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PRESERVATION OF CONVERGENCE OF CONVEX SETS
AND FUNCTIONS IN FINITE DIMENSIONS

BY
L. McLINDEN AND ROY C. BERGSTROM1

Abstract. We study a convergence notion which has particular relevance for
convex analysis and lends itself quite naturally to successive approximation
schemes in a variety of areas. Motivated particularly by problems in optimization
subject to constraints, we develop technical tools necessary for systematic use of
this convergence in finite-dimensional settings. Simple conditions are established
under which this convergence for sequences of sets, functions and subdifferentials
is preserved under various basic operations, including, for example, those of
addition and infimal convolution in the case of functions.

1. Introduction. A certain very natural notion of convergence for sequences of
convex sets, functions and related operators has received increasing attention since
the mid-1960's. Such work has been motivated by efforts toward successive
approximation schemes in a wide variety of areas, including statistics, variational
inequalities, approximation theory, stochastic optimization, control theory, and
mathematical programming. Especially noteworthy features of this convergence
notion, as applied to convex functions, are that it is preserved under two of the
chief operations of convex analysis: the Fenchel transform, and subdifferentiation.
In the context of functions, the notion differs in subtle yet important ways from
ordinary pointwise convergence.

In this paper we analyze how this convergence behaves with respect to various
basic constructions involving convex sets, functions and subdifferentials. Our aim
is to develop the technical tools necessary for a systematic application of this
convergence notion to constrained optimization situations. Elsewhere [4], [10] we
make essential use of the tools developed here. For example, in [4] we develop the
details of a broad scheme for approximating a given dual pair of optimization
problems as the limit of a sequence of such pairs of problems. Since the source of
the sequence of approximating problems is left unspecified, the framework permits
applications of both a theoretical and a numerical analytical nature.

The plan of the paper is as follows. In §2 we define the convergence notion for
sets, functions and operators, and then the two basic results concerning preserva-
tion under conjugacy and subdifferentiation are recalled. In §3 we treat preserva-
tion of convergence of sequences of convex sets under the operations of addition
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128 L. McLINDEN AND R. C. BERGSTROM

and forming images under linear transformations. Building on these results, we
then treat sequences of convex functions with respect to the dual operations of
addition and infimal convolution in §4 and also two other dual operations
involving linear transformations in §6. The latter two operations are central to
applications to more general programming situations [4], [10]. In §5 we consider the
case of additively separable functions. This permits application in decomposition
situations, as well as in network optimization [4]. In §7 the result concerning
addition of functions is recast in terms of the associated subdifferential operators.
This gives a sum result for this basic class of maximal monotone operators.
Additional such results for other classes of maximal monotone operators can be
found in [2], [3]. Finally, in §8 we present generalizations of the earlier results
which involved two sequences of functions. These extensions from the case k = 2
to k > 2 are not necessarily immediate, as one would customarily expect. This is
due to the sometimes rather intricate juggling of hypotheses needed to accomodate
the duality arguments used.

2. Definitions and background results. First, we recall a well-known notion of
convergence for sequences of subsets of fi". For each index a = 1, 2,.. . let Sa be
a subset of R". The limit inferior of the sequence (Sa) is the set

lim inf Sa = {lim xa\xa G Sa, a G (a)},

and the limit superior of (Sa) is the set

lim sup Sa = {lim xp\xp G Sfi, B G (B), (fi) C (a)}.
Here we write (a) to denote the sequence of integers a = 1, 2, . . . (excluding the
limit index oo), and we write (B) c (a) to denote that (R) is a subsequence of (a).
The sequence (Sa) converges to Sx if and only if

(2.1) lim sup Sa c Sx c lim inf Sa,
which we denote by writing Sa -»Sx. If (Sa) converges to SK, then we actually
have equality throughout (2.1) and Sx is closed.

If/is an extended-real-valued function on R", its epigraph is the set

epi/= {(x,n)GR"+x\p>f(x)}.
For each a = 1, . . . , oo let ^ be such a function. We say the sequence (fa)
converges to/^, written fa -»/«,, if and only if the sequence (epi/a) of epigraphs
converges to epi/^ in the sense of (2.1).

This convergence of functions is in general not comparable to pointwise conver-
gence, even in the case in which each /„ is closed proper convex, i.e. when each
epi/a is a nonempty closed convex set containing no vertical line. Elementary
examples illustrating the inequivalence can be found in [18] and [20]. For an
extensive analysis of the relationship between the present convergence and others,
see Salinetti and Wets [15], [16]. In particular, in [15] a maximal class of closed
proper convex functions is identified for which pointwise convergence and the
present notion coincide.

The special importance which the convergence defined above has for convex
functions is foreshadowed by the following two theorems. For these, a few
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CONVERGENCE OF CONVEX SETS 129

definitions will now be recalled. (Further background on convex analysis can be
found in Rockafellar [13].) The effective domain of a convex function is the set

dom/= {x G R"\f(x) < +00}.
The conjugate (or Fenchel transform) of/is the closed convex function/* given by

f*(x*) = sup {x-x* -fix)},       x* G R",
X

where we have used the notation x ■ x* to denote the usual inner product of two
vectors.

Theorem 1. For each a = 1, . . . , oo let fa be a closed proper convex function on
R". Then fi -»/„ ,/ and only if f*a ->&■

This result was proved by Wijsman [20]. Independently, Walkup and Wets [17]
established for reflexive Banach spaces a closely related result involving polar
cones. Their result, incorporating a metric viewpoint, is in a sense stronger and, as
was pointed out by R. T. Rockafellar, implies Theorem 1 via [13, Theorem 14.4].
Banach space extensions of Theorem 1 per se have been established by Mosco [12]
and Joly [6], [7]. A nonconvex version of Theorem 1 is given in McLinden [9].

A second main background result relates convergence of convex functions to
that of the associated sequence of subdifferentials. Recall that the set of subgradi-
ents of /at x is the set

df(x)= {x* G Rn\fix') >f(x) + (x' - x)-x*,\fx' G Rn}.

The subdifferential of / is the multivalued operator 6/ mapping points x G R" into
subsets dfix) c R * and having graph

G(df) = {(x, x*) G R2n\x* E dfix)}.

For convenience in what follows, we identify subdifferentials with their graphs. The
effective domain of 3/ is the set

D(df) = {xGR"\df(x)^0}.

Theorem 2. For each a = I, ..., oo let fa be a closed proper convex function on
R ". Then fa -* fx if and only if

(i)G(dfa)^G(dfJand
(ii) there exist (xa, x*) G G(dfa) for a = 1, . . . , oo such that (xx, x^) =

lim(x„, x*) andf^xj = lim/a(xa).

This result is due to Attouch [1], who established it in the setting of Hilbert
spaces. Related material, variants and alternate proofs can be found in Brezis [5],
Matzeu [8], and McLinden [9].

To conclude this preliminary section, we record several more definitions. For
any operator T mapping points of R" into subsets (possibly empty or singletons) of
R m, we write

D(T) = {x G R"\T(x) ¥> 0},    G(T) = {(x,y) G R" X Rm\y G T(x)}
for the effective domain and the graph of T. If T is such an operator for each
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130 L. MCLINDEN AND R. C. BERGSTROM

a = 1, . . . , oo, we say that the sequence (Ta) converges to Tx, and write Ta -^ Tx,
provided that the sequence (G(Ta)) of graphs converges to G(TJ) in the sense of
(2.1).

3. Operations on sets. If A is a linear transformation, we denote its nullspace,
range, and graph by N(A), R(A), and G(A), respectively. If C is a nonempty
convex subset of R ", its recession cone is the nonempty convex set

0+C= {y E R"\y + C cC}.
The following result is central to this paper. Notice that the technical condition it

requires involves only the limit linear transformation and convex set.

Theorem 3. For each a = 1, . . . , oo let Ca be a nonempty convex subset of R"
and Aa be a linear transformation from R" to Rm. Assume that Ca^>COB and
Aa^Ax (pointwise). Suppose that N(AJ n 0+Cx = {0}. Then AaCa ̂ A^C^. If
for each a the set Ca is also closed, then there is an a such that a > a implies AaCa is
closed.

Before proving Theorem 3, we draw the following corollary.

Corollary 3A. For each a = 1, . . . , oo let Ca and Da be nonempty convex
subsets of R" such that Ca -^ Cx and Da -+ Dx. Suppose that (0+CJ n (-0+DJ
= {0}. Then (Ca + Da) -^ (C„ + DJ. If for each a both Ca and Da are also closed,
then there is an a such that a > a implies (Ca + Da) is closed.

Proof. For each a = 1, . . . , oo define Aa: R2n -* R" by Aa(xx, x^ = xx + x2.
It is easy to check that the sequence of direct sums ((Ca © Da)) converges to
Cx © Dx. Since Aa(Ca © Da) = Ca + Da and 0+(Q © Da) = 0+Q ffi 0+Da, the
hypothesis (0+CJ n (~0+Z> J = {0} implies N(AJ n 0+(Cx ffi DJ = {0}.
The corollary now follows from Theorem 3.    □

The proof of Theorem 3 depends on a series of lemmas.

Lemma 1. Suppose that (xa) and (ca) are sequences in R" with \\ca\\ —> oo. Assume
there exist k > 0 and u G R" such that \\xa\\ < k for all a and ca||cj|-1 -* «• Then
(ca ~ *«)lk« - xa\\'x-^u.

Proof. We have \\xa\\ < k < \\ca\\ for all sufficiently large a, and hence

(1  + 11^.11  IIC.II-1)"1   <  HC«II  HC« - ^H'1  < (1 - H^ll  HCair1)"'

by the triangle inequality. Thus ||ca|| \\ca - xa\\~x -> 1, and consequently

(c„ - *«)iic0 - xj-1 = (cjicjr1 - xa\\ca\\-x)\\ca\\ \\ca-xj-x^u,

completing the proof.   □

Lemma 2. For each a = I, ..., oo let Ca be a nonempty convex subset of R".
Assume that Ca -* C^. Suppose for some subsequence (Cp) of (Ca) and u E R" there
is a sequence (c^) such that cp G Cp, \\Cp\\ -» oo, and c^llc^H"1 -> u. Then u E
o+cx.
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CONVERGENCE OF CONVEX SETS 131

Proof. Choose x E Cx and r > 0. It will suffice to show (x + ru) E Cw. We
can find a sequence (xa) such that xa E Ca and xa -> x, and then we can choose
k > 0 such that \\xa\\ < k for all a. Let (xp) be the subsequence of (xa) correspond-
ing to the subsequence (Cp) of the hypothesis. There exists /? such that R > fi
implies \\cp\\ > (k + r). For such R we have that 0 < r < \\cp - xp\\ and (since Cp
is convex)

Xp + XWcp-x^^Z^^ECp   forO<X<l,

so that

Xfi + r{(cp - xp)/\\cp - xfi\\) E Cp.

It follows from Lemma 1 that (cp — Xp)\\cp — Xp\\~x —> u, and this combined with
Xp -» x and Ca -> Cw yields (x + ru) E CM.   D

Lemma 3. For each a = 1, . . . , oo let Aa be a linear transformation from R" to
Rm. Then the following conditions are pairwise equivalent:

(3.1) G(Aa)^G(Aj,
(3.2) Aa->AX    pointwise,

(3.3) \\Aa-AJ\^0.
(The convergence in (3.1) is as described in §2, where the graphs are considered as
subsets of R" X Rm.)

Proof. First, we show (3.1) implies (3.2). We begin by noticing that (|M„||) is
bounded. Indeed, suppose otherwise. Then there is a subsequence (Ap) of (Aa) such
that ||^||-»oo. Choose a sequence (up) of unit vectors such that H^t^H >
(H/LjII/2), and set yp = \\ApUp\\~x. Since H^y^)!! = 1 for all R, we may assume
that there is a unit vector v E Rm such that Ap(ypUp)^ v. From the hypothesis
G(Aa)^> G(AX) and (ypUp, Ap(ypUp)) -»(0, v) we conclude that .4^,(0) = v. But
this is a contradiction, since v is a unit vector. Now let xx E R". Since G(Aa)^>
G(AX), there is a sequence (xa) in R" such that (xa, Aaxa) -> (xx, AxxJ. In view
of the estimate

IMooXoo — ̂ o^ooll   ^   IMooXoo — ̂ a^all   +  ll^all   \\Xa  ~  Xoo 11'

the desired implication follows. That (3.2) is equivalent to (3.3) is standard. Finally,
we show (3.2) and (3.3) imply (3.1). We have G(A J c lim inf G(Aa) since
(xx, Aax00)^(x00,A00x00). Suppose (G(Ap)) is a subsequence of (G(AJ) and (xp)
is a sequence such that the sequence ((xp, ApXp)) converges to some pair (xx, y).
To prove lim sup G(Aa) c G(AJ it will suffice to show y = A^x^. But this is
immediate, since

\\y - AxxJ\ < ||.y - ApXp\\ + \\Ap\\ ||^ - *J| + \\Ap - Ax\\ ||*J|,
and the quantity on the right converges to zero.   □

In view of Lemma 3, henceforth we write Aa^Aa0 for any of these three
equivalent forms of convergence of linear transformations.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



132 L. MCLINDEN AND R. C. BERGSTROM

Lemma 4. For each a = 1, . . . , oo let Ca be a nonempty convex subset of R".
Assume that Ca -> Cm. Then lim sup 0+Q C 0+Cx.

Proof. Suppose that yx G lim sup(0+Ca). Then we can find a subsequence
(0+Cg) of (0+Ca) and a sequence (yp) such that^ G 0+C/S and>^ -^.y^. Choose
xx E Cx and r > 0. It will suffice to show that (xM + ryj E Cx. Since Ca -»
Cx, there is a sequence (*„) such that xa G Ca and xa -> i:M. Now (x^ + ryp) E Cp
and lim sup Cp c Cw, so (xx + ryx) G Cx.   □

Lemma 5. For eac/z a = 1, . . ., oo let Ca and Da be convex cones in R". Assume
that lim sup Ca c Cx and lim sup Da c Dx. Suppose that Cw n BM = {0}. Then
there is an a such that a > a implies Ca n Da = {0}.

Proof. Suppose the conclusion fails. Then we can find a subsequence (B) of (a)
and a sequence of nonzero vectors (up) such that Up E Cp n Dp. We may assume
that each up is a unit vector and that there is a unit vector u such that Up -» u. Then
w G Cx n £>«, by the "lim sup" hypothesis. This contradiction shows the conclu-
sion must be valid,    fj

Proof of Theorem 3. The set AaCa is clearly nonempty convex. Let cx G Cx.
Since Cw C lim inf Ca, there is a sequence (ca) with ca E Ca such that ca -> cB. It
follows that^c^ G lim inf AaCa, since

M«c„ - ^ooCjl < \\Aa - Ax\\ \\ca\\ + \\AX\\ \\ca - cx\\

and the quantity on the right goes to zero as a goes to infinity. Now let (Cp) be a
subsequence of (Ca) and (cp) be a sequence such that Cp G Cp and the sequence
ApCp converges to some xx G Rm. To complete the convergence conclusion it will
suffice to show that xx = Axcx for some cx E Cx. We claim that the sequence
(\\cp\\) is bounded. If not, we may assume that \\cp\\ -» oo and that there is a unit
vector u G R" such that c^Hc^lp1 -» u. From Lemma 2 it follows that u G 0+Coo.
Let Up = Cp\\cp\\~x. Since Ap —> Ax pointwise and Up —> u, we have ApUp -^Axu.
We also have \\cp\\(ApUp)-> xx and so ||cg|| \\ApUp\\ -> Hx^y. This implies
(11^/3^11)^0, since Hc^H-^oo, and so u G N(AJ. But this contradicts the hy-
pothesis N(AX) n 0+Cx = {0}. Therefore (\\cp\\) is bounded, and we may assume
(cp) converges to some vector cx. Since lim sup Ca c Cx, it follows that cx G Cx.
The estimate

\\ApCp ~ Axcx\\ < 114,11 ||C/J - cx\\ + \\Ap - AJ\ \\cx\\,
together with ApCp -^> xx and Ap —> Ax, implies that xx = Axcx.

Finally, suppose that for each a the set Ca is also closed. Lemma 4 implies
lim sup 0+Ca c 0+Cx, and Aa -+AX implies lim sup N(Aa) c N(AX). Lemma 5
then implies that there is an a such that a > a implies N(Aa) n 0+Ca = {0}. It
follows from [13, Theorem 9.1] that for these a the set AaCa is closed.   □

In Theorem 3 the hypothesis N(AX) n 0+C0O = {0} cannot in general be relaxed
to "N(AX) n 0+Cx is a subspace."

Example 1. For each a = 1, . . . , oo define Aa: R2-» R2 by Aa(x,y) = (0,y).
For a < oo let Ca be the triangle in R2 with vertices (-a, 0), (a, 0), and (a, 1), and
let Cx = R X {0}. Then AXCX = {(0, 0)}, and for a < oo, AaCa = {0} X [0, 1].
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CONVERGENCE of CONVEX SETS 133

Here Ca -» Cx and N(AX) n 0+Cx is the simplest nontrivial subspace, yet (AaCa)
does not converge to AXCX.

4. Addition and inf-convolution of functions. We now apply the results of §3 to
epigraphs of functions to obtain results for preservation of convergence of func-
tions under natural operations. The recession function of a closed proper convex
function/on R" is the function whose epigraph is 0+(epi/). It is denoted by/0+.
The infimal convolution of two closed proper convex functions / and g on R " is the
convex function on R " given by

(fOg)(x) = M {fix') + g(x - x')}.
x

Theorem 4. For each a = 1, . . . , oo let fa and ga be closed proper convex
functions on R". Assume that fa^>fx and ga^>gx- Suppose that 0+(epifx) n
( — 0+(epi gx)) = {0}. Then there is an a such that a > a implies (faL~lga) is closed
proper convex, and (faOga) -»(fjjgj-

Proof. The definition of infimal convolution implies that for all a,

(epi/„ + epigj c epi(/aQgJ c cl(epi/a + epigj.

Corollary 3 A implies that there is an a such that a > 67 implies (epi fa + epi ga) is
closed, and that the sequence ((epi /„ + epi gj) converges to (epi fx + epi gx). By
Lemma 5, we may assume that a > a implies 0+(epi/a) n (—0+(epiga)) = {0).
For these a we have from [13, Corollary 9.2.2] (see also Lemma 6 below) that/a[~Jga
is closed proper convex.   □

We now investigate dual formulations of the hypothesis of Theorem 4, in
preparation for Theorem 5.

Lemma 6. Let f and g be closed proper convex functions on R". Then the following
three conditions

(4.1) 0+(epi/*)n(-0+(epig*)) = {0},
(4.2) (f*0+)(x*) + (g*0+)(-x*) > 0   for all x* ¥= 0,
(4.3) 0 G int(dom/ - dom g),

are pairwise equivalent, and are implied by

(4.4) 0 ^= int(dom/) n dom g.

Proof. Condition (4.3) is equivalent to having Rn equal to the convex cone
generated by the effective domain of the indicator function 8(- |dom/ — dom g). It
follows from [13, Theorem 14.2] that this is equivalent to having the recession cone
of the support function 5*(- |dom/ - dom g) consist of just the zero vector. Notice
that

S*(;c*|dom/- domg) = 5*(x*|dom/) + 8*(x*\ - domg)
= (f*0+)(x*) + (g*0+)(-x*),
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134 L. MCLINDEN AND R. C. BERGSTROM

where the second equality follows from [13, Theorem 13.3]. We conclude that (4.2)
is equivalent to (4.3). Now suppose that

(x*, ix*) G 0+(epi/*) n (-0+(epi g*)).
Then we have n* > (f*0+)(x*) and -u* > (g*0+)(-x*). In particular, this yields

(f*0+)(x*) + (g*0+)(-x*) < p.* - u* = 0
so that (4.2) implies x* = 0. It follows that

li* > (f0+)(x*) = 0 and -fi* > (g*0+)(-x*) = 0,
which imply ll* = 0. Thus (4.2) implies (4.1). We establish the implication (4.1) =»
(4.3) by contraposition. Suppose that there exists x* ^ 0 such that (f*0+)(x*) +
(g*0+)(-x*) < 0. Then both summands are finite (see [13, Theorem 8.5]), so there
exist real numbers ll* and v* satisfying (f*0+)(x*) < li*, (g*0+)(-x*) < -v*, and
ju,* - v* < 0. These conditions yield

(x*, ii*) E 0+(epif*) n (-0+(epig*)).

Finally, (4.4) => (4.3) follows from

0 G (int(dom/) - domg) c int(dom/- domg),

and the proof is complete.   □

Theorem 5. For each a = 1, . . . , oo let fa and ga be closed proper convex
functions on R". Assume that fa ->/„ andga -* gx. Suppose that

0 G int(dom/ro - domgx).

Then there is an a such that a > a implies (fa + ga) is closed proper convex, and
(fa   +  go) -» (/oo   +  gj-

Proof. It follows from Theorem 1 that f£ ->/£, and g*^^gx, and it follows
from Lemma 6 that 0+(epii^) n ( — 0+(epi gx)) = {0}. Hence, Theorem 4 yields
an a such that a > a implies (/*Dg*) is closed proper convex, and (/*Dg*) -*
(ftoHgJ- It follows from [13, Theorems 16.4, 12.2] that for these a, (f*\3g*) =
(fa + ga)* and (fa + ga) is closed proper convex. The result now follows from
another application of Theorem 1.   fj

The relative interior of a subset S of R", denoted by ri S, is the interior of S
relative to the smallest affine subset of R" which contains S. The next example
shows that we cannot weaken the technical condition of Theorem 5 from 0 G
inKdom/^, - dom gx) to 0 G ri(dom/00 - dom gx).

Example 2. Define closed proper convex functions on R 2 by
/a = 6X-|[0,2]X {l/«})fora< oo,
fx = 8(-\[0,2]x{0}),
& = «(-|[l,3]X {-l/a})fora< oo,
gK = S(-\U,3]x{0}).

These are all closed proper convex functions, and fa—>fx and ga-^g^ The
sequence   ((/Q + ga))   does   not   converge   to   (fx + gx),   even   though   0 G
ritdom/^ - dom gx).
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CONVERGENCE OF CONVEX SETS 135

5. Separable functions. Functions which are additively separable over various
components of the argument play an important role in applications. Decomposi-
tion principles and network optimization constitute outstanding examples of this.
The completely separable case is, of course, included in the following result.

Theorem 6. For each a = 1, . . . , oo and i = I, . . . , k let f'a be a closed proper
convex function on R"*1. Assume that f'a —>/^ for each i. For n = m, + • ■ • +mk
define functions Faon R" by setting

FaW = £(X1) +■■■   +/*(**), X = (x\ ..., X*).

Then Fa -+ Fx.

Proof. A completely elementary proof can be based on the lemma of Mosco [11,
Lemma 1.10] which converts (2.1) into equivalent statements involving function
values. Suppose (xx, . . . , xx) is given. Since epif'x c lim inf epi f'a for each /,
there exists sequences (x^) such that

xx = lim xa    and   lim sup/^xj) < fx(xx).

But then (xxx, . . . , xx) = liirn^, . . . , x*) and

lim sup Fa(xxa, ..., jr*) - lim sup 2/i(*«) < 2 lim sup/j^)

< 2/U*U = ^co(*«. • • • .*«).
which shows that epi Fx c lim inf epi Fa. Now consider any (B) c (a) and corre-
sponding (xxx, . . . , xx) = lim(xlp, . . . , x^). Since lim sup epi/; c epi/^ for each
i, we have

/U^)<liminf/^).
Adding these yields

Fx(xxx, ...,xx) = 2/•«(*») < 2 lim mf ftxj,)

< lim inf ^fp(xp) = lim inf Fp(xXp, . . . , x£),

which shows that lim sup epi Fa c epi Fx.   fj

6. Operations involving functions and linear transformations. We continue with
preservation results for convergence of convex functions, this time under opera-
tions involving linear transformations. Let / be a convex function on R", g a
convex function on Rm, and A a linear transformation from R" to Rm. The image
off under A is the convex function defined on R m by

(Af)(y) = inf {f(x)\Ax=y}

and the composition of g and A is the convex function defined on R n by

(gA)(x) = g(Ax).
The adjoint of A is denoted by A*.
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136 L. McLINDEN AND R. C. BERGSTROM

Theorem 7. For each a = I, ..., oo let fa be a closed proper convex function on
R" and let Aa be a linear transformation from R" to Rm. Assume that fa —»fx and
Aa-^AX. Suppose that N(AX) n {x E Rn\(fx0+)(x) < 0} = {0}. Then there is an
a such that a > a implies AJa is closed proper convex on Rm, and AJa —»Axfx.

Proof. For each a = 1, . . . , oo let Ba be the linear transformation from /?"+1 to
Rm+i defined by Ba(x, u) = (Aax, ju). The definition of image of a convex function
under a linear transformation implies that for each a,

*«(epi/„) C epi(AJa) C cl Ba(epifa).
The hypothesis N(AX) n {x G Rn\(fx0+)(x) < 0} = {0} is equivalent to N(BX)
n 0+(epifx)= {0}. Hence, Theorem 3 yields an a such that a>a implies
Ba(epifa) is closed, and Ba(epifa)-± Bx(epifx). Lemmas 4 and 5 imply that we
may assume N(Ba) n 0+(epi/a) = {0} for these a, and so [13, Theorem 9.2]
implies that for these a the function AJa is closed proper convex.   □

We remark that in Theorem 7 one also has, for each a > a and each fixed y and
ju. satisfying (AJa)(y) < ju < +oo, that the set {x E R"\Aax = y, fa(x) < u) is
actually compact convex. This can be shown as an exercise by means of recession
theory [13] since, as was shown in the proof above, the condition N(Aa) n {x E
R"\(fa0+)(x) < 0} = {0} holds for such a.

The condition needed for Theorem 7 will now be dualized in preparation for
Theorem 8.

Lemma 7. Let f be a closed proper convex function on R", and let A be a linear
transformation from Rm to R". Then the following three conditions,

(6.1) N(A*) n {x* E R"\(f*0+)(x*) < 0} = {0},
(6.2) R(A^ n {x* G R"\8*(x*\domf) < 0} = {0},
(6.3) 0 G int(R(A) - dom/),
are pairwise equivalent, and are implied by

(6.4) 0 =£ R(A) n int(dom/).

Proof. It is standard that R(A)± = N(A*), and [13, Theorem 13.3] yields
S*(-|dom/) =/*0+. The equivalence of (6.1) and (6.2) is now immediate. To see
the equivalence between (6.2) and (6.3), observe that (6.2) is equivalent to

8*(x*\R(A)) + 8*(x*\domf) > 0,   V x* * 0,
since 8(-\R(A)±) and 8*(-\R(A)) are equal. This condition can be written as
<pO+(x*) >0,Vr*^0, for <p the closed proper convex function

4> = 8*(-\R(A)) + 8*(-\ - dom/) = 8*(-\R(A) - dom/).
By [13, Corollary 13.3.4(c)] the latter condition is equivalent to the condition
0 G int(dom $*). Since 4>* = 8(-\R(A) - dom/), this is the same as (6.3). Finally,
since

R(A)- int(dom/) c int(R(A) - dom/),
it is clear that (6.4) implies (6.3).   □
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Theorem 8. For each a = I, ..., oo let fa be a closed proper convex function on
R" and let Aa be a linear transformation from Rm to R". Assume that fa -+fx and
Aa^>Ax. Suppose that 0 G int(R(Ax) - domfx). Then there is an a such that
a > a implies faAa is closed proper convex on Rm, and faAa -^fxAx.

Proof. Lemma 7 implies that N(AX) n {x* E Rn\(f*x0+)(x*) < 0} = {0}. The-
orem 1 implies/* -^ft,, and clearly A* -* A*x. From Theorem 7 we have an a such
that a > a implies /I*/* is closed proper convex, and A*f^ -^A^f^. Theorem 1
now yields (A^)* -+(A*xrj*. Since (A^)* =f^*A;*=faAa for each a, we
obtain faAa^>fxAx, where faAa is closed and proper for all a>a (see [13,
Theorems 16.3, 12.2]).   □

7. Addition of subdifferentials. We now recast Theorem 5 in terms of subdifferen-
tials, a special class of maximal monotone operators. Similar results for other
classes of maximal monotone operators may be found in [3, Chapter 5] and [2].

Theorem 9. For each a = 1, . . . , oo let Ma and La be subdifferentials of closed
proper convex functions on R". Assume that G(Ma) -^ G(MX), G(La) -» G(LX), and
0 G int(dom Mx - dom Lx). Then there is an a such that a> a implies (Ma +
La) is the subdifferential of a closed proper convex function on R", and G(Ma + La)
-» G(MX + Lx).

Proof. For each a we have a closed proper convex function fa on R" such that
Ma = 3/a. As G(MX) is contained in lim inf G(Ma), there exist (xx,yx) E G(MX)
and a sequence ((xa,ya)) such that (xa,ya) E G(Ma) and (xa,ya) -*(xx,yx). For
each a = 1,. .., oo set ca = fa(xa) E R, and define functions <ba on R" by

4>a(x) = fa(x) - ca.

Then Ma = d$a and <t>a(xa) = 0 for all a, and xa -> xx, so Theorem 2 yields
<pa -> §x. In the same manner, we can find closed proper convex functions xpa such
that La = dxpa and ipa —> xpx. Since the domain of a closed proper convex function
contains the domain of its subdifferential, the hypothesis

0 G int(dom Mx - dom Lx)
implies 0 G int(dom <bx — dom xpx). It follows from Theorem 5 that there is an a
such that a > a implies tj>a + xpa is closed proper convex, and (<ba + xpa) -►
(</»oo + *J- Theorem 2 yields G(d(<ba + xpj) ^ G(d(<bx + x^J). It is easy to check
that

(dom xfx - dom xpx) c (lim inf(dom <f>J - lim inf(dom \pa))

C lim inf(dom <pa — dom xpa),

so [9, Lemma 4] implies we may assume 0 G int(dom <f>a — dom xpa) for all a > a.
For these a we have from [14, Theorem 20(c)] that d(caa + xf/J = d<j>a + dxpa. We
now have shown that G(Ma + La) -» G(MX + Lx).   Q

8. Generalizations to more than two (sequences of) functions. Whenever possible,
the following results are labelled with primes to conform to the labels of their
previous special cases.
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Corollary 3A'. For each a = 1, . . ., oo and i = 1, . . . , k let C'a be a nonempty
convex subset of R". Assume that C'a —> C'xfor each i. Suppose that

^   . > => z, = 0   V ;.z, G 0+Q,   V /       J
Then (Cx + ■ ■ ■ + C*) -»(C.J, + • • • + Cx). If for each a and i the sets Ca are
also closed, then there is an a such that a > a implies (Cx + • • • + C*) is closed.

Proof. An obvious extension of Corollary 3A.

Lemma 6'. For each i = 1, . . . , k let fi be a closed proper convex function on R",
and let the conjugate off be written as g'. Then the following three conditions

(8|)  ^,L+„:(+(If:')=(0,0)l-^-')-(M)v,(y„ri') G0+(epig')   Vz J

(8-2) (U+X*) +*-..+ (gko+)(yk) <o]^ = 0 v'"'

(8.3) 0 G int   (*„ . . . , xk)\0 * R (x, + dom/')

are pairwise equivalent, and are implied by

(8.4) 0^ dom/1 n int(dom/2) n • • ■ nint(dom/*).

Proof. Clearly, (8.2) implies (8.1). To prove the converse, consider any A:-tuple
(yx, ■ ■ ■ ,yk) satisfying the premise of (8.2). Define tj' = (g'0+)(v,) for / =
2, . . . , k and tj1 = -(t/2 + ■ • • +rj*). Since these quantities satisfy (yt, tj') G
epi(g'0+) for each i, (8.1) applies to yield >>, = 0 for each /. Thus, (8.1) implies
(8.2). Next, we consider a special case of the equivalence between (6.1) and (6.3) in
Lemma 7. Specifically, consider

A(x) = (x, . . ., x)    (k copies),

F(xx, ...,xk)= />(*,) + • • • +fk(xk).

Then

A*(yv...,yk) =yl + ■ • ■ +yk,

F*(yx,...,yk) = gx(yx)+--- +gk(yk).

Also,

dom F = dom/1 X • • • Xdom/*,

(F*0+)(yx, . . . ,yk) = (gx0+)(yx) +■■■ + (gk0+)(yk).

From these formulas and Lemma 7, the equivalence between (8.2) and (8.3) is
clear. Finally, assume that (8.4) holds. Then there exists an x satisfying

x E dom/1 n int(dom/2) n • • • ninu^dom/*).
So for each i = 2, . . . , k there exists an e' > 0 such that x + 2e'B c dom/',
where B denotes the unit ball in R". Put e1 = min{e2, . . . ,e*}. Consider any
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(xx, . . ., xk) E exB X • • • x ekB. Then xx + x E xx + dom/1, while for each i =
2, . .., k we have

xx + x = xt + x + (xx — x^ G Xj + dom/',

because

xx - Xj E exB + e'B C 2e'fi.

This shows that
k

0^ H {xj + dom fi).
/=i

Hence,

elB X • • ■ XekB c    (*„ ..., xk)|0 * f) (*< + dom/')   ,

which establishes (8.3).    □

Lemma 8. For eac/i a = 1, . . ., oo and i = 1, . . . , k let f'a be a closed proper
convex function on R". Assume that fi —>f'xfor each i. Suppose that

0 E int  (xx, ..., xk)\0 + H (x, + dom fix) \.

Then there is an a such that a > a implies

0 E int  (x„ . . ., xk)\0 * H (x, + dom/;)   .

Proof. From the proof of Lemma 6' we know the conditions under discussion
are of the form 0 G int(R(A) — dom Fa), where

A(x) = (x, . . .,x),

Fa(xx, . . . , xk) = fx(xx) + • • • +/„*(*,).

By Lemma 7 this condition is equivalent to

N(A*) n {(v„ • . . ,yk)\Ga0+(yx, . . . ,yk) < 0} = {0},

where

A*(y,, ■ ■ ■ ,yk) =y\ + ■ ■ ■ +yk,

Ga(yv-,yk) = ga(yi)+ ■ • • +&*(>'*)•

(Here, as earlier, we write g^ = (fi)*-) Now Theorem 1 yields g'a —> g'x for each i,
so Theorem 6 yields Ga^> Gx. By Lemma 4 this yields

lim sup epi(Ga0+) c epi(Goo0+),
which easily implies that the set

lim sup{(v„ . . . , vfc)|Ga0+(^„ . . . ,yk) < 0}
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is contained in {(yx, . . . ,yk)\Gx0+(yx, . . . ,yk) < 0}. Since our hypothesis is that
N(A*) n {(yx, . . . ,yk)\Gx0+(yx, . . . ,yk) < 0} = {0}, Lemma 5 yields an a such
that

N(A*) n {(yx, . • • ,yk)\Ga0+(yx, . . . ,yk) <0} = {0}
holds whenever a > a. The proof is concluded by retracing our steps (via the
definitions of A*, Ga, A, Fa together with Lemmas 7 and 6') to rewrite the latter
condition in terms of the/;.    □

Theorem 4'. For each a = 1, . . . , oo and i = 1, . . . , k let ga be a closed proper
convex function on R". Assume that g^ -> g'x for each i. Suppose that

(«) i"',,;):0.v+(.Tv)=<0,0)W^-'>(o'o) v;-U,V) G0+(epig^)    Vi J
Then there is an a such that a > a implies (gaVJ- • • fjgk) is closed proper convex,
and (gxU ■ ■ ■ □&*) -»(glB ■ ■ ■ Dgl).

Proof. From the definition of infimal convolution, for each a we have

(epi ga + ■ ■ ■ +epi gk) c epi(g(|n • • • Qgk) c cl(epi ga + ■ ■ ■ +epi gk).
By Corollary 3A', there is an a such that a > a implies (epi gxa + • • ■ +epi gk) is
closed, and (epi gj + • • • +epi gk) -* (epi gxx + ■ ■ ■ +epig*). This yields
(gin ■ ■ ■ E\ga) -* (gloH • • • ngkJ- By (8.5) together with Lemmas 6' and 8, we
may assume that the condition

(gao+)(yi) + ■ ■ ■ +(&*o+)Gfc)<o]
y, + • • • +yk = 0 \     "'

holds for all a > a. Hence, for these a, [13, Corollary 9.2.1] implies that
(gaO- ■ ■ Dgk) is closed proper convex.   □

We remark that in Theorem 4', for all a > a and all y and ju. satisfying
(glU ■ ■ ■ ngk)(y) < M < +oo, the set

{Cvi. • • • ,yk)\y =y\ + • • • +yk,ga(y\) + • • ■ +&*(^*) < m}
is actually compact convex. This can be seen as a special case of the analogous
remark following Theorem 7.

Theorem 5'. For each a = 1, . . . , oo and i = 1, . . . , k let f'a be a closed proper
convex function on R". Assume that fi —>f'xfor each i. Suppose that

(8.6) 0 G int  (xx, ..., xk)\0 * fj {xj + dom f'x)   .

Then there is an a such that a > a implies (fx + • • • +fk) is closed proper convex,
and(fax + --- +.£)-*(/£,+ ••■ +fkJ.

Proof. By Theorem I, ga^> g'x for each i, where we write g« = (/„)*. Hence, by
(8.6) together with Lemma 6' and Theorem 4', there exists an a such that
a > a implies (g^Q • ■ ■ Dg«) is closed proper convex, and (gaf2 ■ • ■ Ogk)
-+ (gin ' ■ • ngl).   Since   (gan- ■ ■ ngk) = (/„'   + • •  •   +/*)*   and
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(fa + • • • +/«) is closed convex, it follows that for all a > a the function
(fa + " ' ' +fa) is proper (see [13, Theorems 16.4, 9.3, 12.2]). Finally, Theorem 1
yields (/J + • • • +fk)^(fl + ■■■ +fx).   n

Theorem 9'. For each a = 1, . . ., oo and i = 1, . . . , k let M'abe a subdifferential
of a closed proper convex function on R". Assume that G(M^) -> G(M'X) for each i.
Suppose that

(8.7) 0 G int   (xx, ..., xk)\0 * Q (*, + *>«,))•

Then there is an a such that a > a implies (Mx + ■ ■ ■ + Mk) is the subdifferential
of a closed proper convex function on R", and

G{MX + ■■■ +Mk)^G(Mxx + ■■■ +Mkx).

Proof. We begin just as in the proof of Theorem 9, obtaining closed proper
convex functions (pj such that M'a = d<pa, where y'a -> <p'x for each /. Next, since
dom tpi d D(Ma), (8.7) yields

(8.8) 0 G int \(xx, . . . , xk)\0 + Q (x, + dom <p'x)   .

Therefore, Theorem 5' yields an a such that a > a implies r^J + • • • + <p* is
closed proper convex, and (q>x + • ■ ■ +<pak)—>(<pl + • • • +<px)- By Theorem 2,
this implies that G(d(yl + ■ ■ ■ + cpk)) -» G(d(tpxx + • ■ • +?*)). Finally, by
Lemma 8 and (8.8), we can assume that the condition

(8.9) 0 G int  (xx, ..., xk)\0 + fl {xj + dom Tj)

holds for all a > a. Therefore, for those a, [14, Theorem 20(c)] implies that
3(9^ + • • • +<p„) = 3<p^ + • • • +d<pk. This completes the proof,   fj

We remark, concerning the technical conditions appearing in Theorem 9' and its
proof, that it is not hard to show that the set appearing in (8.9) and the set

mt\(xx,...,xk)\0* n(xj+ D{M-))\

actually coincide, where M'a = dya.
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