
Present status and future challenges of
non-interferometric tests of collapse models
Matteo Carlesso1, Sandro Donadi2, Luca Ferialdi2,3, Mauro Paternostro1, Hendrik
Ulbricht4, and Angelo Bassi2,3,*

1Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queens
University, Belfast BT7 1NN, United Kingdom
2Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste, Italy
3Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste, Italy
4School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton, United Kingdom
*abassi@units.it

ABSTRACT

The superposition principle is the cornerstone of quantum mechanics, leading to a variety of genuinely quantum effects.
Whether the principle applies also to macroscopic systems or, instead, there is a progressive breakdown when moving to
larger scales, is a fundamental and still open question. Spontaneous wavefunction collapse models predict the latter option,
thus questioning the universality of quantum mechanics. Technological advances allow to challenge collapse models and
the quantum superposition principle more and more with a variety of different experiments. Among them, non-interferometric
experiments proved to be the most effective in testing these models. We provide an overview of such experiments, including
cold atoms, optomechanical systems, X-rays detection, bulk heating as well as comparisons with cosmological observations.
We also discuss avenues for future dedicated experiments, which aim at further testing collapse models and the validity of
quantum mechanics.

Quantum mechanics radically changed our understanding
of Nature. The superposition principle allows for the prepa-
ration of quantum systems in coherent superpositions of dis-
tinguishable physical configurations. This challenges our
classical intuition according to which objects can only be in a
one definite physical state at a time. After almost one hundred
years of experimental endeavours, the validity of the superpo-
sition principle at the microscopic scale is beyond questioning.
It has led to an unprecedented understanding of the behaviour
of matter and light and to the development of several quantum
technologies, such as the laser and the transistor, which are
now part of our everyday life.

Despite such success, we face a puzzling situation at the
macroscopic scale: we do not experience quantum superpo-
sitions, although quantum mechanics does not set any ex-
plicit upper bound to the size that such superpositions can
have. One possible explanation for the lack of observation of
macroscopic quantum superpositions is that the superposition
principle progressively breaks down when moving from the
microscopic to the macroscopic world1–4.

In this regard, spontaneous wavefunction collapse mod-
els — or simply collapse models — provide a consistent
phenomenological framework for the breakdown of quantum
superpositions. The collapse mechanism becomes stronger
with the size and complexity of a given system, so that, while
the microscopic world is quantum mechanical, the macro-
scopic world is classical. The collapse dynamics, which is
controlled by few parameters, differs from the standard quan-
tum dynamics. The differences can be verified experimentally,
and we have recently witnessed an increasing effort in placing

strong experimental bounds on the value of their parameters.
There are essentially two methods to test collapse models.

The most direct approach is to perform interferometric ex-
periments, aiming at detecting quantum superpositions (or
the lack thereof) with larger and larger objects5. The alterna-
tive approach is to conduct non-interferometric experiments,
where the possible violation of the superposition principle is
tested indirectly through various side-effects of the collapse
dynamics.

Despite their immediacy, interferometric experiments be-
come significantly harder to perform when the size of the
system to test grows. Non-interferometric experiments are rel-
atively easier as they do not require one to prepare the system
in a quantum superposition. Instead, they require the precise
monitoring of quantities such as the position or the energy.

This review addresses non-interferometric experiments and
their ability to provide bounds in the parameter space of two
of the most important collapse models, the Continuous Spon-
taneous Localization model6, 7 (CSL) and the Diósi-Penrose
(DP) one1, 8.

1 Theoretical framework of collapse mod-
els

Collapse models provide a mathematically and physically con-
sistent dynamical framework, where quantum superpositions
and wavepacket reduction are combined. This is achieved by
embedding in the Schrödinger equation the mechanism re-
sponsible for wavepacket reduction — the not-better-specified
collapse of the wavefunction to a definite state upon a measure-
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Figure 1. Testing collapse effects using a typical non-interferometric setup. The system (shown as an orange sphere) evolves as described by
its quantum mechanical dynamics (for example, there can be a potential, represented by the purple line). The collapse noise (here identified
by the red arrows) will modify such dynamics, thus providing predictions which are different from those of quantum mechanics. A suitable
measurement device (sketched as a magnifying glass) aims at detecting such a difference. The measurement outcomes are then used to draw
the experimental upper bounds on the CSL model and lower bounds on the DP model, which are shown in Fig. 2 and Fig. 3 respectively.

ment according to the standard formulation of quantum theory.
Such a mechanism has two features, the first is nonlinearity,
which is needed to break the superposition principle. The
second one is stochasticity, which allows to recover quantum
indeterminacy.

In order to avoid superluminal signaling, non-linear and
stochastic terms must be blended carefully2, 9. This yields
a well specific structure of the dynamical equation. For the
models considered in this review, and using the Itô formal-
ism for stochastic differential equations10, such a dynamical
equation reads7, 11, 12

d |ψt〉=
[
− i
}

Ĥ d t +
∫

d3 x
(
M̂(x)−〈M̂(x)〉t

)
dWt(x)

−1
2

∫
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(
M̂(q)−〈M̂(q)〉t

)
d t

]
|ψt〉 ,

(1)

where } is the reduced Planck constant. The first term on
the right-hand side is the standard quantum contribution as
encoded by the system Hamiltonian Ĥ. The second and
third terms describe the stochastic non-linear collapse process
weighted by the mass density operator M̂(x), which ensures
that the wavefunction is progressively localized in space. The
collapse process is driven by the Brownian noise Wt(x) with
spatial correlation equal to D(x−y), and by the non-linear
contribution to the dynamics 〈M̂(q)〉= 〈ψt |M̂(q)|ψt〉.

It is worth stressing that Eq. (1) is built in a way that the
statistical operator ρ̂t =E[|ψt〉〈ψt |] (where E is the stochastic
average with respect to the noise) obeys the Lindblad equation

d
d t

ρ̂t =−
i
}
[
Ĥ, ρ̂t

]
+
∫

d3 xd3 yD(x−y)[M̂(x), [M̂(y), ρ̂t ]].

(2)

In contrast to the collapse-modified Schrödinger equation, the
dynamics in Eq. (2) are linear. This forbids the possibility of
superluminal signaling, in spite of the fact that collapse is a
non-local process9. Although the collapse of the wavefunc-
tion is now hidden, Eq. (2) is easier to solve when computing
the evolution of expectation values of operators.

Notice that the dynamics resulting from Eq. (1), although
not unitary, are norm-preserving and also embed an amplifica-
tion mechanism: the collapse rate of an object scales roughly
with its size. Consequently, one can set extremely small values
for the collapse rate for microscopic systems, thus effectively
recovering the standard unitary quantum evolution. In turn,
the amplification mechanism implies a large collapse rate for
macroscopic systems, which remain well localized in space,
thus retrieving classical mechanics. In particular, when a
microscopic system interacts with a macroscopic measuring
device, the collapse dynamics makes sure that the outcomes at
the end of the measurement are definite, which are distributed
according to the Born rule. In this framework, the Born rule
is not assumed but derived12.

The two most studied collapse models are the CSL and the
DP model, which are both described by Eq. (1) with different
choices of the correlator D(x−y). The CSL model assumes
a Gaussian correlator DCSL(x− y) = λ

m2
0

exp
(
−|x−y|2/4r2

C

)
(m0 is the mass of a nucleon), characterized by two phe-
nomenological parameters: the collapse rate λ , which sets the
strength of the collapse for a single nucleon, and the length
rC beyond which spatial superpositions are suppressed. The
value proposed by Ghirardi, Rimini, and Weber13 (GRW) for
the collapse rate is λ = 10−16 s−1, which guarantees an effec-
tive collapse only for macroscopic systems, whereas Adler14

proposed the larger values λ = 4×10−8±2 s−1 at rC = 10−7 m,
or alternatively λ = 10−6±2 s−1 at rC = 10−6 m, under the re-
quirement of a collapse taking place in the mesoscopic regime
during the process of latent image formation in photography.
On the other hand, there is a broad consensus in setting rC
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Figure 2. Exclusion plot for the CSL parameters λ and rC from non-
interferometric tests. The colored areas correspond to experimentally
excluded regions. The green-colored regions are from cantilever-
based experiments with masses of ∼ 10 ng38 (light green), ∼ 100
ng39 (green), and multilayer structures40 (dark green). Blue areas
are obtained from gravitational wave detectors46–48: AURIGA (light
blue), LIGO (blue) and LISA Pathfinder (dark blue). Purple areas
are from optomechanical systems levitating in a linear Paul trap49

and a magnetic trap50. The orange area is from spontaneous X-ray
emission tests51. The yellow area is from phonon excitation in the
CUORE experiment27, 30. The brown area is from the heating rate
of Neptune63. The red area is drawn from cold-atom experiments32.
The theoretical values proposed by GRW13 and the ranges proposed
by Adler14 are shown respectively as a black dot and black dots
with bars that indicate the estimated range. Finally, the light grey
area is excluded not from experiments but from the requirement
that macroscopic superpositions do not persist in time, which is the
main motivation behind collapse models. Specifically, the (relatively
arbitrary but reasonable) requirement adopted here is that a graphene
disk of radius 10 µm, approximately the smallest visible size for a
human eye, collapses in 0.01 s, which is about the time resolution of
the human eye95. The white area is yet to be explored.

within the mesoscopic length scale of rC = 10−7 m. This
choice would guarantee microscopic superpositions to sur-
vive and the suppression of macroscopic ones, although only
experiments can determine its value.

The DP model relates the collapse mechanism to gravity by
choosing a correlator proportional to the Newtonian potential
DDP(x− y) = G

}
1
|x−y| , where G is the gravitational constant.

When applying the model to a distribution of point-like par-
ticles the collapse rate diverges, meaning that the collapse is
instantaneous also for microscopic systems. This is clearly
falsified by experimental evidence. For this reason, a regu-
larization through the introduction of a spatial cutoff R0 is
needed, which gives a finite size to otherwise point particles.
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Figure 3. Exclusion plot for the DP parameter R0 from non-
interferometric tests. The colored areas correspond to experimentally
excluded values of R0. The blue bound is from LISA Pathfinder47,
the brown area is from the heating rate of Neptune63, the orange one
is from X-ray emission tests52.

In the first formulation of the model, Diósi8 suggested to set
R0 equal to the proton radius of around 10−15 m, giving the
model the particular appeal of being free from fitting param-
eters and leading to a collapse time for a proton in a spatial
superposition of around 106 years, which is fully compatible
with observations. However, as we will discuss in detail be-
low, the spontaneous collapses induce an increase of the mean
energy of the system, resulting in a heating. Comparison
with experimental data shows that R0 = 10−15 m and smaller
values must be excluded as they would lead to an unphysical
heating15: the energy increase for a free nucleon would be of
the order of 10−20 erg/s for R0 = 10−15 m, corresponding to
a temperature increase of 7×10−5 K/s. Over the life of the
Universe, a free nucleon would have developed a temperature
of about 3×1013 K due to the DP noise, which is not compati-
ble with observations15. A different estimate for R0 was given
by Penrose16, 17, effectively equating R0 to the width of the
wavefunction of the system. This keeps the model free from
any fitting parameter endowing it with a cutoff that explicitly
depends on the system under scrutiny. Following the most
recent literature, we consider R0 as a free parameter, whose
value is eventually constrained by experiments.

The collapse parameters are ultimately bounded by experi-
ments. In what follows, we will review a number of them. For
the CSL model, such bounds constrain the maximum value
that can be taken by λ at given values of rC as — according
to Eq. (2) — the collapse effect grows with the value of λ .
Conversely, for the DP model, lower bounds on R0 are sought,
as the collapse strength depends inversely on this parameter.

Besides collapsing the system’s wavefunction (or keeping
it localized through time), the noise induced by the collapse
mechanism also results in Brownian motion in addition to
the system’s dynamics. Detecting this motion is the goal of
non-interferometric experiments.
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2 Interferometric and non-interferometric
experiments

The most direct approach for testing collapse models is to
prepare a spatial quantum superposition, let the different com-
ponents interfere — ideally in a noise-free environment —
and then measure the corresponding interference pattern5. If
interference fringes appear, the superposition principle holds
for that type of systems within the measurement error, other-
wise it is violated. This can be due to different reasons, such
as the localisation of the system’s wavefunction predicted by
a collapse model.

Interferometric experiments face difficulties that limit their
capability to place experimental bounds on the collapse pa-
rameters. In particular, preparing and maintaining spatial
superpositions of massive systems over time is challenging
from a technical perspective as it requires isolation from any
external agent that might spoil the superposition. Such an
external action would prevent the occurrence of possible col-
lapse mechanisms or disguise them. Typically, this requires
low temperature, high vacuum, low-vibration conditions. An-
other major challenge is the experimental preparation of an
initial coherent superposition state that is large enough to
generate a visible interference pattern. The challenge of the
preparation stage grows with the size and mass of the particles
at hand. This process should be robust and reproducible as a
large number of particles would need to be prepared in nearly
identical initial states to allow for the acquisition of sufficient
statistics to resolve an interference pattern.

State-of-art interferometric experiments now employ par-
ticles of around 104 atomic mass units (amu) and have set
an upper bound of λ < 10−7 s−1 at rC = 10−7 m for the CSL
model18. This is a few orders of magnitude away from testing
Adler’s value and is a billion times weaker than what is needed
to probe the GRW value. Probing such a value would need
masses of 107 amu and a size of the quantum superposition
of around 180 nm, maintained for about 20 s. The request on
time is too demanding to make such an experiment practical.
A potential way forward is to perform experiments on-board
of a dedicated satellite to exploit the advantages provided
by the space environment19, 20 as its microgravity environ-
ment enables long free-fall times. To date, interferometric
experiments have not set relevant bounds for the DP model.
However, there are proposals for implementing experiments
that need challenging technical developments, mainly con-
cerning how to generate spatial superpositions of massive
systems21–24.

As non-interferometric experiments do not rely upon the
preparation of quantum superpositions, they provide an im-
portant advantage25. In fact, the collapse noise Wt(x) would
act on the nucleons of a system regardless of the quantum or
classical nature of the state it has been prepared into, making
their dynamics stochastic. The nucleons will randomly accel-
erate, which leads to a variety of effects that will be discussed
below. Among them, a violation of the energy conservation
principle is predicted. This should not be seen as disturbing

in light of the phenomenological nature of the models being
addressed.

As the typical strength of the collapse rate is very small, a
successful experiment will still have to suppress other noise
sources from the environment, as for the interferometric ap-
proach. The non-interferometric strategy is then to monitor
the motion of a system in a controlled environment, looking
for Brownian fluctuations, whose detection would be a first
hint of a collapse effect. The lack of observation of such
hints provides a bound on the collapse parameters, and allows
one to draw so-called exclusion plots that identify the regions
of parameters that need to be explored to rule out a given
collapse model. Figs. 2 and 3 report the exclusion plots for
the CSL and the DP model, respectively. Below we discuss
individually the constraints obtained from the application of
non-interferometric strategies.

2.1 Phonons in low temperature experiments
The collapse noise affects the collective dynamics of atoms,
and modifies the phonon distribution in bulk materials, leading
to an increase of the internal energy of the system26, 27. The
CSL model predicts a heating power given by

PCSL =
3
4
}2λm
m2

0r2
C

, (3)

where m is the mass of the system. The system needs to
be isolated in order to derive significant bounds. The main
step in this direction is to perform the experiment at low
temperatures, as in the case of the CUORE experiment28,
where crystals of tellurium oxide weighting 340 g are cooled
to around 10 mK. Also shielding the setup from other back-
ground noises — such as γ radiation or cosmic rays — by
resorting to underground facilities can improve the level of
isolation29. Nevertheless, dissipative processes due the inter-
action with the surrounding environment will still take place.
Therefore, materials with high density, which will enhance the
collapse effect, and low thermal conductivity to reduce dissi-
pation are the best candidates to test collapse-induced heating.
Low-temperature experiments30 can reach heating rates as low
as P/m∼ 100 pW/kg. The most accurate modelling of energy
deposition from radioactive decays and penetrating muons
still leaves a residual heating of around P/m∼ 10 pW/kg un-
accounted. This in turn sets the bound27 λ < 3.3×10−11 s−1

at rC = 10−7 m for the CSL model.

2.2 Cold atoms
State-of-the-art experiments in cold-atom technology allow
cooling a cloud of atoms down to the pK scale, thus enabling
a high degree of control of such systems. The low operating
temperature makes these systems good candidates to test the
effects of collapse models, although the amplification mech-
anism can not be exploited due to the negligible interaction
among the atoms in the cloud.

As for the system discussed in Sec. 2.1, the collapse noise
produces an increase of the energy (temperature) of the atoms
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in the cloud at a rate given in Eq. (3), with m now being the
mass of an atom. Comparison with experimental data31, tak-
ing into account several effects including heating induced by
three-body interactions or cooling resulting from evaporation,
leads to the upper bound λ < 10−7±1 s−1 at rC = 10−7 m. A
stronger bound can be obtained by considering diffusion in
position32. CSL predicts that the position variance grows as

〈x̂2〉t = 〈x̂
2〉QM

t +
λ}2

2m2
0r2

C

t3, (4)

where 〈x̂2〉QM

t is the standard quantum mechanical spread,
while the second term is the CSL-induced contribution. The
latter grows as t3, contrary to the linear increase of the CSL
contribution to the energy. The ideal experiment to test this
prediction consists in cooling down an atomic cloud to very
low temperatures, and then letting it evolve freely. The CSL
model predicts that the collapse noise will make the cloud
expand faster than the predictions from quantum mechanics.
If such an extra expansion is not observed, this can be used to
set bounds on λ and rC. Application of Eq. (4) to experimental
data33 leads to λ < 5.1×10−8 s−1 for the reference value of
rC = 10−7 m.

2.3 Optomechanical systems
Optomechanical systems are based on the interaction between
a mechanical oscillator and a radiation field shone on it34.
After the system has reached an equilibrium, one can infer the
dynamical properties of the mechanical component, and con-
sequently their modification due to external influences such as
those caused by collapse, by analyzing the radiation field35–37.
The mechanical oscillator, which is driven by the radiation-
pressure coupling with the radiation field, is assumed to be
immersed in a thermal bath at temperature T , whose action
is quantified by a temperature-dependent noise and a dissipa-
tion. The overall noisy action on the mechanical system is
characterized in terms of the density noise spectrum of the
oscillator’s position, which reads35–37:

SDNS(ω) = Sopto(ω)+
}ωmγm coth(}ω/2kBT )+SCM

m2[(ω2
eff−ω2)2 + γ2

effω
2]

, (5)

where Sopto(ω) is the standard optomechanical contribution
from the radiation field on the mechanical resonator at fre-
quency ω . The second term — the contribution from the
environment — is characterized by the mass m of the mechan-
ical part, the mechanical damping γm, the effective frequency
and damping ωeff and γeff respectively, where kB is the Boltz-
mann constant. Collapse models contribute to the expression
of the density noise spectrum with the addition of SCM, which
depends on the mass density of the system, is proportional
to λ , and can be interpreted as a variation of the equilibrium
temperature (or energy E) of the system. Equivalently, due to
the equipartition theorem, an increase of the effective energy
of the system is translated into an increase of the spread in po-
sition35–37 given by 〈x̂2〉 ∼

∫
dωSDNS(ω) ∝ E +∆ECM, where

∆ECM is the collapse models’ contribution to energy.

Several experiments with optomechanical systems imposed
significant bounds on the collapse parameters; we can sepa-
rate these experiment into three main classes. The first class is
that of clamped systems, as cantilevers, where the motion of
a ferromagnetic sphere that is attached at the end of a silicon
cantilever is examined using a superconducting detector. The
system with masses from tens38 to hundreds39 ng is monitored
at different temperatures from 10 mK to 1 K to characterize the
collapse induced increase of the effective temperature. These
tests constrained the CSL model to around λ < 1.9×10−8 s−1

at rC = 10−7 m. Recently, the setup40 was specifically tailored
for testing the CSL model at rC = 10−7 m41, yielding an up-
per bound λ < 2.0×10−10 s−1, which completely covers the
values suggested by Adler. The second class of experiments
includes the gravitational wave detectors LIGO42, AURIGA43,
and the space-based prototype LISA Pathfinder44, 45. These
employ macroscopic masses from the kg to the ton scale,
whose motion is monitored with optical techniques, making
them effectively optomechanical systems. Although being
fully in the classical, macroscopic regime, such experiments
pose the strongest experimental bounds on the collapse pa-
rameters46–48 for rC > 10−5 m. This is due to the fact that for
such large masses, the collapse is magnified due to the ampli-
fication mechanism. Although the corresponding bounds are
the strongest for large values of correlation length rC, they are
softer at rC = 10−7 m: LIGO42 sets λ < 1.0×10−5 s−1, AU-
RIGA43 gives λ < 4.6×10−2 s−1, while LISA Pathfinder44, 45

provides λ < 3.8×10−9 s−1. The third class of experiments is
that of levitated systems. The levitation of spheres of around
0.1 to 5 pg was made possible through the use of a linear Paul
trap49 and a magneto-levitational trap50 at room temperature,
respectively. The current bounds obtained from such exper-
iments are comparable to those from interferometric experi-
ments, yielding λ < 4.1×10−5 s−1 and λ < 6.7×10−7 s−1

for the CSL model at rC = 10−7 m. Although these bounds
are not yet competitive compared to other non-interferometric
methods, they hold the promise to provide stricter bounds.
One can expect a major improvement when working in cryo-
genic conditions.

2.4 Gamma and X-ray emission
Brownian motion, such as that induced by the collapse noise,
imparts a (random) acceleration to particles, which makes
them radiate if charged. As otherwise this radiation would not
be there, it can be used to test collapse models.

The most recent analysis applied to the CSL model51 has
shown that the radiation emission rate from a crystal is given
by

dΓCSL

dE
= Natoms

(
N2

A +NA
)

λ}e2

4π2ε0m2
0r2

C c3E
, (6)

where Natoms is the total number of atoms, NA the atomic
number, e the elementary charge, ε0 the vacuum’s dielectric
constant, c the speed of light and E the energy of the emitted
photons. Eq. (6) is valid for E ∈ [10,105] keV, which corre-
sponds to photon wavelengths larger than the size of a nucleus
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but smaller than that of an atom. In this regime, the protons
in the same nucleus emit coherently, giving rise the quadratic
contribution N2

A. Because the electrons emit incoherently from
the atomic nuclei, their contribution does not cancel that of
the protons and the electrons contribute linearly with NA. A
similar expression is derived for the DP model52.

The first application53 of the induced radiation emission
rate ruled out the Karolyazy model54, which proposes a con-
nection between wavefunction collapse and gravity. It was
later applied to the mass-independent version of the CSL
model, where the mass density M̂(x) in Eq. (1) is replaced
by the particle number density times m0, effectively ruling it
out55.

A recent comparison with data from a dedicated experi-
ment – performed in the underground Gran Sasso laboratories
in Italy lead to the strongest bounds on the CSL51 and on
the DP52 model of λ < 5.2× 10−13 s−1 at rC = 10−7 m and
of R0 ≥ 0.54× 10−10 m, respectively. It also ruled out the
parameter-free version of the DP model relating R0 to the
width of the wave function, as suggested by Penrose. Accord-
ing to this prescription, one would expect R0 ∼ 5×10−12 m
for Germanium crystal cooled down to 77 K, which is about
10 times smaller than the lower bound set by the experiment.

2.5 Decay of superconducting currents in SQUIDs
Below a critical temperature, metals become superconduc-
tors: electrons bind in pairs, so-called Cooper pairs, and flow
without resistance on the metal surface56. A particularly inter-
esting instance of such devices is given by superconducting
quantum interference devices (known as SQUIDs), which
are characterized by a superconducting loop interrupted by
two Josephson junctions. It was suggested57 — and later
achieved58 — that SQUIDs can be put in the superposition of
two macroscopically dinstinct current states, and that these
could be exploited to test the validity of the superposition
principle.

Collapse models predict that superconducting currents are
unstable, because the collapses tend to localize single elec-
trons, thus breaking Cooper pairs, leading to the decay of the
current59, 60. Such an effect is suppressed by the small value
of the electron mass with respect to the nucleon reference
mass, but is enhanced by the large number of electrons taking
part in the process. For the CSL model, the decay rate can be
approximated as60

γCSL =
3

2
√

π

N
kF

λ

rC

, (7)

where N is the number of Cooper pairs, and kF is the Fermi
momentum. This is compared with the experimental rate56, 61

γ ∼ 3× 10−13 s−1, which is obtained by measuring the de-
cay of the field produced by the superconducting currents61,
which allows to set an upper bound on the CSL rate of14

λ < 10−3 s−1 at rC = 10−7 m. The theoretical estimate of the
supercurrent decay, however, neglects the recombination of
electrons into Cooper pairs, thus the bound could be weaker.

However, because the experimental data on superconducting
currents decay are dated61, more recent measurements could
possibly allow to set stronger bounds.

2.6 Astronomical and cosmological observations
Astronomy and cosmology are becoming more and more im-
portant for testing collapse models, because they provide an
arena, where the collapse effects can build up over very long
times and for very large systems14. In the non-relativistic
regime, one can exploit the collapse-induced Brownian mo-
tion to set bounds on the collapse parameters, which are re-
ported in Table 1.

The collapse noise reduces the stability of bound systems,
and this can be applied to a variety of situations. The dis-
sociation of cosmic hydrogen during the evolution of the
Universe11, results in the bound λ < 1 s−1 for rC = 10−7 m.
The same noise, by accelerating protons, perturbs the thermal
history of the Universe. Besides the high energy photons
considered in Section 2.4, protons will also emit low energy
photons, which contribute to the Cosmic Microwave Back-
ground (CMB) radiation; precision measurements of the latter
give14 λ < 10−5 s−1 for rC = 10−7 m. Because the emis-
sion is not thermal, these photons will distort the spectrum
of the CMB. Data from the COBE/FIRAS (Cosmic Back-
ground Explorer/Far Infrared Absolute Spectrophotometer)
observations bounds the CSL parameters to62 λ < 10−1 s−1

for rC = 10−7 m.
The intergalactic medium, consisting of highly ionized hy-

drogen, is heated by various astrophysical sources and is
cooled by adiabatic expansion of the Universe and by recom-
bination cooling of the plasma. As the collapse noise will
add to the heating mechanism, it will increase the equilibrium
temperature. Observations set the bound14 λ < 10−8 s−1.

Another equilibrium argument can be applied to astronomi-
cal and astrophysical bodies, such as Neptune63 and the neu-
tron star64 PSR J 1840-1419, which is the coldest neutron
star found so far. Under the assumption that the collapse-
induced heating is equilibrated by the energy loss due to the
radiation emission, as described by the Stefan-Boltzmann law,
one obtains λ < 9.4× 10−7 s−1 for PSR J 1840-1419 and
λ < 6.6×10−11 s−1 for Neptune.

Collapse models have also been applied to cosmology .
They were proposed as candidates to implement an effective
cosmological constant65, or to justify the emergence of the
cosmic structures in the Universe66–68, whose imprint can be
found in the observed temperature anisotropies of the CMB.
The latter is a remarkable prediction of inflationary cosmology,
where theory and observations match very well. Collapse
dynamics having acted since shortly after the Big Bang will
impact the spectrum of primordial perturbations, both at the
scalar and at the tensorial level69–73.

Under this perspective, observational data applied to cosmic
inflation were used to rule out the CSL model for a specific
choice of the relativistic collapse operator74, but soon after
it was shown that a different choice75 restores compatibility
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Effect Bound on λ [s−1]
Non-dissociation of hydrogen11 < 1

CMB distorsion (COBE/FIRAS)62 < 10−1

Protons heating’s contribution to the CMB14 < 10−5

Heating in neutron stars64 < 9.4×10−7

Heating of the Intergalactic Medium14 < 10−8

Heating of Neptune63 < 6.6×10−11

Table 1. Astronomical and cosmological bounds on the CSL model. The listed bounds, which are discussed in Section 2.6, are computed for
the reference value of the characteristic length rC = 10−7 m. The strongest bound is reported also in Fig. 2.

of CSL with cosmological observations. The problem is that
it is not clear which form collapse models should take in
relativistic situations76 — and even less in situations where
gravitational effects are strong.

3 Perspectives
To further progress in testing collapse models, new dedicated
experiments will have to be designed and performed to achieve
unprecedented levels of control over the relevant degrees of
freedoms of the probe mass. They will push for technological
developments, which in turn will open the possibility of dis-
covering new physical properties. Here, we will review some
promising avenues that are currently being explored.

The first possibility is to test collapse models using paramet-
ric heating of a trapped nanosphere. Specifically, a Paul trap
is proposed77 to measure the heating rate of a single-charged
levitated nanosphere. The hybrid trap cools the mechanical
motion to a low temperature, and afterwards the optical field
of the cavity is turned off to let the nanosphere evolve freely
before measuring the particle’s energy. By comparing the
predictions with a model including the heating induced by
the collapse mechanism one can test the parameter range to
λ = 10−12 s−1 for a background pressure of 10−13 mbar and
a temperature of the mechanical system of 20 K.

Although being commonly the first candidate in many ex-
periments, translational degrees of freedom are not the only
available option. Indeed, it is possible to provide very strin-
gent constraints on the collapse parameters by using roto-
vibrational degrees of freedom. A master equation describing
the roto-vibrational diffusion due to collapse effects has been
derived78, which is used in a non-interferometric proposal48

applied to an optomechanical system. Such proposal demon-
strated that roto-vibrational diffusion can be employed to
restrict the uncharted values of the collapse parameters using
both lab-based and space-bound configurations, potentially
down to the GRW parameters.

Performing non-interferometric experiments in free-fall
is another possible way to enhance the constraints on the
collapse parameters19. Indeed, in free fall, the system does
not require external potentials that would inevitably introduce
extra noises in the system’s dynamics, hindering those due
to the collapse mechanism. Concrete possibilities on ground
are provided by the Bremen drop-tower79 or the Hannover

Einstein Elevator platform80. Such experiments could also be
performed in dedicated space missions19, 81 or on board the
International Space Station, where other quantum experiments
were already conducted82.

The performance of collapse models test can also be en-
hanced significantly by incorporating information-theoretic
techniques of sensing and metrology83. In particular, building
on the success in estimating the temperature of open quantum
systems84, 85, quantum parameter estimation techniques can
be employed as a way to infer the equilibrium temperature of
a mechanical oscillator potentially subjected to the effects of
the CSL model.

One can complement the latter schemes with the use of
hypothesis testing methods. By making use of Bayesian test
protocols applied to both matter-wave interferometry86, 87 and
non-interferometric settings88, one can address the hypothet-
ical modifications of quantum theory induced by the occur-
rence of collapse mechanisms.

Current state-of-art non-interferometric investigations can
be extended to the possible generalizations of collapse mod-
els. The CSL and DP models resort to a white noise, which
is not physical, which moreover breaks the energy conser-
vation of the system. The full resolution of both limitations
requires the development of an underlying theory, which is not
yet available, although some work in this direction has been
made2. Meanwhile, non-white and dissipative generalizations
of the CSL89, 90 and DP91 models have been formulated. In
the former extension, a cut-off frequency Ω0, a new collapse
parameter, characterizes the noise spectrum, making it more
similar to other physical noises. On the other hand, the dis-
sipative extension avoids the energy of an otherwise isolated
system to diverge. In such a model, the system eventually
thermalizes to a temperature T0, which is a further collapse
parameter. There are currently several experiments providing
bounds on the collapse parameters of these extensions49, 92–94.
However, with the additional parameters Ω0 and T0, the pa-
rameter space widens, and thus it becomes more challenging
to fully cover its unexplored regions.

More ambitiously, collapse models call for an underlying
deeper-level theory where the unitary dynamics, as well as the
collapse, emerge naturally. This would explain the physical
origin of the collapse of the wave function, be it related to
gravity as suggested by Penrose1 and others — or to yet
unidentified degrees of freedom2.
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The interest in collapse models and their experimental test-
ing has grown considerably in the last decade, which is also
sustained by significant technological developments. The un-
probed part of the parameter space has been greatly reduced,
pushing the limits of quantum theory further. Nevertheless,
the question on whether quantum mechanics is valid univer-
sally up to the macroscopic scale remains open. And only
experiments can tell.
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