of treating diseased individuals). For further information on the Cost
criterion see Wilson et al. (2004) and Cantor et al. (1999).

Below is an example of using optimal.thresholds to calculate a threshold table. The criteria
ReqSens, ReqSpec and Cost all depend on user defined requirements. In the first example
these arguments are missing, and the function generated warning messages:

R> sp <- "QUGA"

R> DATA <- SPDATA[SPDATA$SPECIES == sp, ]

R> print(paste("Species:", sp))

[1] "Species: QUGA"

R> optimal.thresholds(DATA, opt.methods = 1:12)

Method GAM See5 SGB
1 Default 0.5000000 0.5000000 0.5000000
2 Sens=Spec 0.1200000 0.1700000 0.1100000
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3 MaxSens+Spec 0.3000000 0.0900000 0.1750000
4 MaxKappa 0.3000000 0.3900000 0.3000000
5 MaxPCC 0.4250000 0.6800000 0.4475000
6 PredPrev=Obs 0.4400000 0.3800000 0.2650000
7 ObsPrev 0.1476684 0.1476684 0.1476684
8 MeanProb 0.1484497 0.1482098 0.1344168
9 MinROCdist 0.3000000 0.1800000 0.1100000
10 ReqSens 0.1300000 0.0800000 0.0700000
11 ReqSpec 0.0900000 0.2700000 0.1400000
12 Cost 0.4250000 0.6800000 0.4700000

In this second example, the arguments req.sens, req.spec, FPC and FNC are used to supply
these values:

R> sp <- "QUGA"

R> DATA <- SPDATA[SPDATA$SPECIES == sp, ]

R> print(paste("Species:", sp))

[1] "Species: QUGA"

R> optimal.thresholds(DATA, opt.methods = 1:12, req.sens = 0.9,

+ req.spec = 0.9, FPC = 2, FNC = 1)

Method GAM See5 SGB
1 Default 0.5000000 0.5000000 0.5000000
2 Sens=Spec 0.1200000 0.1700000 0.1100000
3 MaxSens+Spec 0.3000000 0.0900000 0.1750000
4 MaxKappa 0.3000000 0.3900000 0.3000000
5 MaxPCC 0.4250000 0.6800000 0.4475000
6 PredPrev=Obs 0.4400000 0.3800000 0.2650000
7 ObsPrev 0.1476684 0.1476684 0.1476684
8 MeanProb 0.1484497 0.1482098 0.1344168
9 MinROCdist 0.3000000 0.1800000 0.1100000
10 ReqSens 0.0500000 0.0600000 0.0600000
11 ReqSpec 0.1900000 0.3600000 0.2200000
12 Cost 0.7250000 0.6800000 0.5700000

7.2. Adding optimal thresholds to graphs

The optimized thresholds can be added to the histogram plots, the error statistic plots, and to
the ROC plots. To add optimal thresholds set the argument opt.thresholds=TRUE. (Note:
If the argument opt.methods is supplied, opt.thresholds will default to TRUE, otherwise
opt.thresholds defaults to FALSE.)

When the argument add.opt.legend = TRUE a legend is added giving the symbols used for
each threshold criterion, as well as the value of each optimized threshold. In this case, the
legend is giving the optimized thresholds for the SGB model for PICO.
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Histogram plots

We will begin with a histogram plot for three species with similar prevalence, but increasing
model quality (Figure 9). Notice how in the case of good models (such as the See5 model for
PICO), the all optimized thresholds fall into the trough in the center of the double humped
histogram. Poor models (such as the See5 model for JUSC2) do not have this double humped
histogram, and so there is no single threshold that will neatly divide the data into present and
absent groups. In these cases, the different optimization criteria tend to be widely separated,
each representing a different compromise between the error statistics.

R> par(oma = c(0, 0, 3, 0), mar = c(4, 4, 4, 1), mfrow = c(1, 3), cex = 1)

R> sp <- c("JUSC2", "ABCO", "PICO")

R> mod <- 2

R> for (i in 1:3) {

+ presence.absence.hist(DATA = SPDATA[SPDATA$SPECIES ==

+ sp[i], ], which.model = mod, N.bars = 15, truncate.tallest = TRUE,

+ legend.cex = 0.6, opt.legend.cex = 0.6, opt.thresholds = TRUE,

+ opt.methods = c(1, 2, 10, 4), req.sens = 0.85, main = sp[i])

+ mtext(paste(Obs.prev[names(Obs.prev) == sp[i]], "Prevalence"),

+ side = 3, line = 0.5, cex = 1.1)

+ }

[1] "height of tallest bar truncated to fit on plot"
[1] "height of tallest bar truncated to fit on plot"
[1] "height of tallest bar truncated to fit on plot"

R> mtext(model.names[mod], side = 3, line = 0, cex = 1.5, outer = TRUE)

Error statistics as a function of threshold

Plots created with error.threshold.plot always include sensitivity and specificity. Some
values of the argument opt.methods will result in adding additional accuracy statistics to
the graphs. These lines for the error statistics specified in opt.methods will be plotted, even if
opt.thresholds=FALSE. Four criteria from opt.methods add lines to error.threshold.plot:
MaxKappa, MaxPCC, MinROCdist, and MaxSens+Spec. The criteria MaxKappa and MaxPCC add
Kappa and PCC, respectively. The criterion MinROCdist adds the distance from the ROC
curve to the upper left corner of the ROC plot. Finally, the criterion MaxSens+Spec adds a
line showing (Sensitivity + Specificity − 1). In addition to these lines representing the error
statistics, for opt.methods criteria of ReqSens and ReqSpec, a light gray horizontal line is
drawn to mark the required sensitivity or specificity.

The default criteria are opt.methods=1:4 which results in lines for sensitivity, specificity and
Kappa. This is why the Kappa line was drawn in the error verses threshold plots in the
previous section, even though opt.thresholds had defaulted to FALSE.

Here are the error plots for 2 species (JUSC2 and PICO) with optimized thresholds added to
the plots (Figure 10). Both species have the same prevalence, but PICO had better model
quality than JUSC2 for all three types of models. When examining the graphs for the higher
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Figure 9: Histogram plot for three species with similar prevalence but increasing model quality,
with thresholds optimized by four criteria.

quality models, notice how sensitivity and specificity cross at a higher value, and also, the
error statistics show good values across a broader range of thresholds.

Note that while the symbols in the optimal threshold legend are correct for all 6 plots, the
actual thresholds given in the legend are specific to that particular plot (in this case, species
PICO, model SGB). In this particular case, if both legends had been included on all 6 plots,
there would not be room to see the plots themselves.

R> par(oma = c(0, 5, 0, 0), mar = c(3, 3, 3, 1), mfrow = c(2,

+ 3), cex = 0.7, cex.lab = 1.4, mgp = c(2, 0.5, 0))

R> sp <- c("JUSC2", "PICO")

R> for (i in 1:2) {

+ DATA = SPDATA[SPDATA$SPECIES == sp[i], ]

+ for (mod in 1:3) {

+ if (i == 2 & mod == 2) {

+ legend.flag <- TRUE

+ }

+ else {

+ legend.flag <- FALSE
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+ }

+ if (i == 2 & mod == 3) {

+ opt.legend.flag <- TRUE

+ }

+ else {

+ opt.legend.flag <- FALSE

+ }

+ error.threshold.plot(DATA, which.model = mod, color = TRUE,

+ opt.thresholds = TRUE, opt.methods = c(1, 2, 10,

+ 4), req.sens = 0.9, add.legend = legend.flag,

+ add.opt.legend = opt.legend.flag, legend.cex = 1.1,

+ opt.legend.cex = 1.1, vert.lines = FALSE)

+ if (mod == 1) {

+ mtext(sp[i], side = 2, line = 6.3, cex = 1.6)

+ mtext(paste("(", Obs.prev[names(Obs.prev) == sp[i]],

+ "Prevalence )"), side = 2, line = 4.3, cex = 1.3)

+ }

+ }

+ }

The argument vert.lines can be used to specify how the optimized thresholds are marked
on the plot: vert.lines=TRUE a vertical line is drawn at each optimized threshold, and
labeled along the top of the plot; vert.lines=FALSE the thresholds are marked along the
error statistics (the default).
The next graph shows three species with increasing prevalence, and illustrates how certain
optimization criteria (in this case setting the threshold so that sensitivity equals specificity) are
dependent on prevalence (Figure 11). This graph also illustrates how the different threshold
criteria tend to converge as prevalence increases. Finally, the graph for the low prevalence
species (ACGR3) drives home why maximizing PCC does not work well for species with very
low or very high prevalence. In the case of ACGR3, maximizing PCC gives a threshold of
0.95, which results in an extremely low sensitivity, therefore the model predictions will miss
nearly all of the true presences.

R> par(oma = c(0, 0, 2, 0), mar = c(4, 4, 4, 1), mfrow = c(1, 3),

+ cex = 0.7, cex.lab = 1.4, mgp = c(2, 0.5, 0))

R> sp <- c("ACGR3", "QUGA", "JUOS")

R> mod = 1

R> for (i in 1:3) {

+ DATA = SPDATA[SPDATA$SPECIES == sp[i], ]

+ if (i == 2) {

+ legend.flag <- TRUE

+ }

+ else {

+ legend.flag <- FALSE

+ }

+ if (i == 3) {

+ opt.legend.flag <- TRUE
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Figure 10: Error as a function of threshold for two species with similar prevalence, but differing
model quality, with optimized thresholds marked along plots
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+ }

+ else {

+ opt.legend.flag <- FALSE

+ }

+ error.threshold.plot(DATA, which.model = mod, color = TRUE,

+ opt.thresholds = TRUE, opt.methods = c("Default",

+ "MaxPCC", "Sens=Spec"), add.legend = legend.flag,

+ add.opt.legend = opt.legend.flag, legend.cex = 1.1,

+ opt.legend.cex = 1.1, vert.lines = TRUE, main = "")

+ mtext(sp[i], side = 3, line = 2, cex = 1.6)

+ mtext(paste(Obs.prev[names(Obs.prev) == sp[i]], "Prevalence"),

+ side = 3, line = 0.5, cex = 1.3)

+ }

ROC plots

As with previous plotting functions, the optimized thresholds can be added to the ROC plots.
This can get hard to read if all the models are on the same plot, so here the models are split
onto separate plots (Figure 12):

R> par(oma = c(0, 5, 0, 0), mar = c(3, 3, 3, 1), mfrow = c(2,

+ 3), cex = 0.7, cex.lab = 1.4, mgp = c(2, 0.5, 0))

R> sp <- c("JUSC2", "PICO")

R> for (i in 1:2) {

+ DATA <- SPDATA[SPDATA$SPECIES == sp[i], ]

+ for (mod in 1:3) {

+ auc.roc.plot(DATA, color = mod + 1, which.model = mod,

+ main = model.names[mod], opt.thresholds = TRUE,

+ opt.methods = c(1, 4, 6), mark.numbers = TRUE,

+ mark.color = FALSE, legend.cex = 1.1, opt.legend.cex = 1.1)

+ if (mod == 1) {

+ mtext(sp[i], side = 2, line = 6.3, cex = 1.6)

+ mtext(paste("(", Obs.prev[names(Obs.prev) == sp[i]],

+ "Prevalence )"), side = 2, line = 4.3, cex = 1.3)

+ }

+ }

+ }

8. Calibration plots

Calibration plots provide a goodness-of-fit plot for presence-absence models, as described by
Pearce and Ferrier (2000), Vaughan and Ormerod (2005), and Reineking and Schröder (2006).
Sensitivity, specificity, Kappa, and AUC all assess a model’s discriminatory ability, that is,
how accurately can the model divide the locations into presences and absences. Model cali-
bration, on the other hand, concerns the accuracy of the predicted probabilities, for example,
do 40% of the locations assigned a probability of 0.4 actually have the species present.
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Figure 12: ROC plot for two species with similar prevalence but different model quality, with
optimal thresholds marked along ROC curve.

This type of plot must be evaluated in light of the intended purpose of the model. Unlike a
typical goodness-of-fit plot from a linear regression model, with presence-absence data having
all the points lay along the diagonal does not necessarily imply an ideal model. The best bin
plot for presence-absence data depends on how the model is to be used.

If the model is to be used to produce probability maps, then it is indeed desirable that the
predicted probability is well calibrated to the true probability. For example, 80% of plots
with predicted probability of 0.8 should actually have observed presence. In this case, having
all the bins along the diagonal does indicate a good model.

However, if model is to be used simply to discriminate between species presence and absence,
then all that is required is that some threshold exists (not necessarily 0.5) where every plot
with a lower predicted probability is observed absent, and every plot with a higher predicted
probability is observed present. In this case, a good model will not necessarily (in fact, will
rarely) have all the bins along the diagonal. (Note: to check a models discriminatory ability
purpose presence.absence.hist will produce more useful diagnostics.)

Calibration plots can also provide a useful check on the selection of training and test datasets.
If all the bins lie above the diagonal, or all the bins lie below the diagonal, it may indicate that
the training and test datasets have different prevalence. In this case, it may be worthwhile
to re-examine the initial data selection.
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Figure 13: Calibration plot for two species with similar prevalence but different model quality.

In the calibration plots provided in the PresenceAbsence package, the locations are grouped
into bins based on their predicted values, and then the ratio of plots with observed values of
present verses the total number of plots in that bin is calculated. The confidence interval for
each bin is also included, and the total number of plots is labeled above each the bin. Here,
we produce calibration plots for JUSC2 and PICO (Figure 13):

R> par(oma = c(0, 5, 0, 0), mar = c(3, 3, 3, 1), mfrow = c(2,

+ 3), cex = 0.7, cex.lab = 1.4, mgp = c(2, 0.5, 0))

R> sp <- c("JUSC2", "PICO")

R> for (i in 1:2) {

+ DATA = SPDATA[SPDATA$SPECIES == sp[i], ]

+ for (mod in 1:3) {

+ calibration.plot(DATA, which.model = mod, color = mod +

+ 1, main = model.names[mod], xlab = "", ylab = "")

+ if (mod == 1) {

+ mtext(sp[i], side = 2, line = 6.3, cex = 1.6)

+ mtext(paste("(", Obs.prev[names(Obs.prev) == sp[i]],

+ "Prevalence )"), side = 2, line = 4.3, cex = 1.3)

+ }
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+ }

+ }

R> mtext("Predicted Probability of Occurrence", side = 1, line = -1,

+ cex = 1.4, outer = TRUE)

R> mtext("Observed Occurrence as Proportion of Sites Surveyed",

+ side = 2, line = -1, cex = 1.4, outer = TRUE)
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9. Summary plots

Finally, the function presence.absence.summary produces a useful summary page of the four
types of presence-absence plots, along with optimal thresholds and AUC value (Figure 14):

R> par(mar = c(4, 4, 4, 1))

R> sp <- "JUSC2"

R> DATA = SPDATA[SPDATA$SPECIES == sp, ]

R> MAIN <- paste(sp, "(", Obs.prev[names(Obs.prev) == sp], "Prevalence ) - ",

+ model.names[mod])

R> presence.absence.summary(DATA, opt.methods = c("MaxKappa",

+ "Default"), which.model = mod, N.bins = 10, N.bars = 15,

+ main = MAIN, legend.cex = 0.6, opt.legend.cex = 0.6, vert.lines = TRUE)

10. Conclusion

We have demonstrated the use of the PresenceAbsence package in a typical species mapping
scenario. We have explored the model output both graphically and analytically, and examined
the effects of optimizing the cut-off threshold by several different criteria. This analysis and
decision making process would be similar in other binary classification datasets. We hope we
have shown that the PresenceAbsence package provides a useful toolkit for map makers and
map users when evaluating the probability surface output from a presence-absence model,
and for translating the probability surface into species distribution maps for use in the field.
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Carstensen B, Plummer M, Läärä E, Myatt M, Clayton D, et al (2007). Epi: A Package
for Statistical Analysis in Epidemiology. R package version 0.7.0, URL http://CRAN.
R-project.org/.

Caruana R (2004). PERF: Performance Evaluation Code. ACM Special Interest Group on
Knowledge Discovery and Data Mining. URL http://www.sigkdd.org/kddcup/index.
php?section=2004&method=soft.

http://mayoresearch.mayo.edu/mayo/research/biostat/splusfunctions.cfm
http://mayoresearch.mayo.edu/mayo/research/biostat/splusfunctions.cfm
http://www.bioconductor.org/
http://CRAN.R-project.org/
http://CRAN.R-project.org/
http://www.sigkdd.org/kddcup/index.php?section=2004&method=soft
http://www.sigkdd.org/kddcup/index.php?section=2004&method=soft


Journal of Statistical Software 29

Congalton R (1991). “A Review of Assessing the Accuracy of Classifications of Remotely
Sensed Data.” Remote Sensing of Environment, 37(1), 35–46.

DeLong E, Delong D, Clarke-Pearson D (1988). “Comparing Areas Under Two or More Corre-
lated Receiver Operating Characteristic Curves: A Nonparametric Approach.” Biometrics,
44(3), 387–394.

Eng J (2006). jrocfit.org: Web-based Calculator for ROC Curves. Johns Hopkins University.
URL http://www.jrocfit.org/.

Farrand J, Langford T (2002). ROCOn: A Tool for Visualising ROC Graphs. University of
Bristol. URL http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/.

Fielding A, Bell J (1997). “A Review of Methods for the Assessment of Prediction Errors in
Conservation Presence/Absence Models.” Environmental Conservation, 24(1), 38–49.

Freeman E (2007). PresenceAbsence: An R Package for Presence-Absence Model Evaluation.
USDA Forest Service, Rocky Mountain Research Station, 507 25th Street, Ogden, UT,
USA. URL http://CRAN.R-project.org/.

Greiner M, Pfeiffer D, Smith R (2000). “Principles and Practical Application of the Receiver-
Operation Characteristic Analysis for Diagnostic Tests.” Preventive Veterinary Medicine,
45, 23–41.

Guisan A, Hofer U (2003). “Predicting Reptile Distributions at the Mesoscale: Relation to
Climate and Topography.” Journal of Biogeography, 30, 1233–1243.

Guisan A, Thuiller W (2005). “Predicting Species Distribution.” Ecology Letters, 8, 993–1009.

Hanley JA, McNeil BJ (1982). “The Meaning and Use of the Area Under a ROC Curve.”
Radiology, 143, 29–36.

Hirzel A, Le Lay G, Helfer V, Randin C, Guisan A (2006). “Evaluating the Ability of Habitat
Suitability Models to Predict Species Presences.” Ecological Modelling, 199, 142–152.

Insightful Corp (2003). S-PLUS Version 6.2. Seattle, WA. URL http://www.insightful.
com/.

Manel S, Dias J, Ormerod S (1999). “Comparing Discriminant Analysis, Neural Networks and
Logistic Regression for Predicting Species Distribution: A Case Study with a Himalayan
River Bird.” Ecological Modelling, 120, 337–347.

Manel S, Williams H, Ormerod S (2001). “Evaluating Presence-Absence Models in Ecology:
the Need to Account for Prevalence.” Journal of Applied Ecology, 38, 921–931.

Moisen G, Freeman E, Blackard J, Frescino T, Zimmerman N, Edwards T (2006). “Predicting
Tree Species Presence and Basal Area in Utah: A Comparison of Stochastic Gradient
Boosting, Generalized Additive Models, and Tree-Based Methods.” Ecological Modelling,
199, 176–187.

NCAR - Research Application Program (2007). verification: Forecast Verification Utilities.
R package version 1.20, URL http://CRAN.R-project.org/.

http://www.jrocfit.org/
http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/
http://CRAN.R-project.org/
http://www.insightful.com/
http://www.insightful.com/
http://CRAN.R-project.org/


30 PresenceAbsence: An R Package for Presence Absence Analysis

Pearce J, Ferrier S (2000). “Evaluating the Predicting Performance of Habitat Models Devel-
oped Using Logistic Regression.” Ecological Modelling, 133, 225–245.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.
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