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Algal assemblages are critical components of marine ecosystems from the intertidal

to mesophotic depths; they act as primary producers, nutrient cyclers, and substrate

providers. Coral reef ecosystems can be disrupted by stressors such as storm events,

effluent inundation, sudden temperature shifts, and non-native invaders. Avrainvillea

amadelpha is an invasive green alga that was first recorded in the main Hawaiian

Islands on the west shore of Oahu and has continued to be of concern due to

its extreme competitiveness with native algae and seagrasses. It has spread rapidly

across the island of Oahu, decreasing the biodiversity of the benthos from shorelines to

∼90 m depth. We employed a boosted regression tree modeling framework to identify

highly vulnerable regions prone to invasion. Our model indicated that regions exposed

to minimal bottom currents and at least five degree heating weeks are particularly

susceptible to A. amadelpha colonization. Additionally, we extrapolated our model to

the main Hawaiian Islands and forecasted how a 25% increase in statewide annual

maximum degree heating weeks may change habitat suitability for A. amadelpha.

Across all islands, we identified particularly vulnerable “hotspot” regions of concern for

resource managers and conservationists. This manuscript demonstrates the utility of

this approach for identifying priority regions for invasive species management in the face

of a changing climate.

Keywords: biodiversity management, boosted regression trees, invasive species, macroalgae, mesophotic,

species distribution model

INTRODUCTION

Disturbances can dramatically alter the community composition of coral reef ecosystems. The
replacement of coral cover by macroalgae is known as a “phase shift” (Littler and Littler, 1984;
MacManus and Polsenberg, 2004; Bruno et al., 2009), which can occur in response to pressures
such as storm events (Rogers andMiller, 2006), coral disease outbreaks (Aronson and Precht, 2001;
Porter et al., 2001), nutrient input (McCook, 1999), or removal of herbivores (Hughes et al., 2007).
Often, these stressors occur simultaneously or in sequence as one stress event lowers the threshold
of coral resilience, thereby magnifying total coral mortality (Brandt et al., 2013; Redding et al., 2013;
Casey et al., 2014; Vega-Thurber et al., 2014).
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Shallow coral reef ecosystems endure common reef stresses,
including overuse and physical degradation (i.e., trampling),
overextraction, chemical degradation from land-based runoff,
effluent, or pollutants, and invasion by harmful bacteria, viruses,
or competitors (Rodgers et al., 2003; Friedlander et al., 2017;
Stamoulis et al., 2017; Takesue and Storlazzi, 2017). Invasive algae
are an ecological and economic concern in Hawaii (Smith et al.,
2002; Schaffelke et al., 2006; Westbrook et al., 2015). Invasive
species can become opportunistic when some environmental
change facilitates their spread and allows them to outcompete
native species. In Hawaii, eutrophication due to runoff likely
influenced the spread of the non-native and invasive red alga
Hypnea musciformis (Smith et al., 2002) and blooms of the native
green alga Dictyosphaeria cavernosa (Stimson et al., 1996).

One example of a particularly troublesome competitor that
has garnered statewide attention in the past several decades
is the invasive green macroalga Avrainvillea amadelpha. This
macroalga, also known as “leather mudweed” due to its thick,
paddle-like blades (Figure 1a), was first discovered in Hawaii in
1981 (Brostoff, 1989) and has been observed from the intertidal to
the mesophotic zone (30–90 m) (Spalding, 2012; Pyle et al., 2016;
Cox et al., 2017). Its origin and phylogeny remain uncertain,
but it is not present in historical records of shallow marine
habitats around the main Hawaiian Islands (MHI) (Brostoff,
1989). To date, this highly successful macroalga has spread
across Oahu (Figure 2) and has been observed sporadically
around Kauai (Smith et al., 2002; Wade and Sherwood, 2018).
In the mesophotic zone, video records show A. amadelpha
beds competing with meadows of an undescribed Udotea sp.
(Spalding, 2012) (Figures 1b,c).

Avrainvillea amadelpha is of particular concern in Hawaii
because of its weedy characteristics, such as benthos
alteration (Martinez et al., 2009; Sansone et al., 2017),
tolerance to environmental extremes (e.g., light availability,
exposure, etc.), and unpalatability to native herbivores
(Van Heukelem, 2016). The alga is also presumed to have
successful vegetative propagation via fragmentation and
holdfast siphon viability like many other siphonous green
algae (Walters and Smith, 1994). This alga may also change
the community diversity and structure across invaded reefs.
Langston and Spalding (2017) recorded a higher abundance
of fishes above open sand versus within A. amadelpha
canopy; Longenecker et al. (2011) determined that removal
of A. amadelpha returned invertebrate communities to
compositions observed in unaffected regions. All of these
traits combine to make A. amadelpha a formidable competitive
presence across reefs.

The state has spent over $2 million to remove 1.32 million
kilograms ofA. amadelpha across a 90,000m2 swath ofMaunalua
Bay, Oahu (Kittinger et al., 2016). Much effort has been
invested in observing and recording A. amadelpha invasions,
as well as stymying the progress of ongoing invasions (Hawaii
Department of Aquatic Resources, unpublished data). However,
to date, no projections exist regarding the potential spread
of this invasive macroalga across shallow reef systems. When
used as a management tool, habitat suitability models may
provide critical information about the current or probable future

FIGURE 1 | (a) Video still of dense A. amadelpha meadow off the coast of

southwest Oahu observed during submersible dive RCV-369. Video stills of

A. amadelpha overtaking the lime green blades of native Udotea alga. Dives

RCV-369 (b) and P4-188 (c) were conducted off the southwestern and

southern coasts, respectively, of Oahu. All stills were taken at depths of

40–50 m in the upper mesophotic zone in November 2006.

distribution of opportunistic competitors (Guisan et al., 2017).
Habitat suitability models can also improve understanding of
dispersal methods and provide early warning about regions
that are particularly vulnerable, but not yet invaded. This
work sheds light on areas of particular concern across the
state and presents a transferable, quantitative framework that
resource managers may utilize as one aspect of monitoring for
invasive species.
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FIGURE 2 | Geolocated survey data denoting 23,421 observations of A. amadelpha occurrence around Oahu, Hawaii, from 2015 to 2017. Presence observations

are demarcated with red triangles and absence observations are demarcated with blue circles. Observations edited for overlap at 250 m raster resolution scale and

constrained to depths <90 m.

MATERIALS AND METHODS

Observational Data
Our observational data were sourced from video obtained during
submersible and remotely operated vehicle (ROV) dives and
shore-based or snorkeling surveys (Figure 2 and Table 1).
The Hawaii Undersea Research Laboratory provided records of
Pisces submersible and RCV-150 ROV dives conducted during
November 2006. To obtain mesophotic records of A. amadelpha
occurrence, we processed 34 h of footage from 7 dives across
all coastlines around Oahu (Supplementary Table S1). We
collected 3,796 new snapshots of the benthos by pausing each
video track in 30 s intervals. From these, 2,441 photo stills
were excluded from our mesophotic data set due to blurriness,
stationarity of the vessel, or positioning outside the depth
maximum (>90 m). We collected shallow (∼5–10 m) subtidal
observations of A. amadelpha during multiple snorkeling and
free-diving expeditions conducted from July 2015 to November
2017. We combined these data with two existing subtidal survey
data sets, which included data from 2015 to 2017 provided by
the Hawaii Department of Aquatic Resources. Intertidal shore-
based survey data were acquired through transect sampling at low
tides (0– to −0.15 m) by the Our Project in Hawaii’s Intertidal
school-based monitoring program fromMarch to June 20171.

We removed 8,040 observations from the raw data set of
33,286 points due to overlap within pixels or failure to fall within

1https://opihi.crdg.hawaii.edu

TABLE 1 | Raw observational data survey information.

Survey type Survey dates Number of

presence points

Number of

absence points

Mesophotic 11/2006 124 1874

Snorkel 6/2015–11/2017 31,223 56

Shore 3/2017–6/2017 4 5

our depth range (0–90 m). All shoreline survey point data were
inspected for geographical precision and manually moved to the
closest classified marine pixel if needed. All observational data
were combined into one data set spanning depths from 0 to 90 m
and covering all coastlines across Oahu. Data were resampled to
fit a grid size of 250 m× 250 m and duplicate observations within
the same grid cell were removed, resulting in a final data set of 276
observations of A. amadelpha presence (207) or absence (69).

We note that the mesophotic video data used to build
this model were gathered approximately one decade before
the intertidal and shallow observations. This gap in data
collection is due to the costly nature of submersible dives,
and we stress that these mesophotic data comprise the most
extensive, up-to-date catalog of A. amadelpha occurrence below
the shallow (>30 m) zone.

Environmental Data
We considered 15 environmental predictor variables
for inclusion in our model (Supplementary Table S2).
We represented these predictor variables, or covariates, as
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250 m raster grid layers across the study domain, which extended
approximately 1–2 km from the coast and encompassed depths
from 0 to 90 m. We broadly categorized predictors into three
classifications: topographic, oceanographic, and anthropogenic.
All covariates were selected for consideration based on their
representation in the literature as potentially influential in
determining the distribution of A. amadelpha. These covariates
may have a direct influence on the metabolic constraints and,
therefore, the occurrence ofA. amadelpha. ThoughA. amadelpha
has, to date, only been observed around Oahu and sporadically
in Kauai, we applied our model to the extended domain of the
MHI (Hawaii, Maui, Lanai, Molokai, Kahoolawe, Oahu, Kauai,
and Niihau). We expect our model to identify regions that
are most suitable for A. amadelpha habitation, which we can
pinpoint as at-risk areas that managers may prioritize during
monitoring efforts.

Considered topographic variables included seafloor slope,
aspect (i.e., compass direction of seafloor), rugosity (i.e.,
roughness), and bathymetric position index, which is a
metric that combines the bathymetry and seafloor slope
within a 5 km neighborhood of a given point. Considered
oceanographic variables included seafloor current velocity
(annual mean), seafloor temperature (annual mean), surface
chlorophyll a concentration (annual mean), and surface turbidity
(annual mean). Lastly, considered anthropogenic variables
included indices describing fishing pressure, nearshore coastal
development, anomalous sea surface warming, annual estimated
ship crossings, nutrient and sediment inputs, and proximity
to human population (Falinski, 2016; Lecky, 2016; Wedding
et al., 2018). Fishing pressure and coastal development were
scaled from 0 to 1 by dividing a given value by the
maximum value in the respective categories. Anomalous sea
surface warming, represented as degree heating weeks (DHW),
is a metric which couples the duration and intensity of
abnormally warm ocean surface temperatures (Liu et al.,
2013). Supplementary Table S2 includes further details about
considered environmental covariates.

We first examined the spatial coverage of all covariate
layers. We excluded the layers displaying proximity to
human population and sediment influx from inclusion in
our analyses due to their insufficient spatial overlap with mapped
observational data and patchy coverage across the considered
depth range surrounding the remaining MHI. We chose not
to extrapolate these two layers based on our uncertainty about
introducing significant error in our predictor data. The data
sets detailing nutrient flux and coastal development were
more spatially extensive, allowing us to extrapolate the closest
offshore values for each variable and apply these values to
approximately 5% of offshore observational data points outside
the coverage of the layers.

Collinearity of predictor variables may preclude suitable
model fitting (i.e., preventing the model from converging
or contributing to high standard errors in coefficient
estimates). We created a correlation scatterplot to examine
the relationships between all covariates and the response variable
(i.e., A. amadelpha occurrence) (Supplementary Figure S1).
Per Tabachnick and Fidell (1994) and Dancey and Reidy (2004),

we removed covariates that met one or more of the following
conditions: lack of obvious visual correlation with the response
variable, correlation of ≥70% with other predictors that were
more strongly correlated with the response variable, and/or
lack of a visible or quantitative correlation with the response
variable. We included seven covariates in our initial model:
seafloor slope, annual mean seafloor current velocity, maximum
DHW, nutrient flux, shipping traffic, coastal development, and
annual fishing catch.

Model Development
Boosted regression tree (BRT)models fit an ensemble of statistical
models by combining the power of boosting (a technique that
blends multiple models to improve predictions) and regression
trees (models that identify links between response variables and
covariates via recursive binary splits; Elith et al., 2008). Three
key parameters determine the type and shape of the decision
trees that compose the model: bag fraction, learning rate, and
tree complexity. To start, we retained stochasticity in our model
by setting the subsampling rate, or the bag fraction, equal to
50%. This setting indicates that when training each new tree,
the model randomly selects 50% of the data from the training
data set. The remaining fraction of the training data not used in
the bag fraction is used during that iteration for cross-validation
and evaluation of the model. Next, we specified a slow learning
rate of 0.0025, which indicates the contribution or weight of
each tree in the overall model. The selection of a slow learning
rate minimized the contributions of each tree to the final model,
minimized the number of very small, random subsets of data
selected for fitting each tree, and decreased the chance of fitting
abnormal trees. Lastly, we set our tree complexity parameter
to 5, which permits the model to create decision trees with
5 nodes. The number of nodes corresponds to the maximum
number of predictor interactions the model may identify; we
methodically varied all of these parameters to find the optimal
combination that would explain the most variance within the
data (Elith et al., 2008).

Loss functions are used to calculate deviance, which is a
goodness-of-fit statistic indicating how well the model captures
variance within the data. Minimized deviance of a model
indicates high explanatory, or predictive, power. To improve the
performance of our model, we used binomial deviance, which is
suggested in the literature due to its robustness when used with
noisy or potentially misclassified data (Hastie et al., 2001; Elith
et al., 2008). While we do not anticipate the misclassification of
a large portion of our data, we chose to use this loss function
given that our observational data sets originated from different
sources, including researchers, school groups, and state workers.
The loss function allowed us to calculate changes in residual
deviance, or goodness-of-fit, as we systematically varied key
model parameters, which guided our final selection of parameter
settings (Elith and Leathwick, 2017).

We determined the relative importance of each predictor
variable using formulae within the “gbm” library (Friedman,
2001; Friedman and Meulman, 2003). These values are
determined by the number of times each variable is selected
in a split and weighted by the subsequent model improvement
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based on that split (weights are squared to give higher value to
predictors that improve the model more considerably). Predictor
contributions were scaled such that the sum equated to 100, with
higher values indicating greater influence of that predictor on the
response variable, i.e., occurrence of A. amadelpha.

We allocated 70% of our data to develop and train our model.
The remaining 30% of our data was set aside for model testing.
Per Elith et al. (2008), we initially set the number of trees (nt)
to nt0 = 50 and ran 10 unique BRTs. We subsequently increased
the value of nt by 10 (i.e., nt1 = 60, nt2 = 70, and so on) and ran
new models until we found a combination that produced higher
averagemean predictive performance and lower average standard
errors than the previous set of models. Our lr was kept very low
(lr = 0.0025) to ensure precise estimation of the starting number
of trees (nt = 60).

Model Evaluation
Our initial model (193 observations, 7 predictors) fit 1,680 trees.
We trained the model using k-fold cross-validation (k = 10,
indicating 10 iterations during which half the training data was
randomly selected to develop the model). We evaluated model
predictive performance based on the cross-validated area under
the curve (AUC) statistic (Hosmer and Lemeshow, 2004), percent
of deviance explained by the model, and the standard error of
the model. Performance metrics were recorded when we applied
the model to the validation data set during training and when
we applied the model to the withheld testing data set after
model finalization.

We constructed a dotplot to compare known training data
set observations to present-day model-predicted occurrence
probabilities (Figure 3). The categorical means- indicated by

red dots- differ between the two groups; for those pixels
where A. amadelpha was not observed, the mean probability
was 0.45, while a mean of 0.95 was calculated for pixels
known to contain A. amadelpha. The standard deviation of the
presence category was much smaller than that of the absence
category (i.e., 0.075 and 0.4, respectively), suggesting that the
model is prone to false positives. Additionally, we plotted
a curve of probabilities predicted by logistic regression; this
curve indicated that probabilities below 50% indicate regions
fairly unsuitable for A. amadelpha colonization. Risk increases
exponentially beyond this probability, with the highest risk of
invasion predicted for regions with habitat suitability values
>0.95 (Supplementary Figure S2).

To construct confidence intervals for a given predictor, we
bootstrapped the model 100 times, which required us to resample
the training data with replacement (note that this differs from
the specification of bag fraction during model training, which
necessitates subsampling without replacement) (Efron, 1979;
Hillis and Bull, 1993). Next, we simulated dropping up to five
different variables to evaluate change in predictive deviance;
due to the negligible (−1%) change in deviance, we chose
not to simplify the model, and retained all 7 predictors for
further analyses. We applied our model to the withheld test
data (83 observations) and recorded all evaluation metrics.
Finally, we tested for spatial autocorrelation within the data to
ensure the independence of the response variable (Moran’s I
coefficient = 0.088).

Degree heating weeks is a metric that measures cumulative
regional heat stress, quantified as the number of weeks in a
12 weeks period during which sea surface temperatures exceed
a 1◦C increase over the summer mean; a threshold of 4 DHW

FIGURE 3 | Dotplot showing the spread of model predictions compared to known observations of A. amadelpha presence or absence. The category mean is

indicated by a red dot; the vertical lines extending from the mean indicate the standard deviation of that category.
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has been identified as a trigger for probable coral bleaching
events (Liu et al., 2008). We applied our model to forecast the
change in invasion vulnerability across Hawaii’s coastline given
a 25% increase in annual DHW. All other predictors were held
constant to isolate the effect of this change. This conservative
change was based on the dire projections communicated in the
fifth Intergovernmental Panel on Climate Change report, which
predicts a global average sea surface temperature change of up to
+2.0◦C relative to the mean temperatures observed from 1986 to
2005 (IPCC, 2014). A temperature increase of this magnitude will
catastrophically destabilize marine ecosystems on a global scale,
making themmore vulnerable to colonization by invasive species
such as A. amadelpha. Regional increases of up to 4 DHW are no
longer unimaginably improbable given these grave predictions.

All code is available in the Supplementary Material

(Av_code.R). Data will be archived at Dryad.We used R statistical
software (R Core Team, 2017) and ESRI ArcGIS v.10.4 (ESRI,
2017) to perform all data analyses. Our BRTs were specified using
the “dismo” package version 1.1–4 (Hijmans et al., 2017) and
visualized using the “ggBRT” package (Jouffray et al., 2019).

RESULTS

Model Performance
Our initial area under the curve (AUC) statistic (0.99) indicated
possible overfitting of the model to the training data. However,
our cross-validated AUC (0.94) indicated high predictive
accuracy during this initial training stage. Our cross-validated
standard error was 2.1% and the model explained 62% of the
validation data deviance. When applied to the testing data
set, AUC slightly increased (0.96), with an average of 87% of
presences and absences identified correctly by the model. The
model explained 63% of the deviance within the testing data
set, demonstrating its predictive capability when applied to
novel data. Further model performance details may be found
in Table 2.

Influential Environmental Covariates
Our model indicated that seven variables that exhibit some
influence on the probability of A. amadelpha occurrence across
Hawaii. These predictor variables include percentage of shoreline
development (30%), maximum DHW (26%), fishing pressure
(14%), mean current velocity at the seafloor (11%), shipping

TABLE 2 | Model performance metrics.

Metric Score

AUC (initial) 0.99

Percent deviance explained (initial) 82.20%

AUC (cross-validated) 0.94

Percent deviance explained (cross-validated) 61.65%

Standard error (cross-validated) 2.10%

AUC (testing) 0.96

Percent deviance explained (testing) 62.51%

Percent correctly identified (testing) 87.25%

traffic (9%), seafloor slope (6%), and nutrient flux (3%). Our
model scaled the relative influence of each predictor based on
the total number of covariates in the final model to identify
the most important predictor variables; this delineation is
indicated by a dashed red line (Figure 4). The model identified
shoreline development, thermal intensity and exposure (i.e.,
DHW), and fishing pressure as the most influential predictors of
A. amadelpha occurrence.

To visualize the effect of each predictor on the probability
of A. amadelpha occurrence, we bootstrapped our predictions
and generated partial dependence plots with confidence
intervals (Figure 5). Our model indicated the importance
of coastal development in determining the probability of
A. amadelpha occurrence. Our plot shows that regions of
the coastline that experienced a minimal amount of recent
development (5–10% from 2005 to 2010) may be more prone
to colonization. Additionally, we note higher vulnerability for
invasion in flat regions exposed to minimal seafloor current,
at least 400 ship crossings annually, moderate fishing pressure,
and at least 5 DHW. Nutrient flux was identified as the
least influential covariate, and our plot shows only a mild
increase in regional vulnerability when exposed to greater
nutrient inputs. The confidence intervals show some model
uncertainty regarding higher levels of fishing or shoreline
development, but are tightest around certain spikes in the
data, highlighting the important effect of certain thresholds
for these predictors in relation to increased vulnerability for
A. amadelpha incursion.

Areas Highlighted as Hotspots
Areas around Oahu, identified by our model as most susceptible
to A. amadelpha invasion include north Oahu, eastern Oahu,
and much of the Honolulu metro area (Figure 6, inset A).
Patches of these coastlines have been surveyed and are already
invaded by A. amadelpha (Figure 2). We extended our model
to identify environmentally suitable regions at risk for invasion
across the surrounding MHI. Our results indicate that managers
should concentrate surveys for A. amadelpha along the southern
and western coasts of Maui Nui, western and eastern Hawaii,
northern and eastern Kauai, and south Niihau (Figure 6).
Model predictions extend approximately 1–2 km offshore and
encompass the shoreline to the mesophotic zone (0–90 m). The
model indicated that approximately one quarter (423 km2) of the
modeled area (1,691 km2) is highly suitable A. amadelpha habitat
(θ ≥ 0.89, or third quantile cutoff value).

DISCUSSION

This is the first study to predictively model and map the present-
day and potential distribution of invasive leather mudweed
across Oahu and extrapolate results to surrounding islands in
the event of potential future climate conditions. We highlight
this approach as one possible management tool for prioritizing
management and conservation efforts and in the face of
changing anthropogenic and environmental drivers and future
climate conditions.
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FIGURE 4 | Relative influence of each predictor on A. amadelpha occurrence. The red dashed line indicates the most influential predictors after scaling (i.e., influence

percentage divided by number of predictors).

Marine Habitat Susceptibility:
Oceanographic and Topographic Factors
Shallow (0–30 m) marine regions identified as most susceptible
to A. amadelpha colonization are relatively flat and experience
minimal annual mean current flux. In other words: regions
that meet or exceed the mean predicted present day occurrence
probability of 63%, annual benthic current velocity = 0.01 m/s
and mean slope = 1.4◦. Littler et al. (2004) hypothesized that
A. amadelpha mounds in Belize maximize productivity when
they occur in protected, calm, and shallow embayments. We
expect that relatively low seafloor current flux may indicate a
lowermass of sunlight-blocking suspendedmatter. Peyton (2009)
noted that A. amadelpha hosts epiphytes in its canopy that may
act as “sunscreen” during periods of high light exposure, which
suggests some level of high light intolerance in this alga.

In the mesophotic zone, A. amadelpha is most likely to
colonize similarly flat, calm regions (annual seafloor current
velocity = 0.01 m/s, mean slope = 3.7◦ for regions that meet or
exceed the mean occurrence probability of 77%). Our analyses
do not clearly reveal any distinct differences in the habitat
preferences of A. amadelpha across depth gradients relating
specifically to oceanographic drivers. If A. amadelpha continues
to proliferate across the MHI, additional observations to the data
set and subsequent updating of the model may tease out depth-
specific differences in the settlement patterns of this invader.

Marine Habitat Susceptibility:
Anthropogenic Factors
Our model suggested that anthropogenic stresses on land and in
the sea may increase the possibility of A. amadelpha invasion.
Regions adjacent to moderate, recent coastal development (about
10% more development from 2005 to 2010) or exposed to at least
400 ship crossings annually were identified as more susceptible
to colonization by the invasive alga. Shoreline development did
not appear to drive colonization patterns beyond the threshold

of 10% relative construction. This metric includes sediment
dispersal in the calculation of the relative value, and we theorize
that sediment influx may negatively impact A. amadelpha
metabolism beyond some minimal to moderate level, which
may be why the trend flattens beyond the aforementioned
threshold. Shipping traffic also shows some effect on habitat
preference up to a certain point, but this relationship is clearly
not linear, and further study may be warranted which contrasts
ports known to contain A. amadelpha with those that are
presently uninvaded.

The model also suggests that regions exposed to moderate
fishing pressure are more prone to A. amadelpha invasion.
Prior survey data (K. Peyton, Hawaii Conservation Conference;
unpublished data) shows some correlation with the removal of
herbivorous fish and urchins and the subsequent appearance of
A. amadelpha. Though phase shifts may occur across overfished
reefs (e.g., Hughes et al., 2007), researchers are uncertain
about the role of grazing pressure in controlling the spread
of an unpalatable invader like A. amadelpha (Van Heukelem,
2016). However, fishing catch was one of the factors that
best explains the presence of A. amadelpha, which argues
that the role of reduced herbivory must also be considered.
Although herbivorous coral reef fish populations around Oahu
are generally low (Williams et al., 2016), and the influence
of reduced herbivory on the increase of A. amadelpha is
unknown, the correlation between fishing pressure and spread
of this alien invasive merits further study. We note that the
partial dependency plot for fishing pressure (Figure 5) shows
some reduction in probability of A. amadelpha occurrence
for those regions exposed most intensely to fishing effort.
We posit that this drop in occurrence probability as fishing
stress intensifies may be akin to the same “Goldilocks”-
type trend we observe in relation to coastal development
and A. amadelpha occurrence: a little bit of stress- not too
much, not too little- is just right for opening the door
to this invader.
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FIGURE 5 | Partial dependence plots showing the marginal influence of each predictor (denoted in parentheses below each plot) on the probability of occurrence of

A. amadelpha. Confidence intervals were generated by bootstrapping the model predictions 100 times and are signified by gray dashed lines.
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FIGURE 6 | Mapped model predictions around the MHI (A: Oahu, B: Maui Nui, C: Hawaii, D: Kauai, E: Niihau) represented at 250 m raster resolution. Yellow or

orange pixels indicate habitat less suitable for A. amadelpha invasion; red and purple pixels indicate regions identified as highly at risk for invasion.

FIGURE 7 | Forecasted changes in habitat vulnerability subsequent to a theoretical 25% increase in maximum DHW across all coasts of the MHI (A: Oahu, B: Maui

Nui, C: Hawaii, D: Kauai, E: Niihau). Blue or yellow tones indicate slight decreases or no changes in susceptibility to invasion, while orange and red colors indicate

increases in vulnerability compared to present day predictions.

Invasion Risk Under a Changing Climate
Our model also indicated some influence of DHW on the
susceptibility of habitat to A. amadelpha colonization. Eakin
et al. (2010) note that thresholds of 8 and 12 DHW indicate
high and very high risks of bleaching-related coral mortality,
respectively. Our model indicated that regions experiencing
at least 5 DHW during 2013–2016 were more suitable for
A. amadelpha invasion. Cox et al. (2017) speculate that recent
warming events in 2015 caused a die-back in abundant native
intertidal macroalgae, facilitating the rapid spread of leather
mudweed in this intertidal environment. They observed an

opportunistic increase in abundance of A. amadelpha following
the reduction in brown algae (Padina sanctae-crucis and Dictyota
spp.), which dominate multiple intertidal sites around Oahu
(Cox et al., 2017). This invasion notably followed a period of
unseasonably warm, calm seas and a series of severe bleaching
events from 2014 to 2017. The impact of warmer ocean
temperatures and the resulting die-back of native macroalgae
may also increase the success of more thermally resistant
invasive species. We hypothesize that reefs destabilized from
repeated heat stress are more susceptible to incursion of invasive
species like A. amadelpha. More ecophysiological research
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is needed on the thermal tolerance and growth response
of A. amadelpha.

In addition to using our model to highlight important
stressors and the most vulnerable coastal regions island-wide
based on present-day climatological conditions, we used our
framework to forecast how reef vulnerability might change
following a 25% increase in statewide maximum DHW. With
all other predictors held constant (i.e., held at present-day
values), our model predicted changes in habitat suitability per
250 m pixel ranging from decreases of up to 25% to increases
as high as 61%. The west coast of Oahu and much of the
southern coast experienced little to no increases, or even slight
decreases, in overall vulnerability to A. amadelpha invasion.
Portions of the northern and eastern coasts and patches of
the Honolulu metro area displayed the most dramatic increases
in vulnerability around Oahu (Figure 7, inset A). Across
the other MHI, we observed increased vulnerability around
the southern and western shores of Kauai and Maui Nui,
and around northwestern and eastern Hawaii, including Hilo
Bay (Figure 7).

Implications for Management
Our analyses did not reveal any obvious differences in
A. amadelpha colonization patterns along a depth gradient.
We caution that the absence of a clear difference between
the shallow and mesophotic populations of the alga do
not guarantee the effectiveness of a uniform management
approach when dealing with the removal of this invader.
We note that A. amadelpha is expensive, time-consuming,
and- in the case of the mesophotic populations- potentially
impossible to entirely eliminate for a given region. The
aim of this study is specifically to guide management
efforts during ongoing monitoring by identifying the
portions of the coastline around the state that are most
vulnerable to invasion in the near-term based on certain
environmental characteristics.

We suggest that managers used the maps we have
generated here to prioritize regions of concern. These
maps may serve as early warnings for regions that provide
recreation for residents and tourists, serve as important
sustenance fisheries, or maintain inherent value due to their
cultural significance. State agencies that monitor, protect,
and preserve valuable natural resources across the land and
sea, particularly in the face of a changing climate, must
also contend with limited manpower and financial support.
We hope that these maps may simplify and expedite the
decision-making process of managers regarding monitoring
and testing efforts to mitigate damage due to the incursion of
invasive species.

CONCLUSION

Our model pinpointed one-quarter of the coastline of the MHI
as particularly susceptible to A. amadelpha invasion (Figure 5).
Our model indicates that A. amadelpha is a “Goldilocks”-style
opportunist that favors regions exposed to a moderate amount
of stress, particularly in the form of fishing pressure, coastal
development, and warming seas.
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