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Present-Day DNA Contamination in Ancient DNA Datasets

Stéphane Peyrégne* and Kay Prüfer

Present-day contamination can lead to false conclusions in ancient DNA

studies. A number of methods are available to estimate contamination, which

use a variety of signals and are appropriate for different types of data. Here an

overview of currently available methods highlighting their strengths and

weaknesses is provided, and a classification based on the signals used to

estimate contamination is proposed. This overview aims at enabling

researchers to choose the most appropriate methods for their dataset. Based

on this classification, potential avenues for the further development of

methods are discussed.

1. Introduction

Ancient DNA from historical or archaeological materials, such as
bones, teeth, or hair, represents a valuable resource for studying
the past. Ancient DNA has been isolated and sequenced from
the remains of extinct humans[1-3] and other animals,[4,5] but
also fromherbaria,[6] dental calculus,[7,8] and environmental sam-
ples such as archaeological sediments.[9,10] These sequence data
yielded insights into the evolutionary and population history of
organisms.[11-16]

Yet, the degraded nature of ancient DNA complicates its
analysis.[17,18] After the death of an organism, DNA is ex-
posed to enzymes and chemical reactions that result in DNA
fragmentation, the loss of bases, and base modifications.[19,20]

Over time, DNA fragments will degrade and eventually become
unrecoverable.[21] Even under favorable conditions, only a small
amount of the original DNA remains from the organism un-
der study (endogenous DNA). In addition, DNA from other or-
ganisms (exogenous DNA) contaminates most ancient speci-
mens. This includes DNA from microbes that colonize decaying
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tissues,[22] and DNA from the environment
that can seep into the specimen. Exogenous
DNA can also be introduced by handling,
lab equipment, and reagents.[23-25]

In most cases, researchers identify en-
dogenousDNA sequences by aligning them
to a closely related reference genome,
thereby largely excluding sequences from
distantly related organisms.[18,26-28] How-
ever, sequences from contaminating DNA
that are similar to the reference genome can
pass this filtering step. This is particularly
problematic for the study of ancient human

material, since human DNA is abundant in research environ-
ments and contamination by human DNA can lead to false sig-
nals of admixture or to underestimation of the divergence to
present-day humans.[2,29,30]

Several precautions can guard against contamination.[17,31,32]

Protective clothing during excavation[33,34] and lab work mini-
mizes the introduction of contaminating DNA, and the irradi-
ation of reagents, lab equipment, and clean room facilities are of-
ten used to degrade DNA from other potential sources.[35,36] De-
spite these efforts, a low level of contamination is unavoidable,
and contamination is therefore closely monitored by using neg-
ative controls during DNA extraction and library preparation[37]

and by the inclusion of unique combinations of DNA barcodes in
each ancient DNA library.[38] However, these methods can only
reveal contamination that is introduced during DNA extraction
and library preparation or through cross-contamination between
experiments. A measurement of contamination from all sources
in the final sequencing dataset, which includes contamination in-
troduced before DNA lab-work, remains crucial for downstream
analyses.
In this review, we discuss methods that estimate the propor-

tion of contamination in ancient DNA data. We focus on the
case of ancient human samples with present-day human DNA
contamination, since this is a particularly challenging problem
(Box 1). However, many methods can also be applied to other or-
ganisms. We first describe the features of sequence data that can
be used to quantify contamination. We then discuss specific ap-
proaches in more details, starting with methods for haploid loci,
themitochondria, and Y-chromosome, and then proceeding with
methods for estimating contamination in diploid and recombin-
ing nuclear DNA.

2. Classification of Signals Used to Estimate
Contamination

Three main signals are informative about the presence of
contamination in ancient DNA datasets: sequence differences
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BOX 1. Ancient DNA at the extremes

Poorly preserved ancient DNA samples can pose a particular
challenge for analysis. Often this poor preservation is due to
old age, although the oldest sequenced DNA to date, a per-
mafrost sample from an ancient horse, is comparatively well
preserved.[95] The poor DNA preservation in these samples
means that the total concentration of ancient DNA is low and
that contamination can constitute a large proportion of align-
ing sequences. Fortunately, old samples exhibit a high rate of
C-to-T substitutions due to ancient DNA damage.
By using the presence of damage-associated substitutions
to enrich for sequences that stem from ancient molecules,
Meyer et al.[96] reconstructed the mitochondrial genome from
the highly contaminated sequences of a Neanderthal ances-
tor found at Sima de los Huesos in Spain and dated to
over 400 000 years ago. Although this approach only consid-
ered C-to-T substitutions at the ends of sequences, Skoglund
et al.[44] developed a scoring system that considers all sub-
stitutions throughout the sequences. By filtering sequences
based on these scores, they were able to reconstruct the
mitochondrial genome from a Neanderthal found in Ok-
ladnikov Cave, Russia, with 10% present-day human DNA
contamination.
Filtering sequences based on C-to-T substitutions can help to
reduce contamination. However, if contamination accumu-
lated some C-to-T substitutions, then these procedures may

fail. In the previous two examples, mitochondrial genomes
were reconstructed frommultiple-fold coverage of sequences.
Due to the high coverage, the correct endogenous mitochon-
drial genome will be reconstructed as long as contaminat-
ing sequences constitute at every site the minority among
sequences with C-to-T substitutions. Unfortunately, such an
approach is not possible for nuclear genomes, where the gen-
erated sequence coverage is typically far below onefold for
highly degraded samples and informative sites are not al-
ways available. To deal with this issue and analyze nuclear se-
quences from Sima de los Huesos hominins, Meyer et al.[54]

counted sequences in support of an assignment to the Nean-
derthal, Denisovan ormodern human lineages. The inference
of a closer relationship to Neanderthals was robust to high
levels of modern human contamination, since contamination
should not exhibit a high proportion of Neanderthal-specific
variants. As an alternative to this approach, contamination lev-
els can also be quantified and included in the calculation of
statistics of interest.[42,43] By considering contamination, the
relationship of late Neanderthals to early Neanderthals, with
up to 65% contamination, was resolved.[42] Also, admixture
rates can be estimated in the presence of contamination.[43]

These results show that even highly contaminated samples
can yield insights when modeling or estimating the effect of
contamination as part of the analyses.

between the contaminant and endogenous DNA, deviations
from the expected ploidy, and time-dependent character-
istics of ancient DNA such as damage-induced substitu-
tions (Figure 1). We briefly describe these signals in this
section.

2.1. Differences in the DNA Sequence

Sites that differ between the genome of interest and likely con-
taminants can be identified when their genome sequences are
known in advance. For instance, the mitochondrial genomes
of Neanderthals differ at some sites from those of all present-
day humans[39] and contamination can be estimated by mea-
suring the proportion of sequences that show the present-day
human allele at these sites.[40] Other measures of sequence
differences, such as sequence divergence, can also be used
to estimate contamination if it is possible to predict what
their value would be in the absence of contamination.[41,42]

All approaches in this class require some a priori knowledge
of the relationship between contaminating and ancient indi-
viduals. Also, these approaches gain power with increasing
divergence between the contaminating and ancient genome se-
quences. Yet, once sequence differences are known, a few se-
quences overlapping these positions can be sufficient to estimate
contamination.

2.2. Deviation from the Expected Ploidy

Contamination can cause a sample to show unusual pat-
terns of ploidy. For instance, heterozygous sites on the X or
Y-chromosomes in males, or Y-chromosome sequences in fe-
males, are signs of contamination. This signal is not limited to
the sex chromosomes; a higher proportion of sequences support-
ing one allele at a heterozygous site on the autosomes can, for in-
stance, indicate contamination from an individual carrying this
allele.[2,43] In contrast to the previous class, ploidy-based meth-
ods often require multiple-fold coverage. However, they have the
advantage that prior knowledge of the relationship between the
contaminant and ancient individual is not required.

2.3. Ancient DNA Degradation Patterns

The degradation of DNA leaves characteristic patterns that can
be used to distinguish ancient DNA sequences from those from
present-day DNA contamination.[44,45] The most common dam-
age in ancient DNA originates from cytosine-deamination[46]

and occurs more often at the ends of DNA molecules,[47] likely
because of single-stranded overhangs that degrade faster than
the mostly double-stranded interior.[48,49] Cytosine-deamination
turns cytosines (C) into uracils that are thenmisread as thymines
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Figure 1. Classification of the signals used to estimate contamination. Each box illustrates one of the three signals. Box A shows the genealogical
relationship of present-day and ancient individuals, including two derived variants that are informative for either group. The presence of a red variant
indicates a contaminant sequence, whereas a blue variant indicates endogenous sequences. Box B shows the expected ploidy for the autosomes (A),
the X- and Y-chromosomes (X, Y), and the mitochondrial genome (MT) for females (red) and males (blue). Deviations from these expectations indicate
contamination from the opposite sex. The illustration below shows sequences aligned to a reference genome. These sequences carry two different
alleles represented by dots. However, one allele (white) is rare compared to the other allele (blue). This observation is not compatible with the 50:50
ratio expected for a heterozygous site; therefore the discordant allele may originate from contamination. Box C illustrates ancient DNA damage. Left:
ancient DNA fragments often contain uracils caused by ancient DNA damage whereas uracils are typically absent from present-day DNA fragments.
Right: When no repair enzymes are used, uracils will be misread as thymines and their presence will result in high rates of C-to-T substitutions that occur
primarily at the ends of sequences. Note that this signal depends on the library preparation protocol, and that high rates of G-to-A toward the 3ʹ-end,
instead of C-to-T exchanges, are also a possible signal. Neither pattern is expected for present-day DNA sequences.

(T) by the DNA polymerases used during DNA library prepa-
ration. This leads to erroneous C-to-T substitutions in the se-
quence data (and additional G-to-A substitutions, depending on
the specifics of the library preparation protocol). The preva-
lence of deamination-inducedC-to-T substitutions increaseswith
the age of the sample,[50] although other factors, such as cli-
mate, have also a substantial effect on the rate of cytosine
deamination.[51]The frequency of C-to-T substitutions can be
used to classify sequences as likely ancient,[44,52] and to quan-
tify contamination from undamaged present-day DNA.[53,54] Al-
though not diagnostic, other features such as the length of an-
cient DNA sequences can also be used. Methods that are based
solely on these ancient DNA degradation patterns require com-
paratively few sequences and no prior knowledge of genetic rela-
tionships.

3. Methods to Estimate Contamination

Many methods have been developed over the years to estimate
contamination in ancient samples. Often, these methods rely on
more than one of the signals described above (Figure 2). Thus, it
is more helpful to consider the type of data to be analyzed when
choosing a method. Here, we discuss methods grouped by the

Figure 2. Classification of methods to estimate contamination. Methods
are classified by the signals they used: sequence differences (blue), ex-
pected ploidy (red), or characteristics of ancient DNA (yellow). Some
methods rely on multiple signals.
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Figure 3. Flow chart describing the choice of methods depending on characteristics of the data available. Blue squares correspond to the methods,
whereas peach diamonds illustrate the decisive questions. The gray circle represents the start of the flow chart. Questions that are answered with “No”
do not indicate the requirement of an absence and further suitable methods can be identified by following these paths. The reference panel required for
contamLD differs from the panel of potential contaminants used in some other methods in that it should be closely related to the ancient population of
interest.

following three categories: mitochondrial DNA, sex chromo-
somes, and autosomes. Methods in each category differ in their
requirements regarding sequence coverage, ancient DNA dam-
age patterns, and a priori knowledge of sequence divergence. Fig-
ure 3 shows a flowchart for choosing methods based on the data
at hand.

3.1. Mitochondrial DNA

Ancient DNA studies often proceed by first sequencing mito-
chondrial genomes (or other nonrecombining haploid sequences
such as chloroplasts[55]). The high copy number of mitochondria
per cell, their small genome, and the wider availability of enrich-
ment methods for mitochondrial DNA[56] make it easier to se-
quence the mitochondrial genome to high coverage than the nu-
clear genome, so thatmitochondrial sequences often provide first
insights into the level of contamination in a sample.

3.1.1. Methods Based on Differences in the DNA Sequence

Mitochondrial variation is often well characterized. For instance,
full mitochondrial genomes have been reconstructed for the
extinct human groups of Neanderthals and Denisovans[40-42,57-62]

in addition to thousands of present-day and ancient mod-
ern humans.[63] These data can be used to identify positions
where contaminating and endogenous mitochondrial genomes
differ. At these diagnostic sites, the proportion of sequences
carrying the contaminating allele represents an estimate of
contamination.[2,40,64] However, diagnostic positions are not
always known in advance. In this case, and when multi-fold
coverage is available, one can reconstruct the endogenous se-
quence by consensus calling and then identify positions where
the consensus sequence shows a variant that is either absent
or present at a low frequency in a reference panel of potential
contaminating genomes.[40,65]

Sometimes it is not possible to identify diagnostic positions
if, for instance, the endogenous genome falls within the vari-
ation of contaminating genome(s). An alternative strategy ex-
ploits the fact that the mitochondrial genome is nonrecombin-
ing, and models the data as a mixture of sequences from differ-
ent mitochondrial genomes. This approach is implemented in
contamMix, an approach that considers both the reconstructed
consensus mitochondrial sequence of the ancient individual and
a reference panel of potentially contaminating mitochondrial
genomes.[66] The method assumes that each sequence originates
from one of these genomes and identifies them based on the
number of matching bases, but allows for additional differences
from sequencing errors. The proportion of sequences assigned
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to other genomes than the consensus genome corresponds to the
contamination estimate.

3.1.2. Methods Based on Deviations from the Expected Ploidy

The reconstruction of the endogenous consensus genome can be
challenging if the data are highly contaminated or exhibit high
error rates because of DNA damage. In this context, another ap-
proach, Schmutzi, takes advantage of the haploidy of the mito-
chondrial genome and requires multiple-fold sequence coverage
to jointly reconstruct the endogenous and contaminant consen-
sus sequences.[53] It uses a detailed model of errors, including
substitutions from cytosine-deamination, and distinguishes en-
dogenous from contaminant sequences by considering damage
patterns and fragment lengths. It then gives a contamination es-
timate based on diagnostic sites, which are identified by com-
paring both consensus sequences to a reference panel of likely
contaminants.
Schmutzi and contamMix can only be applied if a reference

panel is available, but another approach that is independent
of such panel exists (Mafessoni’s model in[10]). This approach
requires high sequence coverage and estimates the propor-
tion of distinct mitochondrial genomes from differences among
mapped sequences. Although the method is not aimed at quan-
tifying contamination, one could apply it for this purpose, if con-
taminating and endogenous genomes are sufficiently different
and sequencing error rates are low.
Contamination estimates based on mitochondrial sequences

are often used as a proxy for nuclear contamination. However,
it has been noted that contamination estimates obtained from
the mitochondria and the nuclear genome can differ.[30,67] This is
because mitochondrial DNA may degrade at different rates than
nuclear DNA[21,68] and, more importantly, because the ratio of
nuclear to mitochondrial sequences differs between cell types.
This can, for example, lead to an underestimate of contamina-
tion if the source of contamination is a cell type with a low ratio
of mitochondrial to nuclear genomes.[30,67,69] While none of the
methods takes nuclear mitochondrial insertions (NuMts) or het-
eroplasmies into account, these factors are unlikely to introduce
large errors in contamination estimates.

3.2. Sex Chromosomes

Although sex chromosomes are less accessible than mitochon-
drial genomes, they are recognized as a useful tool to study sex-
biasedmigration and admixture among populations.[70] Contam-
ination estimates that rely on the haploid state of the sex chromo-
somes in males or the absence of a Y-chromosome in females
have been specifically developed for sex chromosome data.

3.2.1. Methods Based on Differences in the DNA Sequence

Many methods to estimate mitochondrial DNA contamina-
tion are also applicable to the nonrecombining part of the Y-
chromosome. In particular, diagnostic sites can be identified
from the large datasets of Y-chromosome diversity in humans

(e.g.,[71,72]). While useful for studying Y-chromosomes, the esti-
mates are insensitive to contamination from females and cannot
be used as a measure of autosomal contamination.

3.2.2. Methods Based on Deviations from the Expected Ploidy

The X-chromosome is also present in a haploid state in males. In
contrast to the mitochondrial genome and the Y-chromosome,
however, the X-chromosome recombines, and methods based on
haplogroups cannot be applied. As an alternative, Rasmussen
et al.[73,74] and Moreno-Mayar et al.[75] used known variants on
the X-chromosome to detect sequences that disagreewith thema-
jority call. These alternative alleles are unexpected in males that
carry only one copy of the X-chromosome and can be used, to-
gether with an estimate of sequencing error from neighboring
sites, to estimate contamination. Note that this X-chromosome
contamination estimate gives an upper limit on the rate of con-
tamination in the autosomes, since contamination originating
from females has twice the impact on the X-chromosome of
males compared to their autosomes.
Another approach, also based on the expected ploidy, is to com-

pare the sequence coverage between the X-chromosome and the
autosomes.[41] Female contamination in a male individual will
increase the X-to-autosome ratio, while male contamination in
a female individual will decrease it. The deviation of this ratio
from the expected value of 0.5 and 1 for males and females, re-
spectively, can thus be used to estimate contamination by the op-
posite sex. The advantage of this method is that it can be applied
to both sexes and is unaffected by sequencing errors, as it does
not rely on genetic variants.
Similarly, it is possible to estimate male contamination in a

female sample by dividing the number of Y-chromosome se-
quences by the expected number of sequences that would map to
the Y-chromosome if it were a male.[30] Assuming that the align-
ment efficiency is uniform among chromosomes, this expected
number of sequences is simply half the observed number of se-
quences that map to the autosomes multiplied by the fraction of
the genome that is the Y-chromosome.

3.3. Autosomal DNA

Estimating contamination from autosomal DNA is challenging
because autosomes are diploid and recombine, and sequence cov-
erage is often low. However, autosomal data are indispensable for
the study of population history and selection, and accurate esti-
mates of contamination are crucial to ensure correct results.

3.3.1. Methods Based on Differences in the DNA Sequence

As for mitochondrial and sex-chromosome sequences, contami-
nation rates in autosomal data can rely on diagnostic sites. A pre-
requisite for the existence of such sites is a sufficiently large diver-
gence between the likely source of contamination and the studied
genome. This approach has, for instance, been used to estimate
modern human DNA contamination in Neanderthal data.[54,76]

In this setting, at least thousands of positions exist where most
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modern human genomes carry a derived variant that is absent
from sequenced Neanderthal genomes. Note that the approach
is conservative in that it may lead to an overestimate of contami-
nation rates, as newly sequenced Neanderthal genomes can carry
modern human alleles because of hitherto unknown variation in-
stead of contamination. The comparatively small fraction of Ne-
anderthal ancestry in present-day humans would only lead to a
minor underestimate.[2,76]

A natural extension of using diagnostic positions is to rely on
expectations for a statistic that describes the relationship between
contaminating and endogenous genomes. If these expectations
differ between the contaminating and endogenous genomes, the
level of contamination can be gauged by modeling the observed
value of the summary statistic as a linear combination of these
two expectations. Statistics that have been used for this purpose
are estimates of sequence divergence and the sharing of derived
alleles.[41,42] However, further statistics, such as admixture pro-
portions,may also be suitable. Depending on the summary statis-
tic used, this approach can use more of the data than diagnostic
positions. However, similar to diagnostic positions, the approach
relies on assumptions about the relationship of the contaminant
to the ancient individual that can influence later analyses. Yet, as
both methods only require that a few hundred sequences over-
lap informative sites, they are particularly useful for low-coverage
data.
Nakatsuka et al.[77] recently presented another approach that

relies on linkage between pairs of sites. As the contaminant and
endogenous genomes often carry different haplotypes, this ap-
proach tests for a reduction of linkage between sites compared
to the expectations derived from a panel of reference genomes.
As a reduction in linkage may also be due to divergence to this
reference panel, the method uses deaminated sequences to cor-
rect the linkage that is expected without contamination. This ap-
proach is applicable to ancient genomes with little divergence to
the contaminant(s), which makes it valuable for the study of nu-
clear sequences from modern humans.

3.3.2. Methods Based on Deviations from the Expected Ploidy

In the previous section, the methods required a priori knowl-
edge about the endogenous genome to infer contamination rates.
Often, it is easier to make assumptions about the contaminant
rather than the endogenous sequences. Assuming that some
divergence exists between contaminating genomes and the en-
dogenous genome, Philip L. F. Johnson[2,78] uses sites where
likely sources of contamination are all or nearly all derived. Al-
though the endogenous genome can carry any allele at these po-
sitions, we expect contamination to contribute sequences with
derived alleles. Thus, the method infers contamination rates as
an excess of sequences with derived alleles compared to the ex-
pectation of 0% at homozygous ancestral positions or 50% at het-
erozygous positions in the endogenous genome.
An extension of this approach, implemented in the software

DICE,[43] increases the set of informative sites to also include
those that are derived at a lower frequency in the contaminat-
ing source population. For this, Racimo et al.[43] model the re-
lationship of the ancient sample to a set of known background

populations to infer the probability of each genotype in the en-
dogenous genome. Contamination then corresponds to the ex-
cess of sequences with either ancestral or derived alleles com-
pared to expectations derived from the most likely genotype (i.e.,
the absence of derived and ancestral alleles at homozygous an-
cestral and homozygous derived sites, respectively, or an equal
proportion of ancestral and derived alleles at heterozygous sites).
In contrast to the methods described in the previous section,

both methods require multiple-fold coverage at informative sites
since the inference of contamination relies on deviations from
the expected ploidy. Requiring higher coverage also ensures that
contamination can be estimated when contaminating and en-
dogenous genomes show little divergence. However, we note that
a recently introduced method, admixfrog, which is similar to
DICE in how it models contamination, can yield contamination
estimates with low sequence coverage (0.1× for an archaic hu-
man genome;[79]). This is achieved by taking advantage of se-
quence differences among multiple panel populations and as-
suming that the ancestries of the ancient genome derive from
some of these source populations.
Another approach based on deviations from the expected

ploidy is to take advantage of regions in the genome that are ho-
mozygous because of inbreeding. Contamination introduces al-
ternative alleles randomly along the genome, including in these
homozygous regions where only one allele is expected at any
given position. An implementation based on this idea used ho-
mozygous regions in the genome of a Neanderthal womanwhose
parents were related at the level of half-siblings to jointly estimate
error rates and the proportion of contamination.[80]

3.3.3. Methods Based on Patterns of Ancient DNA Damage

Substitutions associated with DNA damage have long been used
as a signal to determine whether ancient sequences are preserved
in a sample and to distinguish these sequences from contaminat-
ing sequences.[44,54,81-84] Contamination can be estimated from
deamination patterns under the assumption that such patterns
are absent in contaminating sequences. This is achieved by con-
trasting the true rate of damage-associated substitutions for the
endogenous sequences to the observed rate of such substitutions
for all sequences. To estimate the frequency of damage at the ter-
minal positions of endogenous sequences, Meyer et al.[54] con-
ditioned on the presence of a damage-associated substitution on
one end of a sequence to enrich for genuine ancient sequences.
The opposite ends of these sequences are then used to infer the
frequency of substitutions in this ancient fraction, assuming that
damage at both ends is independent. Because several biases can
influence the frequency of substitutions at the ends of sequences
(e.g., alignment bias against sequences withmany substitutions),
this method has not been used to quantify contamination. How-
ever, Meyer et al. could identify samples with substantial contam-
ination using this approach.
As a prior for the mitochondrial contamination estimates of

Schmutzi, Renaud et al.[53] implemented a method, contDeam,
that solely uses patterns of ancient DNA damage. Contamina-
tion is estimated as the mixture proportion between two models
of substitutions, one with and another without ancient DNA
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BOX 2. Contamination per sequence or contamination per base?

Some contamination estimates give the proportion of bases
that originate from contamination, while others give the pro-
portion of contaminating sequences. These estimates can
differ when the sequence length of contaminating and en-
dogenous sequences differ. For instance, if contaminating
sequences are on average twice as long as endogenous se-
quences, then a given informative site is twice as likely to be
covered by a contaminating sequence compared to an endoge-
nous sequence. A method based on informative sites would
thus give an estimate per base, but would in this example over-
estimate the proportion of contaminating sequences.
Although methods based on informative sites naturally yield
estimates per base, methods relying on ancient DNA damage

produce estimates per sequence. However, methods based on
ploidy or coverage can be formulated as either per base or per
sequence.
Downstream analyses often benefit from contamination es-
timates per base. To convert estimates per sequence to esti-
mates per base, it is possible to either weight sequences pro-
portionally to their length or subsample sequences so that
longer sequences are represented more often. For instance,
restricting the estimation of contamination to the subset of
sequences overlapping specific sites will automatically correct
for sequence length.

damage. Compared to the previous approach, this method is
not limited to the terminal bases of sequences, but instead
infers site-specific deamination frequencies from sequences that
exhibit a C-to-T substitution at one end.
By taking into account the dependence between C-to-T sub-

stitutions along ancient DNA sequences, a more recent method
models the observed frequency of damage-associated substitu-
tions in single- and double-stranded parts of the original DNA
fragments.[85] Each sequence originates from either contamina-
tion, which does not contain damage, or an ancient molecule that
contains damage according to the explicit model of the structure
of ancient DNA fragments. Like the previous method, the ap-
proach estimates contamination as the mixture proportion of se-
quences fitting to one of these two models. Note that both meth-
ods provide estimates that correspond to the proportion of con-
taminant sequences, while the estimates for most other methods
correspond to the proportion of contaminant bases (Box 2).
Contamination estimates based on DNA damage have the ad-

vantage that they are independent of sequence differences be-
tween endogenous and contaminating genomes, and that esti-
mates can be obtained even for very low-coverage samples (10 000
sequences can be sufficient to estimate contamination). How-
ever, current methods assume that the contaminant is devoid of
deamination, which several studies have shown is not true in all
cases.[25,41,42] Other factors, such as heterogeneity in preservation
within the sample or biases in extraction or library preparation,
may limit the validity of the deaminationmodels.[86] With further
knowledge about the structure of ancient DNA fragments and the
reduction of bias fromprotocols,[87] the use of thesemethodsmay
increase.

4. Perspectives

Although many methods to estimate contamination are now
available, these methods are not applicable in all circumstances.
In addition, more accurate estimates of contamination may help
to infer more details about the evolutionary and population his-
tory. Here we ask: What future development may we expect?

4.1. Methods Based on Differences in the DNA Sequence

The knowledge about the relationships among human groups in-
creased substantially in recent years.[12] This knowledge includes
the timing of population movements that resulted in large-scale
admixtures. Some of these admixture signals may represent a
useful source of information to estimate contamination. For in-
stance, contamination from a present-day admixed population
could be quantified in populations that pre-date these admixture
events by measuring the admixture proportion.
Admixture between populations also results in large uninter-

rupted segments of different ancestries within an individual’s
genome. Contamination from other individuals will often carry
a different ancestry at the same locations, so that contaminat-
ing sequences yield a reduction in linkage within ancestry seg-
ments. This information can in principle be used to quantify
contamination.

4.2. Methods Based on Deviations from the Expected Ploidy

Sex-chromosomes are often used to estimate contamination lev-
els in ancient samples, since even for shallow sequence data a
substantial difference in coverage is expected for these regions
of the genome. Large-scale insertion/deletion differences or seg-
mental duplications can similarly yield such expected differences
in coverage. We are hopeful that a better knowledge of the fre-
quency and location of these polymorphisms will lead to the de-
velopment of new methods for quantifying contamination.

4.3. Methods Based on Characteristics of Ancient DNA

Future method development could include additional features of
ancient DNA such as the propensity of ancient DNA sequences
to align to positions that are adjacent to purines.[47] This feature
may be explained by a process called depurination, the loss of
purine bases that can lead to a break of the DNA backbone. If
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BOX 3. Contamination and metagenomics

This review focused on the analyses of a single species’
genome from an ancient sample. However, the study of the
species composition in ancient metagenomic samples gained
attention in recent years, for instance, to reconstruct the
diet of ancient populations[97] or to study the evolution of
pathogens.[98] Often, these samples yield very few sequences
from the genomes of interest. This means that low levels of
contamination pose a challenge. We note that contamination
in the context of metagenomics datasets can also stem from
misassignments of sequences from closely related endoge-
nous species, an issue that goes beyond the scope of this re-
view.
The presence of ancient DNA damage-associated C-to-T sub-
stitutions can authenticate ancient sequences. Weiss et al.[82]

devised a method to detect substitution patterns typical of an-
cient DNA when only a few hundred sequences are available.
Even though this method does not exclude the presence of
contamination, it can provide a positive indication that at least
some sequences are ancient.
When authenticating sequences assigned to a single species,
one can also use the distribution of edit distances (number
of substitutions to the reference genome per sequence) to fur-

ther increase confidence in the species assignment.[99,100] This
is because truly related sequences will tend to carry a lower
number ofmismatches to the reference compared to spurious
alignments. Competitive mapping is another way to identify
and exclude contamination.[101,102] After mapping sequences
to the genomes of the organism of interest and its closest
known relatives, only sequences that map to the genome of
interest are retained, thereby increasing the confidence that
the sequences originated from this genome. More recently,
this idea was also applied to faunal datasets to exclude human
DNA contamination.[103]

Finally, the availability of high-throughput profiling
tools[104-106] and large databases of microbial sequences[107-109]

makes it possible to characterize the microbial content of
metagenomics datasets. This information can be used to
authenticate the origin of the sequences.[110] For instance,
oral and soil microbiomes differ sufficiently to rule out sub-
stantial environmental contamination when studying dental
calculus.[111] For more in-depth reviews about authenticating
ancient microbial sequences, see for instance refs. [112] and
[99].

present-day contamination does not exhibit this pattern, which
is generated over a long time, then future contamination tests
could include this signal.
DNA molecules invariably break into shorter fragments over

time[20] and the length of ancient DNA sequences has been used
as a signal to indicate the presence of ancient DNA.[88] How-
ever, some studies have found a poor correlation between age
and fragment length over different archaeological sites.[50,51] This
poor correlation may be explained by different preservation con-
ditions, but length distributions are also influenced by extrac-
tion and library preparation methods.[89] These issues make it
problematic to distinguish comparatively recent contaminating
molecules, which are in principle subject to similar processes,
from those that are truly old.
Several other features of ancient DNA have been discussed

and could perhaps be used to quantify contamination. Regula-
tory signals in DNA are partially preserved in the substitution
patterns and breakage of ancient DNA molecules. For instance,
a nucleosome map has been reconstructed from the periodicity
of fragment length.[90] Such periodicity could serve as a diagnos-
tic feature of the tissue of origin, for example bone for an an-
cient bone sample versus skin for contamination from handling.
Similarly, one could leverage signals of methylation that also dif-
fer between tissues. It was indeed possible to reconstruct partial
methylationmaps fromC-to-T substitutions in CpG context from
ancient DNA libraries that have been treated with repair enzymes
or amplified with a proofreading polymerase.[90-92]

5. Conclusion

Ancient DNA is a rapidly growing field that has yielded unique
insights into the past. However, from the start, the development
of the field was hindered by the issue of contamination, which
remains a major concern. The recently expanding field of palaeo-
proteomics is facing similar challenges.[93] Here, we have sur-
veyed methods to quantify contamination and introduced a clas-
sification scheme of the signals they currently use.
We focused on methods applied to human samples, for which

contamination is particularly problematic. However, we note that
contamination is also a pervasive issue for the analysis of other
organisms[24] (Box 3). For instance, it may be difficult to study re-
liably ancient samples from agricultural products, as these are of-
ten common in our environment.[82] Similarly, residualmicrobial
sequences on lab-ware can influence metagenomic studies.[94]

Our classification puts the different approaches into perspec-
tive and may help to identify further avenues of method develop-
ment. Methods that provide accurate estimates of contamination
in low-coverage data are particularly needed. Such methods will
help researchers tomake better decisions during data production
by avoiding wasting resources and preserving rare samples.
Contamination tests ensure the validity of insights drawn from

ancient DNA studies. We hope that the continued development
of methods to estimate contamination increases the confidence
in ancient DNA results and helps to further push the limits of
this field.
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