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ABSTRACT
Aging is associated with a decreased ability to store and retrieve information. The

hippocampal formation plays a critical role in such memory processes, and its integrity is
affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of
aging, because in many characteristics, tree shrews are closer to primates than they are to
rodents. Young and aged male tree shrews performed a holeboard spatial memory task, which
permits assessment of reference and working memory. Upon completion of the behavioral
measurements, we carried out modified stereological analyses of neuronal numbers in vari-
ous subdivisions of the hippocampus and used the Cavalieri method to calculate the volumes
of these subfields. Results showed that the working memory of aged tree shrews was
significantly impaired compared with that of young animals, whereas the hippocampus-
dependent reference memory remained unchanged by aging. Estimation of the number of
neurons revealed preserved neuron numbers in the subiculum, in the subregions CA1, CA2,
CA3, and in the hilus of the dentate gyrus. Volume measurements showed no aging-related
changes in the volume of any of these hippocampal subregions, or in the molecular and
granule cell layers of the dentate gyrus of tree shrews. We conclude that the observed changes
in memory performance in aging tree shrews are not accompanied by observable reductions
of hippocampal neuron numbers or hippocampal volume, rather, the changes in memory
performance are more likely the result of modified subcellular mechanisms that are affected
by the aging process. J. Comp. Neurol. 468:509–517, 2004. ©2003Wiley-Liss,Inc.

Indexing terms: hippocampus; modified optical fractionator; Cavalieri method; neuron;

holeboard; spatial memory; Scandentia

The hippocampal formation is an essential structure for
the acquisition and consolidation of various forms of mem-
ories, including episodic-declarative and associative mem-
ories, and classical conditioning (Squire, 1992; Eichen-
baum, 1999), which are subject to functional impairments
over the course of aging (Rapp and Heindel, 1994;
McEchron et al., 2001; Small et al., 2002; Wu et al., 2002).
Many experimental paradigms are described that test for
hippocampus-dependent memories both in humans and
animals (Squire, 1992; Eichenbaum, 1999). In search of
structural changes that underlie behavioral and cognitive
impairments, various techniques are used to study aging-
associated anatomical changes of the hippocampal forma-
tion (Harding et al., 1994; Keuker et al., 2001).

The hypothesis of a substantial age-related hippocam-
pal neuron loss has been challenged since the introduction
of modern stereological counting methods. In normally
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aging humans, only a selective neuron loss was found in
the subiculum and hilus (West, 1993) and in the subicu-
lum and CA1 region (Simic et al., 1997). However, stereo-
logical analyses in young and aged rhesus monkeys re-
vealed a preservation of hippocampal neurons (West et al.,
1993; Berman et al., 1997; Keuker et al., 2003a). More-
over, several stereological studies in rodents allow the
conclusion that hippocampal neuron numbers do not de-
cline with advanced age (Rapp and Gallagher, 1996; Ras-
mussen et al., 1996; Calhoun et al., 1998).

Whereas hippocampal neurons do not disappear in sig-
nificant numbers with advanced age, age-related memory
impairment may be reflected in a reduced hippocampal
volume. Apparently, the hippocampal volume in humans
correlates with deficits in hippocampus-dependent recog-
nition memory (Golomb et al., 1994, 1996; Lupien et al.,
1998). Magnetic resonance imaging (MRI) volumetric
analyses in humans demonstrated that aging is associated
with a reduction of the hippocampal volume (Jack et al.,
1997; Schuff et al., 1999; Tisserand et al., 2000; Bigler et
al., 2002). To date, postmortem volumetric studies of the
human hippocampal formation have not shown such con-
sistency. One study in cognitively normal humans aged
between 16 and 99 years revealed a negative correlation
between hippocampal volume and age (Simic et al., 1997).
However, another postmortem study in humans aged 45
to 86 years showed no age-related change in total hip-
pocampal volume (Harding et al., 1998).

The number of animal studies that have examined age-
related changes in hippocampal volume is surprisingly
small, and the data reported are conflicting. A preliminary
study in rhesus monkeys reported a negative correlation
between hippocampal volume and age (Berman et al.,
1997). In contrast to this primate study, the hippocampal
volume of aged Sprague-Dawley rats was increased com-
pared with that of adults (Amenta et al., 1998). Old Fi-
scher 334 rats had increased volume of the outer two-
thirds of the molecular layer of the dentate gyrus, the total
molecular layer, the hilus, and the regio inferior (corre-
sponding to CA3; Coleman et al., 1987). More subtle
changes were observed in the dentate gyrus of aged Long-
Evans rats, in that the middle portion of the dentate gyrus
molecular layer was selectively decreased, whereas the
inner molecular layer was correspondingly expanded
(Rapp et al., 1999). However, only very old, but not aged
deer mice had a reduced hippocampal volume compared
with young individuals (Perrot-Sinal et al., 1998). Even so,
the volume of the CA1 region and dentate gyrus of young,
adult, and aged C57BL/6J (B6) mice was the same (Cal-
houn et al., 1998).

There is extensive evidence that the hippocampal for-
mation is associated with spatial memory performance.
Consequently, many aging studies have aimed at estab-
lishing a link between spatial memory impairment and
changed neuron numbers in, and volume of the hippocam-
pal formation. However, hippocampal neuron numbers
were preserved in aged rats, whereas hippocampus-
dependent spatial memory was impaired only in a sub-
group of aged rats (Rapp and Gallagher, 1996; Rasmussen
et al., 1996). In non-human primates, preliminary studies
have combined the analysis of hippocampal neuron num-
bers and hippocampal volumes in the assessment of non-
spatial hippocampus-dependent memory only (West et al.,
1993; Berman et al., 1997). In humans, MRI analysis
showed a reduction of the hippocampal volume in those

persons who performed more poorly in a spatial maze
(Lupien et al., 1998).

In the current study, we aimed to further investigate
age-related changes in hippocampus-dependent memory
and its structural correlates in the hippocampal forma-
tion. We used a spatial memory task prior to the evalua-
tion of hippocampal neuron numbers and hippocampal
volumes in tree shrews (Tupaia belangeri), a non-rodent
mammalian species. Originally regarded as primitive pri-
mates (Le Gross-Clark, 1956), tree shrews are nowadays
considered an intermediate between insectivores and pri-
mates and are placed in the separate order Scandentia
(Starck, 1978; Martin, 1990). The life span of the day-
active tree shrews in the wild is still unknown, but under
laboratory conditions the longevity is approximately 10
years (Fuchs, 1999). In many characteristics, tree shrews
are closer to primates than they are to rodents. Certain
tree shrew genes show a high degree of homology with
human genes, such as those for several receptor proteins
of neuromodulators and the amyloid-� precursor protein
(Meyer et al., 1998; Palchaudhuri et al., 1998, 1999; Paw-
lik et al., 1999; Meyer et al., 2000). This raises the possi-
bility that tree shrews may become an alternative model
for studying age-related brain changes in socially homog-
enous and stable cohorts (Fuchs and Flügge, 2002).

MATERIALS AND METHODS

Experimental animals

Five young-adult (�1 year of age) and six aged (4–9
years of age) male tree shrews (Tupaia belangeri) from the
breeding colony at the German Primate Center (Göttin-
gen, Germany) were used (for details about housing see
Fuchs, 1999). Tree shrews reach maturity after about 3
months of age. Because the life span of tree shrews under
laboratory conditions is approximately 10 years, or about
one-eighth of the human life span, the age of our oldest
animal corresponded to a human age of 72.

All animal experimentation was conducted in accor-
dance with the “Principles of Laboratory Animal Care”
(NIH publication no. 86-23, revised 1985) and the Euro-
pean Communities Council Directive of November 24th,
1986 (86/EEC) and were approved by the Government of
Lower Saxony, Germany.

Behavioral testing

The test apparatus consisted of an opaque PVC board
(65 � 20 � 1 cm) in which 23 circular holes (2.0 � 0.7 cm)
were arranged in three parallel lines (Ohl et al., 1998;
Bartolomucci et al., 2002). The holes were covered by
self-closing lids in order to avoid visual and olfactory cues
of the hidden rewards (small pieces of dried almond). Each
animal had its own holeboard.

In a 4-day habituation period, the animals were accus-
tomed to the presence of the holeboard within their home
cages. In this period, the animals learned to search for the
rewards by opening the lids that covered the holes. The
habituation period was followed by a 4-day learning
phase, in which the performance of the animals reached a
baseline level. Then we started the actual experiment, in
which the animals were tested during 4 consecutive days.
Two random distributions of five baited holes were pre-
sented each day. Three trials were performed for each
distribution. In the first two trials (cue-directed), the
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baited holes were marked with colored tape on the top of
the lids. In the third trial (non-cue-directed), these marks
were removed.

The intertrial interval within one distribution was 15
minutes, and the interval between two distributions was
30 minutes. A trial started when the animal voluntarily
reached the holeboard. A trial was finished when the
animal had retrieved all five rewards. Trials that were not
started within 5 minutes, as well as trials that were not
finished within 7 minutes, were considered as nonper-
formed trials, and therefore not analyzed. The number of
wrong choices (opening of a nonbaited hole) and repeated
choices (reopening of a previously emptied hole) per trial
were considered as specific and simultaneous measures of
reference and working memory, respectively. These types
of memory might reflect different underlying central pro-
cesses (Van der Staay, 1999). For data analysis, we per-
formed a two-way analysis of variance (ANOVA) and the
Tukey HSD post hoc test, with group (young and aged) as
the between-groups factor and memory error type (wrong
and repeated choices) as the within-subjects factor.

Perfusion and tissue preparation

One day after the last memory test, the animals were
anesthetized by an intraperitoneal administration of an
overdose of ketamine (Ketavet®, Pharmacia & Upjohn,
Erlangen, Germany), xylazine (Rompun®, Bayer, Le-
verkusen, Germany), and atropine (WDT, Hannover, Ger-
many) 5:1:0.01. The descending aorta was clamped, and
the animals were perfused transcardially with cold 0.9%
NaCl for 3 minutes, followed by cold 4% paraformaldehyde
in 0.1 M phosphate buffer (PB, pH 7.2) for 12 minutes. To
prevent the development of postperfusion artifacts, the
heads were postfixed in fresh fixative at 4°C (Cammer-
meyer, 1978). On the following day, the brains were gently
removed and stored in 0.1 M PB at 4°C. For cryoprotec-
tion, the brains were immersed in 2% dimethylsulfoxide
(DMSO) and 20% glycerol in 0.125 M phosphate-buffered
saline (PBS) at 4°C. The right hemispheres were then
dissected into blocks that contained the entire hippocam-
pal formation. The tissue blocks were frozen on dry ice and
stored at �80°C before serial sectioning at a thickness of
50 �m on a Leica cryostat microtome. A stereotaxic brain
atlas of the tree shrew (Tigges and Shantha, 1969) was
used for reference during the dissecting and cryosection-
ing procedures. Because the orientation of the hippocam-
pal formation is almost vertical (see Fig. 1A), we chose to
cut horizontal sections, which provided the best condition
for subfield delineation and a sensible basis for estimation
of neuron number (Keuker et al., 2003b).

A total of 10 systematic series of horizontal sections per
hippocampal formation were collected in 0.1 M PBS. One
series was chosen for stereological evaluation by selection
of a random number between 1 and 10. The sections were
mounted on glass slides in a 0.1% gelatin solution. After
overnight drying at 37°C, the sections were defatted and
stained with cresyl violet. Care was taken during the
staining procedure to ensure that all neuronal compart-
ments could be identified. Then the sections were cleared
in xylene, mounted with Eukitt, and coverslipped. Pho-
tomicrographs were taken using a Zeiss Axiophot II pho-
tomicroscope (Carl Zeiss). The original negative films were
scanned at the original size with 1,200 dpi resolution.
Adobe Photoshop software was used for minor darkness/
brightness adjustments. The sharpness of the images was

increased slightly. The pictures did not require any mod-
ification, such as for artifacts.

Stereological evaluations

Prior to the stereological neuron counting and volumet-
ric measurements, the animal numbers were coded, and
the code was only revealed when all data had been col-
lected. All measurements were carried out by one experi-
menter (J.I.H.K.) on a Zeiss III RS microscope, to which a
defined stepping motor in the x,y-axes (LUDL Electronic
Products, Hawthorne, NY) and an electronic microcator
(Heidenhahn MT 12, Traunreut, Germany) were attached.
STEREOINVESTIGATOR 3.16 software (MicroBrightField,
Colchester, VT) was used for counting neurons and for
measuring the subfield areas (for details on the design, see
Keuker et al., 2001).

An overview of the Nissl staining and a schematic draw-
ing of the various subfields of the tree shrew hippocampal
formation are given in Figure 1D and C, respectively. The
images of Figure 1 are taken from our previous study,
which deals extensively with the cytoarchitecture of the
tree shrew hippocampal formation (Keuker et al., 2003b).
We applied the subfield definitions according to these ear-
lier data. Detailed photomicrographs of the subfields sub-
iculum, CA1, CA3, and hilus are presented in Figure 2.

Neuron numbers. The total unilateral neuron num-
bers of the tree shrew hippocampal fields of the subicu-
lum, CA1, CA2, CA3, and hilus were estimated by using
the modified optical fractionator technique. The optical
fractionator is an unbiased counting method, which is
independent of the size, shape, and orientation of the cells
to be counted and which combines the optical disector
(Sterio, 1984) with a fractionator-sampling scheme (Gun-

Fig. 1. Macro- and microscopical anatomy of the tree shrew hip-
pocampal formation. A: Line drawing of the tree shrew brain showing
the general orientation of the hippocampal formation. The lateral
view shows the hippocampal formation (gray) for the left hemisphere.
The dashed lines indicate that the hippocampal formation is covered
by the cortex. B: The isolated hippocampal formation shows the level
of the images in C and D. C: Schematic drawing of the hippocampal
subfields through the middle part of the hippocampal formation in
tree shrews. D: Nissl staining in a section that exactly corresponds to
C. C, caudal direction; L, lateral direction; M, medial direction; R,
rostral direction; sub, subiculum; CA1, CA2, and CA3, CA1, CA2, and
CA3 subfields of the hippocampal formation; DG, dentate gyrus; hil,
hilus of the DG; h.f., hippocampal fissure. Scale bar � 1 cm in A; 1 mm
in C (also applies to D).
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dersen et al., 1988). Details of this method have been
described before (West et al., 1991; Keuker et al., 2001).
The experimental parameters for each of the hippocampal
regions (Table 1) were established in a pilot experiment,
and were uniformly applied to all animals. The optical
disector frame area, a(frame), and the area sampling area,
A(x,y step), were selected such that approximately 1–2
neurons per optical disector were counted on average (Ta-
ble 2). The pyramidal neurons of the subiculum and CA
regions were identified with a 100� objective lens (N.A.
1.3). The more widely separated neurons in the hilus of
the dentate gyrus were counted with a 40� objective lens
(N.A. 0.75).

In the current experiment we applied the modified op-
tical disector. This means that the height of the optical
disector, h, equals the actual section thickness, t; hence,
the thickness sampling fraction equals 1. We used the
following optical disector counting rules: neurons were
scored only when their nucleolus (or a part thereof) was
within the optical disector counting frame, thereby not
touching the exclusion lines. When a nucleolus touched
both an inclusion line and an exclusion line, the nucleolus
was not scored (see also Harding et al., 1994, 1998). If
more than one nucleolus per neuron was encountered,
which very rarely occurred, we applied the counting rules
on the larger nucleolus, neglecting the smaller one.

Individual estimates of the total neuronal number (N)
for each subfield of the hippocampal formation were cal-
culated according to the following formula: N � �Q� �
1/ssf � 1/asf � 1/tsf, where �Q� � the sum of the counted
neurons per subfield per animal, ssf � section sampling
fraction, asf � area sampling fraction, and tsf � thickness
sampling fraction (Table 1). To test the possibility that
aging results in a diffusely distributed pattern of modest
neuron loss, we additionally calculated the total neuron
number as the sum of the neuron numbers in the subicu-

lum, CA1, CA2, CA3, and hilus. Note, however that, based
on anatomical definitions (Keuker et al., 2003b), this is not
the total neuron number of the hippocampal formation.

The corresponding individual CEs (coefficients of error)
were calculated with the previously described formula
(Keuker et al., 2001). This is a modified formula for sys-
tematic samples from a continuous brain structure with a
relatively high homogeneity of neuron distribution (Gun-
dersen et al., 1999) and is thus suited for systematically
sampled sections along the long axis of the hippocampal
formation. The group means of the neuronal estimates of
each hippocampal subfield in the young and aged tree
shrews were tested with the two-tailed unpaired Student’s
t-test, and the significance level was defined at � � 0.05.

Volumetric estimations. The volumes of the hip-
pocampal subfields were assessed in the same sections as
those used for counting neurons. The volumes were esti-
mated according to the formula based on the Cavalieri
method: V � �A � tnom � 1/ssf, where �A � the summed
areas of the delineated subfield (computed with STEREOIN-
VESTIGATOR 3.16), tnom � the nominal section thickness of
50 �m, and ssf � the section sampling section (Table 1).
The subfield areas were delineated with a 2.5� objective
lens (N.A. 0.08). The volume of the total dentate gyrus was
achieved by summing the volumes of its molecular layer
and granule cell layer. The volume of the total hippocam-
pal formation was calculated from the volumes of all hip-
pocampal subfields, including the subiculum. The volumes
are reported as mm3. The group means of the estimated
volumes of all hippocampal subfields of the young and
aged tree shrews were tested with a two-tailed unpaired
Student’s t-test, with a significance level of � � 0.05.

RESULTS

Behavioral testing

The two-way ANOVA revealed a significant interaction
between group (young and aged) and memory error type

TABLE 1. Experimental Parameters Used With the Optical Fractionator1

a(frame)
(�m2)

A(x,y step)
(�m2) asf tsf ssf

Subiculum2 25 � 25 150 � 150 0.0278 1 1/10
CA12 22 � 22 150 � 150 0.0215 1 1/10
CA22 22 � 22 75 � 75 0.0860 1 1/10
CA32 25 � 25 250 � 250 0.0100 1 1/10
Hilus3 75 � 60 200 � 200 0.1125 1 1/10

1Area of the optical disector counting frame, a(frame); x and y step sizes, A(x,y step); asf,
area sampling fraction [a(frame)/A(x,y step)]; tsf, thickness sampling fraction, calcu-
lated by the height of optical disector, h/section thickness, t (tsf � 1, due to modified
optical disector); ssf, section sampling fraction.
2All evaluations were performed with a 100� objective lens (N.A. 1.3).
3Evaluations were performed with a 40� objective lens (N.A. 0.75).

TABLE 2. Counting Results From the Optical Fractionator1

No. of
sections

No. of frames
per section

No. of counted
neurons per

optical disector �Q�

Subiculum 18 � 1 26 � 3 1.12 � 0.10 514 � 71
CA1 17 � 1 27 � 4 1.68 � 0.18 779 � 91
CA2 16 � 1 13 � 2 1.16 � 0.10 240 � 49
CA3 16 � 1 16 � 2 1.15 � 0.18 279 � 32
Hilus 15 � 1 20 � 4 1.46 � 0.21 456 � 89

1With settings as in Table 1: number of sections per hippocampal subfield, number of
counting frames per section, number of counted neurons per optical disector, and
number of total counted neurons per hippocampal subfield, �Q�. Data are presented as
mean � SD.

Fig. 2. Representative detailed photomicrographs of Nissl-stained
cryosections (50 �m) of the tree shrew hippocampal formation. A: The
subiculum. B: CA1 region. C: CA3 region. D: Hilus of the dentate
gyrus. Arrows in A–D point to nucleoli, which were the counting
criterion in the current study. In the cryosections, the outlines of the
nuclei were rather difficult to distinguish, especially in the neuron-
dense subfields of CA1 and CA3. The nucleoli, however, could always
be recognized. Scale bars � 20 �m in A–D.
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(wrong and repeated choice) (F1,9 � 9.65, P � 0.01). Post-
hoc analysis showed no significant difference in the
hippocampus-dependent reference memory performance
between young and aged tree shrews (P � 0.71, Fig. 3A).
However, the working memory performance of the aged
tree shrews was significantly reduced (P � 0.04), as shown
by the higher number of mean repeated choices made by
aged tree shrews compared with young animals (Fig. 3B).

Task acquisition, motivation (as measured by the time
to reach the holeboard), and motility (time spent per hole)
were not affected by age (data not shown).

Stereological evaluation

Neuron numbers. For each individual, estimated uni-
lateral neuron numbers (N) in each hippocampal subfield
for the young and aged tree shrews are shown in Table 3,
as well as the mean group value of N, the standard devi-
ation, and the mean CE. Statistical analyses of the mean
neuron numbers of the young and aged animals did not
reveal differences in any evaluated hippocampal subfield,
nor were differences observed in the total neuron numbers
(Table 4).

Using the experimental parameters for the modified
optical fractionator that were established during a pilot
experiment, the average number of counted neurons per
subfield varied between 240 and 779 (Table 2). These
counts were made in 15–18 sections on average per sub-
field, in 13–26 optical disectors on average per section.
Therefore, our settings were in accordance with well-
accepted recommendations by Gundersen and Jensen
(1987). Moreover, the parameters yielded an adequate
estimation precision for the current experiment: 1) the
individual CE values (which have to be under 1.0) varied
between 0.42 and 0.74 (not shown); and 2) the biological
coefficient of variance (BCV)2 (Keuker et al., 2001) was
substantially higher than 50% of the total coefficient of
variance (61–95%).

In the current study, we used a modified optical disec-
tor, which could have caused a potential bias. In contrast
to the unbiased optical disector technique, we did not use
guard zones at the top and bottom of the section. If we had
used appropriate guard zones in the cryosections, how-
ever, we would have to use a relatively low optical disector
height. Accordingly, we would need to increase the num-
ber of sampling sites, which probably would have caused

another bias (Harding et al., 1994). Nonetheless, we are
aware that we created a potential bias, because by using
the modified optical disector, we did not take into account
so-called lost caps and split nuclei. However, we only
considered nucleoli in our quantification, and nucleoli are
less likely than nuclei to be split by the knife and therefore
provide better resolution (Coggeshall and Chung, 1984).

Moreover, all the individual estimates of the CA1 and
CA3 subregions in the current study are within the range
of the CA1 and CA3 estimates of control and psychoso-
cially stressed tree shrews, as presented in a previous
study from our laboratory (Vollmann-Honsdorf et al.,
1997; Keuker et al., 2001). In the latter study, unbiased
stereology on thick plastic sections was employed. Thus,
the potential bias from using cryosections and from the
use of the modified optical disector in the present study is
expected to be relatively small. This is in line with a study
from Harding et al. (1994), who did not find differences in
the outcome between the unbiased and the modified opti-
cal disector in 50-�m cryosections. Evidence of only a mild,
if any, bias from the use of cryosections is given in a
calibration study by Hatton and Von Bartheld (1999), who
revealed that in plastic and paraffin sections, but not in
cryosections, a displacement of nuclei occurs as a result of
the sectioning: the plastic and paraffin sections consis-

TABLE 3. Mean Estimated Individual Unilateral neuron numbers (N; �
103) in the Hippocampal Subfields of Young and Aged Male Tree Shrews;

Mean Group Numbers (Mean N), SD, and Mean CEs1

Age (yr) Subiculum CA1 CA2 CA3 Hilus
Total no.

of neurons

0.9 169 334 34 258 42 837
1.2 187 360 42 277 54 920
1.3 168 364 25 309 41 907
1.3 240 421 26 223 40 950
1.4 208 352 25 300 39 924

4.6 154 258 26 295 35 768
5.5 154 364 23 284 31 856
5.7 200 410 30 219 27 886
6.3 174 368 23 312 38 915
6.8 185 376 26 288 49 924
9.0 194 374 29 302 49 948

Young
Mean N 194 366 30 273 43 908
SD 30 33 8 35 6 42
Mean CE2 0.051 0.047 0.066 0.065 0.057

Aged
Mean N 177 358 26 283 38 883
SD 20 52 3 33 9 65
Mean CE2 0.051 0.046 0.070 0.065 0.056

1The total neuron number is the sum of total numbers of the subfields subiculum, CA1,
CA2, CA3, and hilus.
2The mean CE was calculated as �mean (CE2).

TABLE 4. Young vs. Aged Tree Shrews1

Mean N

P value
Young
(n � 5)

Aged
(n � 6)

Subiculum 194 177 0.28
CA1 366 358 0.78
CA2 30 26 0.23
CA3 273 283 0.64
Hilus 43 38 0.32

Total no. of neurons 908 883 0.48

1Mean estimated unilateral neuronal numbers (N: � 103) and statistical results of the
unpaired Student’s t-test (two-tailed). The total neuron number is the sum of the total
numbers of the subfields subiculum, CA1, CA2, CA3, and hilus.

Fig. 3. Memory performance of young (n � 5) and aged (n � 6) tree
shrews on the modified holeboard. A: Young and aged tree shrews
make approximately the same number of wrong choices, which reflect
reference memory performance. B: Aged tree shrews make signifi-
cantly more repeated choices than young animals. Repeated choices
are errors due to impaired working memory. Bars represent mean
number of choices per trial � SEM. *, P 	 0.05).
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tently showed a higher density of neuronal nuclei in the
upper and lower 0–20 % of the tissue section, and a lower
density in the core 30–70% of the section.

Volumetric estimations. The volumes of the entire
hippocampal subfields and of the total hippocampal for-
mation did not differ significantly between young and
aged tree shrews (Table 5). Also, the volumes of the
neuron-containing layers of the subiculum, CA1, CA2, and
CA3 subfields were not changed by aging (data not
shown).

DISCUSSION

In the present study, we used the tree shrew as an
animal model of aging. A general question about animal
models is whether they mimic aging-related changes in
human physiologic mechanisms. It is presumed that dur-
ing aging the brains of various mammalian species have
impaired metabolic processes, because postmitotic cells,
such as neurons and muscle cells, have a much higher
level of damaged mitochondria during aging than do di-
viding cells, such as cells in the liver or skin (Cortopassi et
al., 1992). Lipofuscin, for example, the end-product of lipid
peroxidation in postmitotic cells, is formed in tissues un-
der conditions of high oxidative stress, and its accumula-
tion has been shown in the brains of aged rats (Oenzil et
al., 1994), dogs (Dimakopoulos and Mayer, 2002), marmo-
sets (Honavar and Lantos, 1987), rhesus monkeys (Peters
et al., 1994; Tigges et al., 1995; Siddiqi and Peters, 1999),
and humans (Mrak et al., 1997; Dei et al., 2002). There-
fore, we can assume that the brain of an aged tree shrew
shows similarities in certain, but probably not all, aging-
related processes as they occur in the aging human brain.
Some processes during aging probably develop at a rate
that is relative to the maximal life span and will leave
similar signs in brains of aged tree shrews and humans.
However, other aging-associated pathological processes
may occur at the same rate in tree shrews and humans;
although such processes may cause impairments in aging
human brains, they may not yet cause impairments in
aged tree shrews, because of their shorter life span.

The current study is the first to combine a memory test
with stereological analyses in young and aged tree shrews.
The main findings of the present study are: 1) impaired
working memory in aged tree shrews but preserved refer-
ence memory; 2) unchanged hippocampal neuron numbers
in aged tree shrews; and 3) preserved hippocampal sub-
field volumes in aged tree shrews.

It is well known that the hippocampal formation has a
strong role in spatial reference memory (Squire, 1992).
Spatial working memory depends mainly on both the hip-
pocampal formation and the prefrontal cortex (Jeltsch et
al., 2001; Lee and Kesner, 2003). Reference and working
memory can be observed separately, for example, with
spatial tasks such as the Morris water maze or the radial
arm maze (Decker, 1995). In the present study, we based
our behavioral observations on the tree shrews’ perfor-
mance in the spatial holeboard test, which is carried out in
the animals’ home cages and makes use of the tree shrews’
natural foraging behavior. The current holeboard test
with tree shrews is based on their voluntary stress-free
behavior (Ohl et al., 1998). Although the validity of the
holeboard task as an assessment of hippocampal integrity
remains to be verified in tree shrews, strong evidence
thereof comes from rodent studies.

Both physical (Oades and Isaacson, 1978) and toxic
(Jarrard, 1993) lesions of the hippocampal formation pro-
duced severe deficits in the performance of spatial tasks.
Van der Zee et al. (1992) provided physiological evidence
from intact mice that the hippocampus is involved in a
spatial holeboard test. In this study, protein kinase C
(PKC), a key enzyme for signal transduction and various
mechanisms of neuronal plasticity (Nishizuka, 1988), was
detected immunocytochemically in the hippocampus after
various degrees and forms of training in a spatial hole-
board test. The staining intensity in the hippocampus of
isozyme PKC
, which is an indicator of physiologically
activated neurons that are involved in the holeboard test,
was drastically increased in trained mice, but not in
pseudo-trained, habituated, or naive mice (Van der Zee et
al., 1992). Moreover, the more neuroethologically relevant
a spatial task is to a specific animal species, the more the
hippocampus can be shown to play an important role in
such a task (Suzuki and Clayton, 2000). In this regard, we
can assume that the holeboard task (assessing rats and
tree shrews) is more effective in testing spatial memory
than, for example, testing rats in the Morris water maze.

The behavioral data from investigations that combined
a memory test with stereological and morphometric anal-
yses (West et al., 1993; Rapp and Gallagher, 1996; Ras-
mussen et al., 1996; Berman et al., 1997; Rapp et al., 1999)
are not readily comparable to our behavioral results. The
above-mentioned studies did not clearly differentiate be-
tween reference memory and working memory, or did not
include a particular spatial component. One study with
rhesus monkeys used a spatial memory test that was
similar to tasks designed for rats (Rapp et al., 1997). The
latter experiment showed that aged rhesus monkeys had
impaired spatial memory, whereas recognition memory
was preserved. However, this report contained no addi-
tional anatomical information about the hippocampal for-
mation. A rodent study that differentiated between refer-
ence and working memory revealed that, compared with
young animals, reference memory was impaired in rats of
11, 17, and 24 months of age, whereas working memory
only was impaired in 24-month-old rats (Frick et al.,
1995). Another study in rats, also evaluating both refer-
ence and working memory, reported impairment of both
memory types in a subgroup of aged rats only (Kadar et
al., 1994). However, the above-mentioned studies in rats
either did not include hippocampal morphology or did not
use stereological methods.

TABLE 5. Estimated Unilateral Subfield Volumes and Statistical Results
of the Unpaired Student’s t-test (Two-Tailed) in Young and Aged Tree

Shrews

Volume (mm3)

P value
Young
(n � 5)

Aged
(n � 6)

Subiculum 8.48 � 1.05 8.06 � 0.82 0.47
CA1 18.10 � 2.85 17.10 � 2.51 0.55
CA2 2.03 � 0.35 1.97 � 0.23 0.74
CA3 16.96 � 2.64 17.89 � 2.92 0.60
Hilus 4.42 � 0.88 4.64 � 1.30 0.76
Dentate gyrus

Granule cell layer 4.16 � 0.61 4.46 � 1.01 0.57
Molecular layer 11.16 � 1.80 10.28 � 1.78 0.44
Total 15.31 � 2.33 14.74 � 2.72 0.72

Total hippocampal formation 65.31 � 8.87 64.39 � 9.24 0.87
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There are at least three possible explanations for the
fact that we did not find an age-associated hippocampal
neuron loss. First, the group sizes in the current study are
not as large as can be used in, for example, rat studies. To
demonstrate that the current nonsignificant difference in
the total neuron number is significantly lower in aged tree
shrews than in young animals, we would have needed to
include at least 45 tree shrews per group (computed with
the Student’s t-test formula to calculate the group size on
the condition that the variance and range of counts are
similar with larger groups). Moreover, our sampling
within subjects was sufficient, considering that the BCV2

was always considerably higher than 50%. Second, most of
the aged tree shrews were between 4 and approximately 6
years of age, ages that could be regarded as middle-aged
rather than aged or old. Because of this limitation, we
might have overlooked the possibility that in later life, i.e.,
in the oldest of the aged tree shrews, a neuron loss may
occur. Nevertheless, should neuron loss in later life be
inevitable, our oldest tree shrew, and even our oldest two
animals, would have had substantially lower neuron num-
bers than the mean neuron number of the aged group
(Table 3). The third and most probable explanation is that,
as in other animal models of aging, there is no neuron loss
associated with aging in tree shrews.

Our finding of preserved hippocampal neuron numbers
in aged tree shrews is in line with data from aged mice
(Calhoun et al., 1998), rats (Rapp and Gallagher, 1996;
Rasmussen et al., 1996) and rhesus monkeys (West et al.,
1993; Berman et al., 1997; Keuker et al., 2003a). Few of
these studies, however, combined the estimation of neuron
numbers with memory assessment. Remarkably, a sub-
group of aged rats (Rapp and Gallagher, 1996; Rasmussen
et al., 1996) or rhesus monkeys (West et al., 1993; Berman
et al., 1997) had impaired hippocampus-dependent mem-
ory, despite preserved hippocampal neuron numbers. In
the current study, we found preserved hippocampal neu-
ron numbers and stable reference memory performance in
aged tree shrews. However, we detected impaired working
memory in aged tree shrews, which could be indicative of
diminished hippocampal integrity. Moreover, as the
above-mentioned studies illustrate, preservation of neu-
ron number does not necessary imply intact hippocampus-
dependent memory functioning.

We showed that the volumes of the hippocampal forma-
tion and its separate subfields were not reduced in aged
tree shrews. Here, we only focus on investigations that
link hippocampal volume to spatial memory performance.
Structural MRIs of licensed London taxi drivers revealed
a strong positive correlation between posterior hippocam-
pal volume and spatial navigation experience (Maguire et
al., 2000). Adversely, the taxi drivers’ anterior hippocam-
pal formation was smaller than that of control subjects. In
rats, aging affected mainly the septal part of the hip-
pocampal formation; a smaller volume correlated with
impaired spatial memory performance (Rapp et al., 1999).
The septal and temporal parts of the rodent hippocampal
formation correspond to the posterior and anterior pri-
mate hippocampus, respectively (Colombo et al., 1998;
Moser and Moser, 1998). Interestingly, the posterior (or
septal) hippocampal formation appears to be more impor-
tant for encoding spatial memory than the anterior (or
temporal) hippocampus (Colombo et al., 1998; Moser and
Moser, 1998).

As mentioned before, aged rats can be screened in the
Morris water maze to differentiate the animals into cog-
nitively impaired and unimpaired groups. Compared with
young and unimpaired aged rats, cognitively impaired
aged rats showed an increased activity of the
hypothalamic-pituitary-adrenal axis (Issa et al., 1990).
Moreover, aged rats with defective memory had impaired
glucocorticoid negative feedback (Issa et al., 1990; Bizon et
al., 2001). Previously, we examined the free urinary cor-
tisol levels of more than 135 tree shrews across the entire
life span (Van Kampen and Fuchs, 1998). Cortisol levels
increased steadily in young animals (between 3 weeks and
5 months of age). However, at approximately 6 months of
age, the cortisol level reached a steady level and did not
change throughout life. The highest examined age was 8
years. Data of constant cortisol concentrations in aged
tree shrews, therefore, concur with unchanged hippocam-
pal volume and stable spatial reference memory, shown in
the current study.

In summary, we demonstrated that hippocampal neu-
ron numbers and subfield volumes are unchanged in aged
tree shrews, compared with young animals. Using the
holeboard spatial memory test under the current condi-
tions, we could show an age-related impairment of work-
ing memory, but we did not observe impaired reference
memory. As mentioned before, however, preserved hip-
pocampal neuron numbers do not necessary imply intact
hippocampus-dependent memory functioning. Therefore,
we cannot exclude the possibility that aged tree shrews
have an impaired hippocampus-dependent memory. On
the other hand, because proper hippocampal functioning
depends on intact intrahippocampal connectivity and ap-
propriate connections from other brain areas, further
study of the molecular and structural changes is required
to clarify whether the function of the hippocampal forma-
tion is impaired in aged tree shrews.
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