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1.  INTRODUCTION

The analysis of extreme events under the present
climate is important in order to assess the reliability
of climate change projections, because it is likely that
the frequency and intensity of extreme events and
the size of affected areas will increase in the future
(Sánchez et al. 2011, Field et al. 2012). Beniston et al.

(2007) defines an extreme event as rare, intense and
severe. Thus, extreme events are usually analyzed in
terms of frequency distribution tails of climate vari-
ables, including high percentiles and record-break-
ing events, known to have caused severe impacts. 

A global tendency towards an increased frequency
of some extreme events during the 20th century has
been found in several studies, but the results show

© Inter-Research 2013 · www.int-res.com*Email: marta.dominguez@uclm.es

Present-climate precipitation and temperature
extremes over Spain from a set of high resolution

RCMs

Marta Domínguez1,*, Raquel Romera1, Enrique Sánchez2, Lluis Fita3, 
Jesús Fernández3, Pedro Jiménez-Guerrero4, Juan Pedro Montávez4,
William David Cabos5, Giovanni Liguori5, Miguel Ángel Gaertner2

1Environmental Sciences Institute, Environmental Science Institute, 45071 Toledo, Spain
2Environmental Science Faculty, University of Castilla-La Mancha, 45071 Toledo, Spain

3Grupo de Meteorología, Dept. Applied Mathematics and Computer Science, University of Cantabria, 39005 Santander, Spain
4Department of Physics, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 

30100 Murcia, Spain
5Department of Physics, Climate Physics Group, University of Alcalá de Henares, 28805 Madrid, Spain

ABSTRACT: In the frame of the Spanish project ESCENA, 5 regional climate model simulations
were analyzed in terms of their representation of precipitation and temperature extremes over
Spain. The climate complexity of the target domain poses a challenge for the models in terms of
their ability to simulate precipitation and temperature extremes. There are important differences
in comparison to previous similar studies (such as PRUDENCE and ENSEMBLES European pro-
jects): the domain of the present-climate simulations (1990 to 2007) is centered over the Iberian
Peninsula (IP), and the simulations are nested in ERA-Interim reanalysis. Two of the models (WRF
and MM5) were not part of the ENSEMBLES project. A new high-resolution (0.2° × 0.2°) database
(Spain02) of daily temperature and precipitation observations over Spain was used to validate the
results. The performance of the models depends on the climatic characteristics of the subregions.
Results are better for the northern coastal area of Spain, but for other Atlantic basins there are
some biases that cannot be linked to limitations in the representation of very heavy convective
events. Several models underestimate the amount of rain for heavy-precipitation days. This aspect
has not improved in general in comparison to ENSEMBLES results, despite the differences in
setup. In other respects, all models are at a similar level as the best subgroup of ENSEMBLES
models. The ESCENA simulations (covering more emissions scenarios and GCMs than ENSEM-
BLES project) can thus be considered a valuable complement of that European project for impact
studies over Spain.

KEY WORDS:  Climate extremes · Extreme precipitation · Extreme temperatures · Regional
 climate models · Iberian Peninsula · Heavy precipitation · Droughts · Heat waves

Resale or republication not permitted without written consent of the publisher

FREEREE
 ACCESSCCESS



Clim Res 58: 149–164, 2013150

large spatial variability (Alexander et al. 2006, Vin-
cent & Mekis 2006, López-Moreno & Beniston 2009,
Hirschi et al. 2010). The socio-economic impact of
extreme temperature is not only related to hot or cold
individual days, but also to persistent events like cold
and heat waves (Fischer & Schär 2010). More fre-
quent and intense summer heat waves have been
observed at global and European scales (Alexander
et al. 2006, Della-Marta et al. 2007, Barriopedro et al.
2011).

To understand the mechanisms behind extreme
events in present and future climate, global circula-
tion models (GCMs) and regional climate models
(RCMs) have been used. The increased frequency of
observed extreme events has been studied at differ-
ent spatial scales, from global (Frich et al. 2002), to
continental (Beniston & Stephenson 2004, Schär et al.
2004) and down to regional scale (Huth et al. 2000).
On this respect, the Intergovernmental Panel on Cli-
mate Change (IPCC 2001, 2007) recommended more
adequate analyses and regional detail for model pro-
jections. At the same time, end-users, such as impact
modellers, demand climate data at higher spatial res-
olution than given by GCMs (Castro et al. 2007).
There is, thus, a need for high resolution climate pro-
jections. Additionally, model uncertainties are ex -
plored by means of multi-model ensembles of simu-
lations. The generation of high-resolution regional
climate information through an ensemble of RCM
simulations has been the basis for several interna-
tional projects (e.g. PRUDENCE, ENSEMBLES in
Europe, NARCCAP in North America). Currently,
such an approach is being extended to most conti-
nental regions of the world in the frame of CORDEX
project (COordinated Regional climate Downscaling
EXperiment; Giorgi et al. 2009). Among other advan-
tages, the estimation of the spatial and temporal dis-
tribution of extreme precipitation episodes has been
improved using climate models with high resolution
(Beniston 2006, Frei et al. 2006, Beniston et al. 2007)
compared to those using lower resolutions.

In the Mediterranean region, extreme events have
strong impacts on ecosystems, socio-economic activi-
ties and agriculture (Vicente-Serrano et al. 2004, Lana
et al. 2006, Vicente-Serrano 2006a). Results from
RCMs including the Iberian Peninsula (IP) in their do-
mains (Sánchez et al. 2004, 2011, López-Moreno &
Beniston 2009, Herrera et al. 2010) highlight the im -
portance of high spatio-temporal resolution for the
study of extreme events over this area. The irregular-
ity of precipitation and the strong seasonal variations
in the IP make this region parti cularly interesting for
the study of precipitation and temperature extremes,

which caused considerable damage over the last
 century (García-Herrera et al. 2005, Vicente-Serrano
2006b). Instead of considering the IP as a single
region as in previous studies performed in the frame
of PRUDENCE and ENSEMBLES European Projects
(e.g. Boberg et al. 2009, 2010,  Fischer & Schär 2010,
Kjellström et al. 2010), in the present study the
 analyzed domain has been divided in 6 subregions to
take into account the high spatial variability of the IP
 climate. A correct simulation of present climate is
needed to detect changes in key variables that could
modify the availability of water resources (Martin-
Vide 2004, López-Moreno & Beniston 2009).

In previous modelling studies over Europe, RCM
simulations were compared with the gridded obser-
vational climate database E-OBS (Haylock et al.
2008). E-OBS has been very useful in many analyses
of temperature extremes (Fischer et al. 2007, Hirschi
et al. 2010). However, due to the high spatial variabil-
ity of the climate in the IP, the amount of stations un-
derlying E-OBS is insufficient for this region. High
resolution climate data (Brunetti et al. 2001, González-
Hidalgo et al. 2003) and gridded data based on much
denser station networks than E-OBS are needed for
RCM evaluation studies (Kysely & Plavcova 2010).
Here we use the 0.2° × 0.2° gridded daily precipitation
and temperature dataset Spain02 (see section 2.3),
 developed for Peninsular Spain (PS) and the Balearic
 Islands (BA) (Herrera et al. 2012). Spain02 was tested
 (Herrera et al. 2012) against point observations and
compared to E-OBS database. This new database
(Spain02) proved to represent better the intensity and
spatial variability of several standard extreme climate
indices defined by Sillmann & Roeckner (2008).

The present study analyzes the results for present
climate from 5 RCM simulations, focusing on their
ability to represent extreme events. The RCM simula-
tions have been performed within the Spanish project
ESCENA, and complement and extend ENSEMBLES
results (using the same horizontal resolution of 25 km)
through the use of improved and/or additional RCMs,
new GCM/RCM matrix combinations, and a larger
set of emission scenarios (A1B, A2 and B1). Results of
ESCENA project are publicly available for impact or
regional climate studies (http:// proyectoescena. uclm.
es). An important difference with respect to PRU-
DENCE and ENSEMBLES is the simulation domain. It
is centered over the IP and covers larger parts of the
Atlantic Ocean, including the Canary Islands, which
were not included in these European projects. Addi-
tionally, evaluation model runs are forced by the ERA-
Interim reanalysis instead of the ERA-40 reanalysis
used in ENSEMBLES. We focused this study on PS
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and the BA, where the high-resolution Spain02 data-
base is available.

2.  METHODS AND DATA

2.1.  Regional climate models

The RCM ensemble includes 5 different models
(PROMES, 2 versions of WRF model, MM5 and
REMO). These models have been developed at dif-
ferent institutions. A summary of the physics para-
meterizations for each of them is shown in Table 1.
These models are described in more detail in
Jiménez-Guerrero et al. (2013).

The RCM PROMES (Castro et al. 1993, Sánchez et
al. 2004) was developed at the Complutense Univer-
sity of Madrid and the University of Castilla-La Man-
cha (Spain). Several changes have been introduced in
PROMES with respect to previous simulations. The
most significant changes are the coupling to OR-
CHIDEE land surface model (Krinner et al. 2005) and
the change of radiation parameterization, as ex -
plained in Domínguez et al. (2010). The Weather Re-
search and Forecasting (WRF) model is a state-of-the-
art limited area model developed in collaboration
between the National Center for Atmospheric Re -
search (NCAR) and a number of research institutions
in the US. In this study we used the Advanced Re-
search WRF core (version 3.1.1; Skamarock et al.

2008), which is the research version of the model.
WRF model simulations were run by the Santander
Meteorology Group of the University of Cantabria,
Spain. The model includes modifications introduced
by this group to get averaged and extreme values of
surface variables (Fita et al. 2010) and was run
through the WRF4G execution workflow  (Fernández-
Quiruelas et al. 2010). Two different configurations
were used in the simulations (labeled as WRF-A and
WRF-B in Table 1). They only differ in the Planetary
Boundary Layer (PBL) scheme. WRF-A uses a local
scheme, whereas WRF-B uses a non-local scheme.
MM5-UM is the climate version of the fifth-
generation Pennsylvania State University−NCAR
mesoscale model (Dudhia 1993, Grell et al. 1994,
Gómez-Navarro et al. 2010). The physical configura-
tion (Table 1) has been chosen in order to minimise
the computational cost, since none of the tested con-
figurations provides the best performance for all
kinds of synoptic events and regions of the IP (Fer-
nández et al. 2007). REMO is a hydrostatic, 3-dimen-
sional regional climate atmospheric model, de -
veloped at the Max-Planck-Institute for Meteorology
in Hamburg. It is based on the Europa Model, a for-
mer numerical weather prediction model of the Ger-
man Weather Service and it is described in Jacob
(2001) and Jacob et al. (2001). REMO uses the physi-
cal package of the global circulation model ECHAM4
(Roeckner et al. 1996). All models are configured with
a relaxation boundary of 8 to 10 grid points.
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Table 1. Physics parameterizations used by the models in the simulations analyzed in the study. PBL: planetary boundary layer, 
LSM: Land Surface Model, CAM: Community Atmosphere Model

Model Microphysics Cumulus Radiation PBL Land surface

PROMES Includes ice
processes (Hong
et al. 2004)

Kain & Fritsch (1993) ECMWF (2004) with fractional
cloud cover (Chaboureau &
Bechtold 2002, 2005)

Cuxart et al.
(2000)

ORCHIDEE LSM
(Krinner et al. 2005)

WRF-A Single-moment 5-
class microphysics
(Hong & Lim
2006)

Grell & Devenyi
(2002)

CAM 3.0 (Collins et al. 2006) Local Mellor-
Yamada-Janjic
(Janjić 1990, 1994)

NOAH LSM 
(Chen & Dudhia
2001a,b)

WRF-B Single-moment 5-
class microphysics
(Hong & Lim
2006)

Grell & Devenyi
(2002)

CAM 3.0 (Collins et al. 2006) Non-local Yonsei
University (Hong
et al. 2006)

NOAH LSM 
(Chen & Dudhia
2001a,b)

MM5 Simple ice
(Dudhia 1989)

Grell (1993) Rapid radiative transfer model
(RRTM) (Mlawer et al. 1997)

Medium-range
forecast (MRF)
(Hong & Pan 1996)

NOAH LSM 
(Chen & Dudhia
2001a,b)

REMO Stratiform clouds
(Sundqvist 1978),
(Roeckner et al.
1996)

Mass flux convection
scheme after Tiedtke
(1989) with modifica-
tions after Nordeng
(1994)

Morcrette et al. (1986) with
modifications after Giorgetta &
Wild (1996)

Higher-order
closure scheme
(Brinkop &
Roeckner 1995)

Types of vegetation
(FAO). Bucket
scheme for hydro -
logy. Five layers for
thermal processes



Clim Res 58: 149–164, 2013

2.2.  Simulation set up

The RCM simulations cover part of Europe, with a
domain centered on the IP (Fig. 1 showing the land
mask and orography for each model) and 25 × 25 km
of horizontal resolution in Lambert Conformal pro-
jection (PROMES, both versions of WRF and MM5) or
in a rotated latitude−longitude coordinate system
(REMO). The topography has been interpolated from
GTOPO30 data (Verdin & Greenlee 1996). The hori-
zontal coordinates are arranged in Arakawa-B
(MM5) or Arakawa-C (PROMES, REMO and both
versions of WRF) grids. PROMES model used 37
sigma levels in the vertical, WRF 33, MM5 30 and
REMO 31 levels (up to 10 hPa for all models). The
simulations cover the period from 1990 to 2007, with
1 yr of spin-up.

The ERA Interim reanalysis derived from the latest
version of the operational ECMWF system has sev-
eral differences to ERA-40 (Uppala et al. 2005), such
as improvements in model physics, new humidity
analysis, variational bias correction of satellite radi-
ance data, among others (Dee & Uppala 2009). In this
study all models used boundary conditions from
ERA-Interim with a spatial resolution of 0.7° × 0.7°,
updated every 6 h.

2.3.  Spain02 observation database

The Spain02 precipitation and temperature data-
base is a daily gridded dataset developed by Herrera
et al. (2012) using surface station data from a set of

2756 quality-controlled stations over PS and the BA.
There are currently insufficient surface observations
to include the Canary Islands in the database. Here
we present the most important features of this obser-
vational data. This data set spans from 1950 to 2008,
with daily frequency and 0.2° × 0.2° resolution. The
fields were interpolated in a 2-step process. First, the
monthly means were interpolated using thin-plate
splines. Second, daily departures from the monthly
means were interpolated using a kriging methodol-
ogy. In the case of precipitation, occurrence and
amounts are interpolated through indicator and ordi-
nary kriging, respectively. The interpolation proce-
dure for precipitation is similar to that of the E-OBS
European database (Haylock et al. 2008), except for
the absence of the elevation-dependent splines
applied to E-OBS database, which was not used in
Spain02 (the topography is well represented by the
large amount of stations).

For temperature, the Spain02 database applied a
more stringent filter to the station data in order to
provide a product better suited for trend analyses.
Unlike the precipitation product, where the maxi-
mum number of available stations at a given day
were used, the temperature data set was built from a
reduced set of stations with the longest records. In
particular, only those stations with a record longer
than 40 yr and <1% of missing data were included in
the interpolation. This led to a set of 186 stations.
These stations were gridded using the same method-
ology as E-OBS (including the use of elevation as
covariable, given the smaller amount of stations).
The differences to E-OBS are the better quality and
larger amount of stations. The large number of sta-
tions used in this product com pared with E-OBS
database, provides a better representation of the pre-
cipitation (Herrera et al. 2012) and temperature vari-
ability over Spain. Details of the interpolation proce-
dure can be found in Herrera (2011) and Herrera et
al. (2012).

2.4.  Statistical analysis

The analyzed variables present a high spatial vari-
ability in a relatively small area, especially precipita-
tion (Herrera et al. 2010). In the study of the climate
features of a given region, information provided by
the frequency distribution is complementary to sim-
pler statistical analyses from which an integrated
representation of climatic conditions over a region is
provided (Giorgi et al. 2004a,b, Christensen & Chris-
tensen 2007, Déqué et al. 2007, Jacob et al. 2007).
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Fig. 1. Simulation domain of the 5 models used in the study: 
MM5, PROMES, REMO, WRF-A and -B
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Additionally, the use of subregions provides more
useful results for some impact studies. Thus, our pre-
cipitation analysis was performed using the upper
tail of the precipitation distribution for the subre-
gions, and by examining the values of some standard
extreme climate indices.

The probability density function (PDF) for precipi-
tation was approximated by a histogram of the rela-
tive frequencies of daily precipitation amounts (days
with precipitation ≥1 mm) binned into 1 mm d−1 bins.
A clearer visualization of the highest precipitation
values is provided using a logarithmic scale. The
PDFs are normalized by dividing by the total amount
of precipitation data (1 value per day and grid point)
in order to take into account the different size of the
subregions. Comparison of the simulated results with
observed values was performed using the PDFs cal-
culated directly at the original grids for each subre-
gion. Due to the similar resolution of both sources
(0.2° × 0.2° for Spain02 and 25 × 25 km for RCMs), the
differences in subregion limits and extension are
rather small among the different grids. This avoids
the smoothing of extreme values which may arise
from regridding.

In order to take into account the different precipita-
tion regimes, the PDFs and the related analyses were
carried out for different subregions obtained by
grouping the 11 basins described in Herrera et al.
(2010) according to the similarity of their annual
cycles. In Fig. 2 these subregions are shown for the
Spain02 grid; for the RCMs, equivalent subregions in
the original grid of each model have been used. The
6 subregions are North (NO), Center-South (CE-SU),
Levant (LE), Ebro (EB), Cataluña (CA) and the BA.

For the purpose of quantifying the overlap of the
upper tail of the precipitation PDF between every
RCM and Spain02, we applied a skill score (Perkins
et al. 2007), previously used by Boberg et al. (2009),
Boberg et al. (2010) and Kjellström et al. (2010). We
introduced a small variation in Perkins’ score, com-
puting only the upper tail of the PDF, defined as the
truncated PDF obtained using events larger than the
95th percentile of the observed precipitation. This
metric has been calculated on all grid points and re -
sults are given as spatial averages for each subre-
gion. It takes values between 0 to 1, where 1 indi-
cates maximum overlap.

Extreme temperatures are represented selecting
different percentiles of daily maximum and minimum
temperature depending on the season: the 10th per-
centile in winter (December to February) and the
90th percentile in summer (June to August). More-
over, in order to analyse extreme events in a comple-

mentary way, we used several indices (Klein Tank et
al. 2009) applied over the IP by authors like de la
Cruz Gallego et al. (2004), Sánchez et al. (2004), Gal-
lego et al. (2005) and Herrera et al. (2010), among
others. The selected indices are indicated in Table 2.

For precipitation, we selected medium-high inten-
sity indices representing droughts or high intensity
precipitation episodes. As frequency indices, we took
the consecutive dry days (<1 mm) index (CDD) and
the very heavy precipitation (>20 mm) days index
(R20mm). As intensity index, we chose the fraction of
precipitation due to events above the 95th percentile
(R95PTOT). We calculated some other indices, but
their spatial distribution was similar to the indices
shown. All indices (see Table 2) are presented as
yearly averages except R95PTOT.

For temperature, we used the yearly number of
heat waves (HWn), the yearly maximum heat wave
duration (HWd) and a set of temperature indices. A
heat wave is defined as an event with maximum tem-
peratures >35°C during at least 5 consecutive days.
This threshold has been calculated by averaging
over the whole domain the 95th percentile of Spain02
climatology (1961 to 1990). These indices are more
sensitive to model biases, since they are defined by
absolute values rather than relative ones. The com-
plementary temperature indices include the tropical
nights index (TR) (number of days with minimum
temperature >20°C) and the combined tropical
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Fig. 2. Spain02 database orography and subregions: North
(NO; 178 grid points), Center-South (CE-SU; 756), Levant (LE;
183), Ebro (EB; 234), Cataluña (CA; 57) and Balearic Islands 

(BA; 37)
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nights and summer days index (CHT, number of days
with minimum temperature >20°C and maximum
temperature >35°C; Fischer & Schär 2010).

The spatial representation of extreme indices is
analysed with the Pearson correlation for the whole
PS and BA. Regarding ensemble values, the ensem-
ble mean of the models indices was calculated for
each statistical index. In contrast, the PDF ensemble
was created using all daily precipitation data from all
the models without averaging.

3.  RESULTS

3.1.  Precipitation

3.1.1.  PDF tail analyses

Fig. 3 shows the simulated precipitation PDF for
the different RCMs, the multi-model ensemble and
the observed Spain02 data for the 6 subregions. The
large spatial variability of precipitation over the IP is
clearly seen from the observed precipitation PDFs.
Differences are relatively high: CE-SU subregion
shows comparatively low frequency of the most
extreme values (>100 mm d−1), whereas LE, CA and
BA show a relatively high frequency of such values.
This reflects the division between Atlantic and Medi-
terranean precipitation regimes.

The spread of the simulated PDFs is highly de -
pendent on the considered subregion. The lowest
spread of the simulations is seen in the NO subre-
gion. At the same time, differences between simu-
lated and observed values are the lowest there, basi-
cally due to the small temporal variability in the area.
Atlantic frontal systems are very frequent here. The
precipitation associated with these systems is in
 general well represented by RCMs (Herrera et al.
2010). By contrast, Mediterranean subregions have

a marked seasonal precipitation regime with high
spatio-temporal variability. Extreme precipitation is
quite often related to severe convective events which
are more difficult to simulate by RCMs (e.g. Herrera
et al. 2010). This result in a high spread of simulated
precipitation for the CE-SU subregion. This area
includes At lantic basins, where precipitation is typi-
cally linked to Atlantic depressions; however, the
seasonality of precipitation is much higher than for
the NO subregion. Most models tend to underesti-
mate precipitation for the CE-SU subregion, as found
in previous studies (e.g. Herrera et al. 2010).

Fig. 3 also shows the 95th percentile of Spain02
data, used as the threshold for the modified Perkins
score. Subregions like BA or CA have the highest
95th percentile values (~30 mm d−1), while for the
rest of the domain it most often does not exceed
25 mm d−1. Table 3 shows the calculated skill scores
values. The values at the NO and CE-SU subregions
are rather high (≥0.90). The spread is smaller there
than for the eastern part of PS. Maximum differences
of about 25% are found at the BA. Subregions with
higher spreads have lower scores. The RCMs present
in general a good agreement with the observed PDF,
with score values between 0.75 and 0.95, except for
the BA that have the lowest score (<0.74 for all mod-
els). These lower values could be related to the small
number of grid points representing the islands, and
the consequent worse representation of orography in
this subregion. The ensemble scores are consistently
higher than the scores obtained for the individual
models.

3.1.2.  Extreme precipitation indices

Regarding dry spells, the CDD index (Fig. 4, left
column) has a spatial distribution with a strong
north− south gradient. Center and South PS show the
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Index                                           Description                                                                                     Units

Precipitation                                                                                                                                                                         
CDD                                         Consecutive dry days index (yearly mean)                                                               d yr−1

R20MM                                    Very heavy precipitation days index (yearly mean)                                                d yr−1

R95PTOT                                 Precipitation fraction due to 95 percentile                                                                   %

Temperature
HWd                                         Maximum heat wave duration per year (yearly mean)                                            d yr−1

HWn                                         Heat wave number index (yearly mean)                                                          heat waves yr−1

TR                                             Tropical nights index (Tn > 20°C)                                                                              d yr−1

CHT                                          Combined HW and TR (Tn > 20°C and Tx > 35°C)                                                  d yr−1

Table 2. Precipitation and temperature extreme indices. Tx (Tn): maximum (minimum) temperature
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highest observed values, with maximum values
>100 d yr−1. This reflects the summer dry period. Dif-
ferences among RCMs are not high. Results show
generally an underestimation of observed values
over most of the domain, except some models (WRF-
A, WRF-B and REMO) in parts of the Mediterranean
subregions (LE, CA and BA). RCMs and observations
differ considerably in some areas, particularly near
the Mediterranean southern coast, where for exam-
ple PROMES or MM5 simulate values of ~40% of the
observed CDD. However, spatial correlations of
~0.90 for all models indicate a good concordance be -
tween observed and simulated spatial distributions of
this index (see Fig. 7). The ensemble mean only gives
a better value of the index in comparison with some
models in certain subregions.

The observed spatial distribution for R20MM index
and the corresponding model biases are shown in the
middle column of Fig. 4. The highest values are found
in the northern part of PS, in coherence with its pre-
cipitation regime. The next highest values are ob-
served in mountainous areas of the CE-SU subregion,
followed by CA subregion. The spatial distribution of
this index shows no clear relationship to the distribu-
tion of CDD index, as high numbers of days >20 mm
occur both for low and high CDD areas. This illus-
trates well the large differences of rain regimes in this
small domain. The smallest differences with respect
to observations are obtained by PROMES, whereas
the other RCMs underestimate this index, especially
both versions of WRF model (spatial correlation
values vary from 0.72 [WRF-A] to 0.79 [WRF-B]).

The R95PTOT index (Fig. 4, right column) is re lated
to the heaviest precipitation events. Observed values
obtained from Spain02 data show a clear maximum
for the Mediterranean coastal areas. The RCMs are
able to reproduce the observed climatic contrast be-
tween areas with high and low values of the heaviest
rain events. However, they slightly overestimate this
index over most of the do main. PROMES and MM5
show the largest positive bias extending over the
widest areas. WRF-A values are the closest of all
 models to the observed data over most of the domain.
The R95PTOT spatial correlations (see Fig. 7) are the
 lowest among all precipitation in di ces. These low
R95PTOT correlation values could indicate the diffi-
culty of simulating the precise spatial location of
heavy convective events using RCMs.

155

Fig. 3. Precipitation PDF of Spain02 data (black dots) and the 5 RCMs: PROMES (red), WRF-A (dark blue), WRF-B (light blue),
MM5 (pink) and REMO (green), and the ensemble mean (ENS; yellow) over 6 Spanish subregions (North: NO, Center-South:
CE-SU, Ebro: EB, Levant: LE, Cataluña: CA, Balearic Islands: BA) from January 1990 to December 2007. Gray lines: 95th 

percentile (p95) for each region

                   NO     CE-SU      LE         EB         CA        BA
                                    
PROMES   0.93       0.93       0.88      0.88       0.83       0.73
WRF-A       0.93       0.90       0.82      0.92       0.75       0.67
WRF-B       0.93       0.93       0.84      0.93       0.83       0.74
MM5          0.92       0.92       0.87      0.94       0.80       0.61
REMO        0.90       0.96       0.89      0.91       0.82       0.55
ENS           0.94       0.97       0.91      0.94       0.86       0.79

Table 3. Results for the modified Perkins’ skill score (see
Section 2.4) of extreme precipitation (higher than p95 of
Spain02) for the 6 Spanish subregions (North: NO, Center-
South: CE-SU, Levant: LE, Ebro: EB, Cataluña: CA, Balearic
Islands: BA), the 5 RCMs (PROMES, WRF-A, WRF-B, MM5 

and REMO) and the ensemble (ENS) mean
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Fig. 4. Spatial distribution of precipitation extreme indices (CDD: consecutive dry days index, R20MM: very heavy precipitation
days index, and R95PTOT: precipitation fraction due to 95th percentile) of Spain02 data (1st row) and the RCM biases for
PROMES, WRF-A, WRF-B, MM5, REMO and the ensemble mean (rows 2−7, respectively) from January 1990 to December 2007
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3.2.  Maximum and minimum temperature

3.2.1.  Seasonal percentiles

Fig. 5 presents the seasonal percentiles for maxi-
mum (Tx) and minimum (Tn) temperature. The first
and second columns show the 10th percentile respec-
tively of maximum (Tx10) and minimum (Tn10) tem-
peratures in winter. Spain02 shows the lowest values
of Tx10 in the northern part of PS (reaching −3°C in
the Pyrenees) while the lowest values (down to
−10°C) for Tn10 are found in the central-eastern
highlands around the Iberian Mountain Range. This
reflects the continental characteristics of the interior
climate (Castro et al. 2007). The 90th percentile for
maximum (Tx90) and minimum (Tn90) temperatures
in summer are represented in the third and fourth
columns of Fig. 5. The highest values of Tx90 (~40°C)
appear in the CE-SU subregion of the IP, related to
the typical summer thermal lows over this area
(Hoinka & de Castro 2003). The thermal inertia of the
oceans leads to smaller differences between Tx90
and Tn90 in coastal areas (with values between 4 and
14°C in NO, LE and CA subregions, not shown) and
to higher differences in continental areas (with values
between 14 and 24°C in CE-SU and EB subregions).

In general, a similar spatial distribution was ob tained
forallmodels,withalowspreadamongthem,exceptfor
REMO Tn percentiles. The spatial distribution of the
Spain02 percentiles was generally well reproduced by
the models. The highest correlation was found for Tx
(see Fig. 7). Correlation values ob tained for percentiles
ofTxare0.83 to0.95,and0.79 to0.86 forTnpercentiles.
REMO has the lowest values for cold nights (0.79).

Most of the RCMs underestimate the Tx10 values,
with moderate differences in some areas. REMO is
the model with values closer to Spain02. Both ver-
sions of WRF and MM5 also underestimate the Tx90,
while PROMES matches Spain02 percentiles in the
western part of PS and overestimates them, particu-
larly on the Mediterranean coast and the BA. Re-
garding minimum temperature percentiles, the val-
ues obtained by REMO are higher than the simulated
by the rest of models, and also higher than the obser-
vations in most of the domain, as discussed below.
These biases of REMO reach up to 10°C in areas
where these percentiles reach their minimum values.

3.2.2.  Extreme temperature indices

Fig. 6 presents the indices that have been used to
describe temperature extreme events like heat

waves (defined in Table 2). Spain02 shows that the
highest heat wave frequency (HWn; first column) is
located in the CE-SU subregion (up to 5 heat waves
yr−1), with a maximum duration (HWd; second col-
umn) that varies between 6 and 16 d in PS. It should
be noted that these indices are sensitive to model
biases as they are related to a fixed observational
threshold.

The spread of HWn values is large among the
RCMs. There is some tendency of the models to
underestimate this index compared with observa-
tions, with the exception of PROMES and REMO,
which overestimate the number of heat waves partic-
ularly in southern and eastern coastal areas. The
models which underestimate the number of heat
waves also tend to underestimate their duration. In
contrast, PROMES and REMO simulate longer than
observed heat waves, especially over the southwest-
ern part of PS. The spatial distribution of these in di -
ces presents correlation values between 0.43 (HWd
for WRF-A) and 0.88 (HWn for MM5) (Fig. 7); HWd is
the index with the lowest spatial correlation values
for all models.

Fig. 6 also shows other indices related to factors
that have a social and economical impact on the stud-
ied area (AEMET 2007, Fischer & Schär 2010): TR
(third column) and CHT (last column), defined in
Table 2.

Spain02 present the highest TR value in the east-
ern coasts and the BA, with >100 d yr−1. Values
around 20 or 30 d yr−1 are observed in most of the
southern half of PS and the Ebro valley, while in the
remaining areas TR has a value of <2 d yr−1. The
thresholds used to compute CHT are the same as
those used for TR and HW, but the spatial distribu-
tion of the CHT index is more similar to HWn than to
the TR index, with highest values in CE-SU subre-
gion (up to 40 d yr−1). This fact highlights the need for
studying the TR index separately in extreme temper-
ature analysis. For instance, in the case of the BA, the
value of TR is >100 d yr−1, while CHT is <15 d yr−1.

Differences of TR values among RCMs are related
to the differences obtained for Tn90 index (see last
column in Fig. 5), with higher values for the BA and
the southern part of PS. In general, all the models
underestimate TR in the central area of PS except
REMO, which overestimates this index in most of the
domain. CHT is also clearly overestimated by REMO
in many parts of PS, reaching values up to 3 times
higher than the observed ones. If we consider the
biases of maximum and minimum temperature per-
centiles (Fig. 5), this latter bias is probably more
related to the minimum temperature biases. Higher
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Fig. 5. Spatial distribution for temperature seasonal percentiles: Tx10 (Tn10) = 10th percentile for maximum (minimum) tem-
peratures for winter; Tx90 (Tn90) = 90th percentile for maximum (minimum) temperature for summer. Top row: Spain02 data. 

Rows 2−7: RCM biases for PROMES, WRF-A, WRF-B, MM5, REMO and the ensemble mean
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Fig. 6. Spatial distribution for yearly heat wave indices: HWn (heat wave frequency), HWd (heat wave duration), tropical
nights (TR), combined tropical, and summer days (CHT). Top row: Spain02, Rows 2−7: RCM biases for PROMES, WRF-A, 

WRF-B, MM5, REMO and the ensemble mean
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than observed values are also simulated by PROMES
in the southern and eastern coasts. This positive bias
for PROMES is also noticeable in the BA, which is in
agreement with Tx90 percentile (Fig. 5) and HWn
and HWd indices (Fig. 6). All models except REMO
underestimate CHT for the area with the highest
observed values of this index. Spatial correlations for
both indices vary between 0.60 and 0.79. The ensem-
ble mean of the CHT index does not present an
important improvement compared to the results of
the individual models.

4.  DISCUSSION AND CONCLUSIONS

We have analyzed the ability of 4 RCMs (WRF,
MM5, PROMES and REMO) to reproduce climate ex -
tremes in an evaluation simulation over PS and the
BA, for the period 1990−2007. This work is part of a
Spanish project (ESCENA) for generating a set of
regional climate change scenarios over this region. In
comparison to previous climate validation studies
over this domain, there are important differences: the
domain is centered over the IP, unlike the domain
used in ENSEMBLES project in which the lateral
boundaries were very near to this region, and the
models are nested in the ERA-Interim reanalysis. The
multi-model ensemble also includes WRF (WRF-A
and -B, with different PBL schemes) and MM5, which
were not included in ENSEMBLES. 

There is a very large range of pre-
cipitation re gimes in this small ana-
lyzed region. Three areas stand out for
at least one of the extreme indices: the
northern coast, the southwestern area
and the Mediterranean coast. The
northern coast is an area with low
CDD and high R20MM values. Precip-
itation occurs throughout the year,
and the interannual variability (shown
in the companion paper, Jiménez-
Guerrero et al. 2013) is rather low. For
this regime, the spread of the model
results is the lowest, as indicated by
the Perkins skill score (Table 3). CDD
and R95PTOT are rather well repro-
duced by all models, but they clearly
differ in the R20MM index, for which
several models show an important
negative bias.

By contrast, the spread of the results
for the southwestern area is higher,
and there is a clear tendency of most

models to underestimate precipitation. This occurs
despite the fact that the PDF shows comparatively
low frequency for very high precipitation values, and
therefore model errors cannot be linked mainly to
problems in simulating very heavy convective pre-
cipitation events. This is an area where model biases
in a previous study with ENSEMBLES project results
(Herrera et al. 2010) were also large. A possible rea-
son for those biases in ENSEMBLES simulations
could have been the proximity of lateral boundaries,
or limitations of moisture values of ERA40 re analysis.
ERA-Interim, among other improvements, has intro-
duced a new humidity analysis. But the present
setup, with western lateral boundaries far away from
this region and nesting in ERA-Interim, does not
improve previous results. We can obtain more infor-
mation about biases in this area from the companion
paper (Jiménez-Guerrero et al. 2013). As shown
there, the interannual variability is high and is not
well captured by most models. But at the same time,
results shown in this companion paper indicate that
all models show high temporal correlations. This sug-
gests that the timing of precipitation events is well
captured (a result that could be linked to the fact that
major precipitation events are frequently due to
large scale Atlantic depressions), but the precipita-
tion amounts are not. The fact that there is one model
(PROMES) showing better results over this area indi-
cates that the negative bias could be associated with
some aspect of the model formulation.
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Fig. 7. Spatial correlations between simulated and observed precipitation and
temperature indices of the 5 RCMs (PROMES, WRF-A, WRF-B, MM5 and
REMO) and the ensemble mean, and the mean correlation of all indices for 

each model (last column). Index definitions in Table 2 and Fig. 5
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For the Mediterranean coast, the number of days
with >20 mm of precipitation is smaller than for the
southwestern part, but R95PTOT is much larger, and
the PDF tails show a large frequency of very high
precipitation. A similar negative bias in R20MM can
be seen for all models except PROMES, but
 R95PTOT is rather well captured by all models. In
contrast to the southwestern area, the temporal cor-
relation (Jiménez-Guerrero et al. 2013) is much lower
for all the models here. This indicates that the errors
for the Mediterranean coast are also linked to defi-
ciencies in the simulation of the temporal distribution
of precipitation. An interesting result, specific to the
Mediterranean subregions, is that the ensemble
mean is worse than the individual models in repre-
senting the frequency of very high precipitation
events. The ensemble mean underestimates this fre-
quency. A possible reason is that strong convective
events are spatially localized, and the specific loca-
tions are simulated differently by the models. Thus,
the average would tend to smooth out these very
high precipitation amounts.

Modelled values of maximum temperature per-
centiles are generally lower than observed, with the
exception of REMO. By contrast, this model shows a
considerable overestimation of minimum tempera-
ture percentiles and of TR and CHT indices, indica-
ting a problem with minimum temperatures. The
REMO version used here already includes the im -
provements discussed in Kjellström et al. (2010) for
winter minimum temperatures. The present biases in
REMO results must have different causes, which are
still unknown. The spatial distribution of tempera-
ture percentiles is particularly well simulated by all
models, as illustrated by the high spatial correlation
values.

ESCENA also explored a very limited part of the
uncertainty accounted for by the physical parameter-
izations using the WRF model in 2 configurations.
The differences between the local and non-local PBL
closure schemes used are most noticeable in the
 minimum temperature indices, since the local clo-
sure configuration (WRF-A) shows a weaker low
level mixing during nighttime (García-Díez et al.
2013), which leads to cooler minimum temperatures
(and associated percentiles). WRF-B used a non-local
closure scheme, very similar to that used by MM5,
leading to very similar biases in the winter cold
extremes (Fig. 5, Tn10).

The present multi-model ensemble can be com-
pared to the one of ENSEMBLES project (Herrera et
al. 2010). The spatial correlations of the precipitation
indices of models involved in both projects (PROMES

and REMO) are similar in both cases. In the case of
ENSEMBLES models, for some indices there was a
clear division between models with high and low
 correlation values. In particular, results for R20MM
index can be compared directly. The comparison
indicates that all models of the present ensemble are
at a similar level to the best subgroup of ENSEM-
BLES models, and clearly above the worse models
of that project. Therefore, the ESCENA simula-
tions (covering more emissions scenarios and GCMs)
can be considered a valuable complement to the
ENSEMBLES results for impact studies over Spain.
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