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This work is concerned with the preservation of invariants and volume forms by numerical methods
which can be expanded into B-series. The situation we consider here is that of a split vector field f =
f [1] + · · · + f [N ], where each f [ν] either has the common invariant I or is divergence-free. We derive
algebraic conditions on the coefficients of the B-series for it either to preserve I or to preserve the volume
for generic vector fields and interpret them for additive Runge–Kutta methods. Comparing the two sets
of conditions then enables us to state some nonexistence results. For a more restrictive class of problems,
where the system is partitioned into several components, we nevertheless obtain simplified conditions
and show that they can be solved.
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1. Introduction

Preserving volume forms is a necessary requirement in several well-identified applications, such as
molecular dynamics or meteorology, while preserving first integrals is vastly recognized as fundamental
in a very large number of physical situations. Although the requirements appear somehow disconnected,
they lead to algebraic conditions which have strong similarities and this is the very reason why we
address these questions together.

We will show in particular that a method that preserves the volume must also preserve all first
integrals1 and as a consequence that no volume-preserving B-series method exists apart from the com-
position of exact flows (see Theorem 4.10 of Section 4.2). This result generalizes to split vector fields, a
known result of Feng & Shang (1995). Let us note that a similar result, using rather different techniques
of proof, has been derived independently by Iserles et al. (2006b). A noticeable difference is, in particu-
lar, that we obtain conditions on both the modified vector field (which has to be divergence free) and the
method itself (which is volume preserving). This then allows for the derivation of algebraic conditions
set directly on the coefficients of an additive Runge–Kutta (RK) method (see Section 4.2.1).

It is, however, interesting to consider specific classes of problems for which volume-preserving
integrators can be constructed. For instance, it is clear that symplectic methods are volume preserving for
Hamiltonian systems. In Section 4.3.1, we show that symplectic conditions are in general necessary for

†Email: chartier@irisa.fr
1The fact that no RK method can preserve polynomial invariants of degree less than or equal to 3 was first shown by Calvo

et al. (1997) and the extension of this result to arbitrary degree was considered in Zanna (1998) and Iserles & Zanna (2000). Here,
we extend this result to arbitrary B-series for split vector fields.
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a method to be volume-preserving and indeed sufficient for the special class of Hamiltonian problems.
In a similar spirit, we derive in Section 4.3 simplified conditions for partitioned systems with two and
three functions. The results obtained for two functions corroborate already known ones (see Hairer et al.,
2002, Theorem 3.4) and results for more than three functions (and their straightforward generalization
to more functions) appear to be completely new. It is interesting to note that the general idea used here
to obtain numerical methods also has some similarities with the technique considered by Iserles et al.
(2006a) for polynomial vector fields.

In the sequel, we shall thus consider an n-dimensional system of differential equations of the form

ẏ(x) =
N∑

ν=1

f [ν](y) (1.1)

= f [1](y) + f [2](y) + · · · + f [N ](y). (1.2)

An NB-series NB(a) is a formal expression of the form

NB(a) = idRn +
∑
t∈T

h|t |

σ(t)
a(t)F(t), (1.3)

where the index set T is the set of N -coloured rooted trees, |·|, σ and F are real functions defined on
T and a is a function defined on T as well which characterizes the NB-series itself. These series have
been introduced in Araújo et al. (1997) in full details for the purpose of studying symplectic additive RK
methods. Note that this definition coincides with the standard definition of B-series as given in Hairer
et al. (2002) when only one colour is used for the vertices. In the sequel, we shall simply write B(a) for
the general case, and refer NB-series as B-series.

As in Chartier et al. (2006), S-series arises naturally. In accordance with B-series, we consider here
S-series for coloured trees. For instance, for N = 2 and for a smooth function g, an S-series is a series
of the form

S(α)[g] = α(e)g + hα( )gy f [1] + hα( )gy f [2]

+ h2
(

α( )

2
gyy( f [1], f [1]) + α( )gyy( f [1], f [2]) + α( )

2
gyy( f [2], f [2])

)

+ h2(α( )gy f [1]
y f [1] + α( )gy f [1]

y f [2] + α( )gy f [2]
y f [1] + α( )gy f [2]

y f [2]) + · · · .
Assuming that a function I with an S-series expansion is a first integral of individual differential equa-
tions ẏ = f [ν](y), ν = 1, . . . , N , i.e. it satisfies

∀ ν = 1, . . . , N , ∀ y ∈ Rn, (∇ I (y))T f [ν](y) = 0, (1.4)

preserving I for an integrator B(a) amounts to satisfying the condition

∀ y ∈ Rn, (I ◦ B(a))(y) = I (y),

and it can be shown (Murua, 1999) that

I ◦ B(a) = S(α)[I ], (1.5)
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where α, acting onF , is uniquely defined in terms of a. All further results on general invariants will be
obtained in this framework.

Assuming now that we have, instead of (1.4),

∀ ν = 1, . . . , N , ∀ y ∈ Rn, div f [ν](y) = 0,

preserving the volume for an integrator whose modified vector field is f̃h(y) = 1
h B(β)(y) amounts to

satisfying the condition

∀ y ∈ Rn, div( f̃h(y)) = 0.

Using the ‘linearity’ of the divergence operator and a convenient matrix representation of the differential
forms dF(t) for a tree t , we obtain algebraic conditions in terms of ‘aromatic’ trees, defined as oriented
trees with exactly one cycle. Anticipating on the computations of Section 4.2, consider, for instance, the
term div(F( )) as appearing in div( f̃h). We have

div(F( )) = Tr
∂

∂y
( f [1]

yy ( f [1], f [2]))

= Tr( f [1]
yyy( f [1], f [2], ·)) + Tr( f [1]

yy ( f [1]
y ·, f [2])) + Tr( f [1]

yy ( f [1], f [2]
y ·))

:= Tr(F∗( )) + Tr(F∗( )F∗( )) + Tr(F∗( )F∗( ))

:= div(o1) + div(o2) + div(o3),

where F∗(t) denotes the matrix obtained by differentiating F(t) ‘at the root of t’ and o1 = (t), o2 =
( ) and o3 = ( ) are aromatic trees composed, respectively, of one, two and two trees. Note
that owing to the properties of the trace operator, div( ) = div( ), so that there is no reason to
distinguish ( ) from ( ): this general property allows us to consider such expressions as trees with
one cycle. It will turn out that the algebraic conditions for volume preservation can be expressed solely
in terms of aromatic trees.

2. Basic tools

In this section, we describe very briefly the basic algebraic tools that allow for the manipulation of S-
series. Since the definitions used here are rather similar to Chartier et al. (2006), we shall focus mainly
on the differences with the one-colour situation.

2.1 The algebra of trees

DEFINITION 2.1 (Rooted trees, forests) The set of (rooted) trees T and forests F are defined recur-
sively by the following:

1. the forest e is the empty forest;

2. if t1, . . . , tn are n trees ofT , the forest u = t1 · · · tn is the commutative juxtaposition of t1, . . . , tn ;

3. if u is a forest of F , then t = [u]ν , where ν ∈ {1, . . . , N }, is a tree of T with root of colour ν.

The order of a tree is its number of vertices and is denoted by |t |. The order |u| of a forest u = t1 · · · tn
is the sum of the |ti | values. If u = tr1

1 · · · trn
n , where t1, . . . , tn are pairwise distinct and are repeated,
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FIG. 1. A few forests with their orders and symmetry coefficients.

respectively, r1, . . . , rn times, then the symmetry σ of u is

σ(u) = r1! · · · rn!(σ (t1))
r1 · · · (σ (tn))

rn .

By convention, σ(e) = 1. The symmetry σ(t) of a tree t = [u]ν is the symmetry of u. The set of linear
combinations of forests in F can be naturally endowed with an algebra structure H , and the tensor
product of H with itself can be defined just as in Chartier et al. (2006).

DEFINITION 2.2 The algebra of forests H is defined as follows:

• ∀ (u, v) ∈ F 2, ∀ (λ, µ) ∈ R2, λu + µv ∈ H ,

• ∀ (u, v) ∈ F 2, uv ∈ H (note that uv = vu),

• ∀ u ∈ F , ue = eu = u.

EXAMPLE 2.3 (Calculus inH )(
2 + 3

)(
− + 8

)

= 2 − 2 + 16 + 3 − 3 + 24

DEFINITION 2.4 The tensor product ofH with itself is the set of elements of the form u ⊗ v such that
for all (u, v, w, x) ∈ H 4 and all (λ, µ) ∈ R2,

(λu + µv) ⊗ w = λ(u ⊗ w) + µ(v ⊗ w),

w ⊗ (λu + µv) = λ(w ⊗ u) + µ(w ⊗ v),

(u ⊗ v)(w ⊗ x) = (uw ⊗ vx).

We will further denote by Alg(H ,R) the space of algebra morphisms fromH to R, i.e. maps from
H to R such that

∀ u = t1 · · · tm ∈ F , α(u) = α(t1) · · · α(tm),

and by H ∗ the space of linear forms on H . Eventually, the co-product has to take into account the
possibility of trees with different colours. Hence, the operator B+ becomes B+

ν as defined below:

B+
ν : F → T ,

u = t1 · · · tn 	→ [t1 · · · tn]ν.
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EXAMPLE 2.5

B+
1 ( ) = [ ]1 = , B+

2 ( ) = [ ]2 = , B−( ) = , B−
( )

= .

Defining µ(t) as the colour of the root of t , we then have the following definition.

DEFINITION 2.6 (Co-product) The co-product � is a ‘linear’ map from H to H ⊗ H defined recur-
sively by the following:

1. �(e) = e ⊗ e,

2. ∀ t ∈ T ,�(t) = t ⊗ e + (idH ⊗ B+
µ(t)) ◦ � ◦ B−(t),

3. ∀ u = t1 · · · tn ∈ F ,�(u) = �(t1) · · · �(tn).

EXAMPLE 2.7

�( ) = ⊗ e + (idH ⊗ B+
2 )�( )

= ⊗ e + (idH ⊗ B+
2 )�( )�( )

= ⊗ e + (idH ⊗ B+
2 )( ⊗ e + e ⊗ )( ⊗ e + e ⊗ )

= ⊗ e + (idH ⊗ B+
2 )( ⊗ e + ⊗ + ⊗ + e ⊗ )

= ⊗ e + ⊗ + ⊗ + ⊗ + e ⊗ .

REMARK 2.8 The co-product of a tree can also be written as (see Connes & Kreimer, 1998, for
instance)

�(t) = t ⊗ e +
∑

i

ui ⊗ si , (2.1)

where si ∈ T is a subtree of t and ui the forest obtained when removing si from t .

2.2 B-series, S-series and their composition

For a tree t ∈ T , the ‘elementary differential’ F [ν](t) is a mapping fromRn toRn defined recursively by

F( ν)(y) = f [ν](y), F([t1 · · · tn]ν)(y) = ∂n f [ν]

∂yn
(y)(F(t1)(y), . . . , F(tn)(y)),

where ν = [e]ν .

EXAMPLE 2.9

F( ) = f [1]
y f [2], F( ) = f [2]

yy ( f [1], f [2]), F ( ) = f [1]
y f [2]

y f [1].

We can now define formally a coloured B-series as follows.
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DEFINITION 2.10 (B-Series) Let a: T → R. The B-series B(a) is the formal series

B(a)(y) = a(e)y +
∑
t∈T

h|t |

σ(t)
a(t)F(t)(y).

EXAMPLE 2.11 The B-series corresponding to the implicit/explicit Euler method is of the form

y1 = y0 + h( f [1](y1) + f [2](y0))

= y0 + hF( )(y0) + hF( )(y0) + h2 F( )(y0) + h2 F( )(y0) + O(h3).

Differential operators associated to a forest and S-series are exactly the same as for the one-colour
situation (Chartier et al., 2006).

DEFINITION 2.12 (Differential operator associated to a forest (Merson, 1957)) Consider a forest u =
t1 · · · tk of F . The differential operator X (u) associated to u is the map operating on smooth functions
D = C∞(Rn ; Rm), defined as

X (u): D →D,

g 	→ X (u)[g] = g(n)(F(t1), . . . , F(tk)).

EXAMPLE 2.13 For g ∈ D , one has

X (e)[g] = g, X ( ν)[g] = gy f [ν],

X ( )[g] = gy f [1]
y f [2], X ( ) = gyyy( f [2]

y f [1], f [1], f [2]).

More generally, the relations

X (t)[idRn ] = F(t), X (u)[ f [ν]] = F([u]ν)

hold true.

DEFINITION 2.14 (Series of differential operators) Let α: F → R. The S-series S(α) is the formal
series

S(α)[g] =
∑
u∈F

h|u|

σ(u)
α(u)X (u)[g].

Now, considering the action of a map g ∈ D on a B-series B(a), the following formula can be easily
obtained (see, for instance, Murua (1999) for a proof):

g ◦ B(a) =
∑
u∈F

h|u|

σ(u)
α(u)X (u)[g] (2.2)

with α(e) = 1 and α(t1 · · · t j ) = a(t1) · · · a(t j ). It follows that to every B-series B(a) one can associate
an S-series S(α), where α is an algebra morphism.
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LEMMA 2.15 (Composition of S-series) Let α and β be inH ∗ and let S(α) and S(β) be the associated
series of differential operators. Then, the composition of the two series S(α) and S(β) is again a series
S(αβ), i.e.

∀ g ∈ D, S(α)[S(β)[g]] = (S(α)S(β))[g] = S(αβ)[g], (2.3)

where αβ = (α ⊗ β) ◦ �.

Proof. The proof of this result is given in Theorem 24 of Murua (2006). �
Given an algebra map α ∈ Alg(H ,R), we denote by β = log α the map defining the corresponding

vector field (see Murua (2006) or Chartier et al. (2005) for a formal definition and explicit formulas).
Following Calvo et al. (1994), we will use the property that the value of α = exp β for a forest u ∈
F\{e} can be obtained as the solution at τ = 1 of the differential equation{

α̇τ (u) = (ατβ)(u),

α0(u) = 0,
(2.4)

with ατ (e) = 1.
We end up this introductory section with a technical result which generalizes Lemma 3 in Chartier

et al. (2006) for coloured trees and a lemma giving an alternative expression of the co-product for trees
of the form t1 ◦ · · · ◦ tm , where ◦ is the so-called Butcher product2 and is meant to operate from right to
left in expressions like t1 ◦ t2 ◦ · · · ◦ tm .

LEMMA 2.16 For any (ω1, . . . , ωN ) ∈ (H ∗)N , we have

h
N∑

ν=1

S(ων)X ( ν) = S(ω′),

where ω′ is defined by

ω′(e) = 0,

∀ u = t1 · · · tm ∈ F , ω′(u) =
m∑

i=1

ωµ(ti )

⎛
⎝B−(ti )

∏
j �=i

t j

⎞
⎠.

Proof. Consider the expression (2.1) for the co-product. Now, let βν ∈ H ∗ be such that S(βν) =
hX ( ν). Since βν(u) = 0 unless u = ν , we have(

N∑
ν=1

ωνβν

)
(t) =

N∑
ν=1

(ων ⊗ βν)(�(t)) =
N∑

ν=1

ων(t)βν(e) +
N∑

ν=1

∑
i

ων(ui )βν(si ) = ωµ(t)(B−(t)).

For forests of m � 2 trees, we obtain

�(t1 · · · tm) = t1 · · · tm ⊗ e +
∑

i

ui ⊗ vi ,

2If t1 and t2 are two trees, t1 ◦ t2 is the tree obtained by grafting the root of t2 onto the root of t1.
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where vi ∈ F is a forest, vi = s1 · · · sk , of subtrees s1, . . . , sk of 1 � k � m trees among t1, . . . , tm and
ui is the forest obtained when removing vi from t1 · · · tm . As before, since βν(u) = 0 unless u = ν ,
the only remaining terms are those for which k = 1, vi = µ(t) and ui = t1 · · · t j−1 B−(t j )t j+1 · · · tm .

�

LEMMA 2.17 For t ∈ T and u, v, w ∈ F , define

(u ⊗ t) ◦ (v ⊗ w) = (uv ⊗ t ◦ w),

�̄(t) = �(t) − t ⊗ e,

then for arbitrary trees t1, . . . , tm ∈ T one can write

�(t1 ◦ · · · ◦ tm) = δ(t1, . . . , tm) ⊗ e

+
m−1∑
j=1

�(t1 ◦ · · · ◦ t j )(δ(t j+1 ◦ · · · ◦ tm) ⊗ e) + �̄(t1) ◦ · · · ◦ �̄(tm), (2.5)

δ(t1, . . . , tm) =
m∑

k=1

(−1)k+1
∑

0= j1<···< jk+1

k∏
i=1

(
t ji +1 ◦ · · · ◦ t ji+1

)
. (2.6)

Proof. From the definitions of �̄ and �, we easily get

�̄( ν) = e ⊗ ν, �̄(t ◦ w) = �̄(t) ◦ �(w).

The identity (2.5) can then be proved by induction on m. �

3. Preservation of exact invariants

Given a differential equation of the form (1.1), we suppose that there exists a function I (y) of y, which
is kept invariant along any exact solution of the ordinary differential equation corresponding to any
individual vector field f [ν], ν = 1, . . . , N . We wish to derive conditions for a B-series integrator B(α)
to preserve I , i.e.

I = I ◦ B(α) = S(α)[I ].

In terms of S-series, this reads

S(α − id)[I ] = 0,

where id ∈ H ∗ is such that id(u) = 1 for u = e and id(u) = 0 for u �= e. In other words, α − id
should be an element of the annihilating left idealI [I ] of I . I being an invariant for each f [ν], we have

∀ ν ∈ {1, . . . , N }, (∇ I )T f [ν] = 0, (3.1)

that is to say, the Lie derivative of I along any vector field f [ν] is null. In terms of elementary differential
operators, this is nothing else but saying that

X ( ν)[I ] = 0. (3.2)
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Since for any series of differential operators S(ω1), S(ω2), . . . , S(ωN ) acting, respectively, on X ( 1)[I ],
X ( 2)[I ], . . . , X ( N )[I ], we have

N∑
ν=1

S(ων)[hX ( ν)[I ]] = S(ω′)[I ] = 0,

the inclusion {δ ∈ H ∗; ∃ω ∈ H ∗, δ = ω′} ⊂ I [I ] follows.
We now look for conditions on δ such that δ = ω′. Writing this equality for trees gives

∀ t ∈ T , δ(t) = ω′(t) = ωµ(t)(B−(t)),

which is equivalent to

∀ ν ∈ {1, . . . , N }, ∀ u ∈ F , ων(u) = δ(B+
ν (u)). (3.3)

Given an arbitrary δ ∈ H ∗, define ων ∈ H ∗ by (3.3), then δ = ω′ if and only if for all forests with at
least two trees,

δ(u) = ω′(u) =
m∑

i=1

ωµ(ti )

⎛
⎝B−(ti )

∏
j �=i

t j

⎞
⎠

by (3.3)=
m∑

i=1

δ

⎛
⎝B+

µ(ti )

⎛
⎝B−(ti )

∏
j �=i

t j

⎞
⎠

⎞
⎠.

(3.4)

Using more conventional notations, the necessary and sufficient condition for the existence of ω ∈ H ∗,
such that δ = ω′ obtained above, can be rewritten as

δ(t1 · · · tm) =
m∑

j=1

δ(t j ◦ (t1 · · · t j−1t j+1 · · · tm)), (3.5)

where t j ◦(t1 · · · t j−1t j+1 · · · tm) denotes the tree obtained by grafting the roots of t1, . . . , t j−1, t j , . . . , tm
onto the root of t j .

We have thus proved the following statement.

LEMMA 3.1 Consider N vector fields f [ν], ν = 1, . . . , N , all having the same first integral I . Let
δ ∈ H ∗ be such that δ(e) = 0. If condition (3.5) holds for all m � 2 and all t1, . . . , tm ∈ T , then
S(δ)[I ] = 0.

The next lemma is a consequence of standard arguments used to prove the independence of elemen-
tary differentials (see, for instance, Butcher, 1987; Hairer et al., 1993).

LEMMA 3.2 Given a forest u = t1 · · · tm ∈ F of order n, there exist polynomial maps f [ν]: Rn → R
n ,

ν = 1, . . . , N , of degree less than n − m + 1 and r : Rn → R of degree m such that, for any v ∈ F ,

X (v)[r ](0) �= 0 iff v = u. (3.6)
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THEOREM 3.3 Let α ∈ Alg(H ,R). Then, S(α)[I ] = I for all (N +1)-tuplets ( f [1], f [2], . . . , f [N ], I )
of N vector fields f [ν], ν = 1, . . . , N , with first integral I if, and only if, α satisfies the condition

α(t1) · · · α(tm) =
m∑

j=1

α

⎛
⎝t j ◦

∏
i �= j

ti

⎞
⎠ (3.7)

for all m � 2 and all t1, . . . , tm ∈ T .

Proof. The proof follows step-by-step the proof of the corresponding result for N = 1. The only
difference is that, in order to prove the necessity of the conditions, we need to consider the following
differential system:

ẏ =
N∑

ν=1

f [ν](y), (3.8)

ż = −
N∑

ν=1

(∇r(y))T f [ν](y), (3.9)

where the f [ν] values and r are chosen so as to satisfy condition (3.6) of Lemma 3.2 above, for a given
u ∈ F . It is clear that

I (y, z) = r(y) + z

is an invariant of (3.8), (3.9) and each individual system

ẏ = f [ν](y),

ż = −(∇r(y))T f [ν](y).

�

REMARK 3.4 If β = log α denotes the coefficients of the modified vector associated with the S(α)-
series integrator, then an equivalent condition to (3.7) is

0 =
m∑

j=1

β

⎛
⎝t j ◦

∏
i �= j

ti

⎞
⎠ . (3.10)

It can be straightforwardly checked that the invariant I (y, z) = g(y) + z constructed in the proof of
Theorem 3.3 is a polynomial of degree m. This implies that condition (3.7) for m trees is also necessary
and sufficient for a B-series integrator to preserve polynomial first integrals up to degree m.

THEOREM 3.5 A B-series integrator that preserves all cubic polynomial invariants does in fact preserve
polynomial invariants of any degree.

Proof. This is a particular case of a more general result stated in Remark 24 of Murua (2006). Assume
that Condition (3.7) holds true for all m � n with n � 3 and consider p + q = n + 1 trees, t1, . . . , tp,
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u1, . . . , uq , in T with q � p � 2. Denoting, respectively, by Sp and Sq the sum of the first p terms and
of the last q terms of the right-hand side of (3.7), we can use (3.7) with m = q + 1 � n and obtain

Sp =
∑

i

α

⎛
⎝

⎛
⎝ti ◦

∏
j �=i

t j

⎞
⎠ ◦

∏
k

uk

⎞
⎠

= −
∑
i,k

α

⎛
⎝uk ◦

⎛
⎝ti ◦

∏
j �=i

t j

⎞
⎠ ∏

l �=k

ul

⎞
⎠ +

∑
i

α

⎛
⎝ti ◦

∏
j �=i

t j

⎞
⎠ ∏

k

α(uk)

= −
∑
i,k

α

⎛
⎝

⎛
⎝uk ◦

∏
l �=k

ul

⎞
⎠ ◦

⎛
⎝ti ◦

∏
j �=i

t j

⎞
⎠

⎞
⎠ +

(∏
i

α(ti )

)(∏
k

α(uk)

)
.

A similar relation holds for Sq . Hence, Sp + Sq − 2
( ∏

i α(ti )
)( ∏

k α(uk)
)

can be written as

−
∑
i,k

⎛
⎝α

⎛
⎝

⎛
⎝uk ◦

∏
l �=k

ul

⎞
⎠ ◦

⎛
⎝ti ◦

∏
j �=i

t j

⎞
⎠

⎞
⎠ + α

⎛
⎝

⎛
⎝ti ◦

∏
j �=i

t j

⎞
⎠ ◦

⎛
⎝uk ◦

∏
l �=k

ul

⎞
⎠

⎞
⎠

⎞
⎠ .

Now, using (3.7) with m = 2, we have

α

⎛
⎝

⎛
⎝uk ◦

∏
l �=k

ul

⎞
⎠ ◦

⎛
⎝ti ◦

∏
j �=i

t j

⎞
⎠

⎞
⎠ + α

⎛
⎝

⎛
⎝ti ◦

∏
j �=i

t j

⎞
⎠ ◦

⎛
⎝uk ◦

∏
l �=k

ul

⎞
⎠

⎞
⎠

= α

⎛
⎝uk ◦

∏
l �=k

ul

⎞
⎠ α

⎛
⎝ti ◦

∏
j �=i

t j

⎞
⎠ ,

so that, upon using (3.7) again with m = p and m = q, we obtain

∑
i,k

⎛
⎝α

⎛
⎝uk ◦

∏
l �=k

ul

⎞
⎠ α

⎛
⎝ti ◦

∏
j �=i

t j

⎞
⎠

⎞
⎠ =

(∏
i

α(ti )

)(∏
k

α(uk)

)
. (3.11)

As a consequence, relation (3.7) holds true for m = n + 1 and the stated result follows by induction. �
At this stage, the question arises as to whether there exist methods that satisfy condition (3.7) for

preservation of arbitrary first integrals. By assumption, the exact flow of each individual equation ẏ =
f [ν](y), ν = 1, . . . , N , preserves the first integral I . We then note that numerical methods formed by
composition of such flows also preserve I . By repeated application of the Baker–Campbell–Hausdorff
formula, one can see that methods of this type can be formally interpreted as the exact flow of a vector
field lying in the Lie algebra generated by f [1], . . . , f [N ]. Conversely, any method that can be formally
interpreted in that way preserves I . The next theorem states that they are the only ones.

THEOREM 3.6 A B-series integrator that preserves all cubic polynomial invariants can be formally
interpreted as the exact flow of a vector field lying in the Lie algebra generated by f [1], . . . , f [N ].

Proof. By Theorem 3.5, a B-series B(α) that preserves all cubic polynomials must necessarily satisfy
condition (3.7), and then the required result follows from Remark 21 in Murua (2006). �
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4. Volume-preserving integrators

In this section, we derive algebraic conditions for a B-series integrator to be volume preserving. Since
it is much easier to work with the divergence operator, we begin with deriving the conditions for a
modified vector field to be divergence free.

4.1 Divergence-free B-series

Consider N divergence-free vector fields f [ν], ν = 1, . . . , N . A B-series B(β) with coefficients β
satisfying β(e) = 0,

∑
t∈T

h|t |

σ(t)
β(t)F(t),

is divergence free if, and only if, (using the linearity of the divergence operator)

∑
t∈T

h|t |

σ(t)
β(t)div(F(t)) = 0. (4.1)

The first problem we are thus confronted with is computing the divergence of each elementary differen-
tial vector field appearing in (4.1).

4.1.1 Aromatic trees. In order to conveniently represent div(F(t)) for t ∈ T , we introduce the
following ‘aromatic’ trees, which are certain connected oriented graphs with one cycle. Before defin-
ing them, we observe that coloured rooted trees can be interpreted as connected oriented graphs with
coloured vertices as follows: Given t ∈ T , let V be the set of vertices of t , then the set E ⊂ V × V of
arcs of the oriented graph identified with t is the set of pairs (i, j) ∈ V × V such that the vertex i is a
child of the vertex j (i.e. j is the parent of i). Thus, the root of t is the only vertex r ∈ V such that there
is no i ∈ V with (r, i) ∈ E . Furthermore, for each vertex i ∈ V \{r}, there exists a unique sequence of
vertices j1, . . . , jm ∈ V (m � 1) such that (i, j1), ( j1, j2), . . . , ( jm−1, jm), ( jm, r) ∈ E . Typically, a
coloured rooted tree is graphically represented with the root at the bottom of the graph and the children
of each vertex positioned above it. When depicted as coloured oriented graphs, there is no need to draw
the children of a vertex in any particular position with respect to their parent. Below, a coloured rooted
tree is depicted in both the usual way and as a coloured oriented graph.

Similarly, a forest t1 · · · tm of coloured rooted trees can be identified with a coloured oriented graph
whose connected components are identified with the rooted trees t1, . . . , tm .

DEFINITION 4.1 An aromatic tree o is a coloured oriented graph with exactly one cycle such that if all
the arcs in the cycle are removed, then the resulting coloured oriented graph is identified with a forest
t1 · · · tm of coloured rooted trees (t1, . . . , tm ∈ T ). If the arcs of o that form the cycle go from the root
of ti to the root of ti+1 (i = 1, . . . , m − 1) and from the root of tm to the root of t1, then we write
o = (t1 · · · tm). Note that o = (t1 · · · tm) = (ti · · · tmt1 · · · ti−1) for all i ∈ {2, . . . , m}. The order |o|
of an aromatic tree o = (t1 · · · tm) is the number of its vertices, i.e. |o| = |t1| + · · · + |tm |. The set of
aromatic trees is denoted AT and the set of nth order aromatic trees AT n .
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EXAMPLE 4.2 For the aromatic tree

o = ,

we have that o = (t1t2t1t2) = (t2t1t2t1), where

t1 = = , t2 = = .

DEFINITION 4.3 For any aromatic tree o = (t1 · · · tm) ∈ AT , C(o) is the unordered list of trees
obtained from o by breaking any edge of the cycle. If we denote for i = 1, . . . , m, si = ti ◦ ti+1 ◦ · · · ◦
tm ◦ t1 ◦ · · · ◦ ti−1, where the grafting operation is meant to operate from right to left, then

C(o) = {s1, . . . , sm}. (4.2)

Now, let πm be the circular permutation of {1, . . . , m} and let θ be

θ = #
{
l ∈ {0, . . . , m − 1}:

(
tπ l

m (1), . . . , tπ l
m (m)

)
= (t1, . . . , tm)

}
,

so that, for each i , there are θ copies of si in the list C(o). Then, the symmetry coefficient of o is defined
as σ(o) = θ

∏
i σ(ti ).

EXAMPLE 4.4 Consider again the aromatic tree o and the coloured rooted trees t1 and t2 in Example 4.2.
In that case, θ = 2, and thus the symmetry coefficient is σ(o) = 2σ(t1)2σ(t2)2 = 2. As for the list of
coloured rooted trees in Definition 4.3, C(o) = {s1, s2, s3, s4}, where

s1 = = = t2 ◦ t1 ◦ t2 ◦ t1,

s2 = = = t1 ◦ t2 ◦ t1 ◦ t2,

s3 = = = t2 ◦ t1 ◦ t2 ◦ t1,

s4 = = = t1 ◦ t2 ◦ t1 ◦ t2.
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For t = [t1, . . . , tl ]ν ∈ T , we shall use the notations of Araújo et al. (1997):

F∗(t) = ∂ l+1 f [ν]

∂yl+1
(F(t1), . . . , F(tl)),

so that

dF(t)

σ (t)
= F∗(t)

σ (t)
+

∑
t1◦t2◦···◦tm=t

F∗(t1)
σ (t1)

F∗(t2)
σ (t2)

· · · F∗(tm)

σ (tm)
. (4.3)

DEFINITION 4.5 (Elementary divergence) The divergence div(o) associated with an aromatic tree o =
(t1 · · · tm) is defined by

div(o) = Tr(F∗(t1) · · · F∗(tm)). (4.4)

It can be easily seen from the definition of div(o) for o ∈ AT that one has

div((t1 · · · tm)) = div
((

tπ l
m (1) · · · tπ l

m (m)

))
, l ∈ N. (4.5)

This is the very reason for considering aromatic trees as cycles.

REMARK 4.6 An alternative way of defining div(o) for an aromatic tree o is as follows: Given o ∈ AT ,
with m = |o|, represented as a coloured oriented graph with the set of indices V = {i1, . . . , im} as the
set of vertices, coloured according to a map ξ : V → {1, . . . , N }, and the set of arcs E ⊂ V × V . Let
for each i ∈ V denote gi = f [ν]i

j1,..., jl
, where ν = ξ(i) (the colour of the vertex i), {j1, . . . , jl} = {j ∈

V : ( j, i) ∈ E}, and f [ν]i
j1,..., jl

(y) is the partial derivative of the i th component of f [ν](y) with respect to

the components y j1 , . . . , y jl of y ∈ Rn , then it is not difficult to see that

div(o) =
n∑

i1,...,im=1

gi1 · · · gim .

4.1.2 Divergence-free conditions and first consequences. We are now in a position to write in a
convenient way the divergence of the modified vector field f̃h given as a B-series B(β). We first observe
that as div( f [ν]) = 0 for all ν = 1, . . . , N , Tr(F∗(t)) = 0 for all t ∈ T . We thus have, by taking (4.3)
into account,

div(B(β)) =
∑
t∈T

β(t)
h|t |

σ(t)
div(F(t)) =

∑
t∈T

β(t)h|t |Tr

(
dF(t)

σ (t)

)

=
∑
t∈T

β(t)h|t | ∑
m�2

∑
t1◦···◦tm=t

Tr

(
F∗(t1)
σ (t1)

F∗(t2)
σ (t2)

· · · F∗(tm)

σ (tm)

)

=
∑
t∈T

β(t)h|t | ∑
m�2

∑
t1◦···◦tm=t

div((t1 · · · tm))

σ (t1) · · · σ(tm)

=
∑
n�1

hn
∑

o∈AT n

⎛
⎝ ∑

t∈C(o)

β(t)

⎞
⎠div(o)

σ (o)
.
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THEOREM 4.7 A modified field given by the B-series B(β) is divergence free up to order p if the
following condition is satisfied:∑

t∈C(o)

β(t) = 0 for all aromatic trees o ∈ AT with |o| � p. (4.6)

THEOREM 4.8 Condition (4.6) is a necessary condition for a vector field to be divergence free.

Proof. We will prove that, given o ∈ AT with |o| = n, there exist divergence-free vector fields
f [ν]: Rn → R

n , ν = 1, . . . , N , and y0 ∈ Rn such that div(o)(y0) = 1 and for arbitrary ô ∈ AT \{o},
div(ô)(y0) = 0.

Given o ∈ AT n , we consider y0 = (0, . . . , 0)T ∈ R
n and f [ν]: Rn → R

n , ν = 1, . . . , N ,
constructed as follows: Let o be represented as a coloured oriented graph with the set of vertices V =
{1, . . . , n}, coloured according to a map ξ : V → {1, . . . , N }, and the set of arcs E ⊂ V × V . Then, for
each ν = 1, . . . , N and each i = 1, . . . , n, the i th component f [ν]i (y) of f [ν](y) (y = (y1, . . . , yn)T)
is defined as

f [ν]i (y) =
⎧⎨
⎩

∏
( j,i)∈E y j , if ξ(i) = ν,

0, otherwise.

Each such vector field f [ν] is divergence free, as the main diagonal of its Jacobian matrix is identically
null. The required result then follows, by taking Remark 4.6 into account, from the observation that,
given i, j1, . . . , jl ∈ V = {1, . . . , n}, f [ν]i

j1,..., jl
(y0) �= 0 if and only if {j1, . . . , jl} ( j1, . . . , jl being

distinct) coincides with the set {j ∈ V : ( j, i) ∈ E}. �

LEMMA 4.9 The conditions for two and three cycles are equivalent to the conditions for the preservation
of all cubic polynomial invariants.

Proof. For two cycles and three cycles, condition (4.6) can be written as

∀ (t1, t2) ∈ T 2, b(t1 ◦ t2) + b(t2 ◦ t1) = 0 (4.7)

and

∀ (t1, t2, t3) ∈ T 3, b(t1 ◦ t2 ◦ t3) + b(t2 ◦ t3 ◦ t1) + b(t3 ◦ t1 ◦ t2) = 0, (4.8)

respectively.
Condition (4.7) is the symplecticity condition. As for condition (4.8), taking into account condition

(4.7) and the induced relations

b(t1 ◦ t2 ◦ t3) = −b((t2 ◦ t3) ◦ t1),

b(t2 ◦ t3 ◦ t1) = −b((t3 ◦ t1) ◦ t2),

b(t3 ◦ t1 ◦ t2) = −b((t1 ◦ t2) ◦ t3),

it can be rewritten as

∀ (t1, t2, t3) ∈ T 3, b(t1 ◦ t2t3) + b(t2 ◦ t1t3) + b(t3 ◦ t1t2) = 0,

which, together with (4.7), is the condition obtained in Chartier et al. (2006) with N = 1 for modified
fields to have solutions which preserve cubic invariants. �
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4.2 Volume-preserving B-series

The aim of this section is to rewrite the necessary and sufficient condition (4.6) obtained for the modified
field in terms of the coefficients of the B-series of the method itself.

A B-series that can be formally interpreted as the exact flow of a vector field lying in the Lie al-
gebra generated by f [1], . . . , f [N ] is trivially volume preserving (as the Lie bracket of divergence-free
vector fields is also divergence free). We have already stated the following result on the nonexistence of
nontrivial B-series methods preserving the volume.

THEOREM 4.10 A volume-preserving B-series integrator can be formally interpreted as the exact flow
of a vector field lying in the Lie algebra generated by f [1], . . . , f [N ].

Proof. This is a direct consequence of Lemma 4.9 and Theorem 3.6. �

DEFINITION 4.11 Consider an aromatic tree o = (t1 · · · tm). If we remove 1 � k � m edges of the
cycle o, we obtain a forest u with k trees. We denote by Ck(o) the ‘list’ of all possible forests obtained
by removing any k edges from o.

Observe that C1(o) is denoted by C(o) in Section 4.2.

THEOREM 4.12 Consider a B-series integrator with coefficients α. B(α) preserves the volume up to
order p if, and only if, the following conditions hold for all 1 � n � p:

∀ o = (t1 · · · tm) ∈ AT n,

m∑
k=1

(−1)k+1
∑

u∈Ck (o)

α(u) = 0. (4.9)

Proof. Assume that β ∈ H ∗ is such that β(e) = 0 and that, for arbitrary t1, . . . , tm ∈ T ,

m∑
l=1

β(tπ l (1) ◦ · · · ◦ tπ l (m)) = 0.

According to Lemma 2.17, we have for ατ = eτβ as defined in (2.4)

α̇τ (t1 ◦ · · · ◦ tm) = (ατ ⊗ β)�(t1 ◦ · · · ◦ tm)

=
m−1∑
j=1

α̇τ (t1 ◦ · · · ◦ t j )ατ (δ(t j+1 ◦ · · · ◦ tm)) + (ατ ⊗ β)(�̄(t1) ◦ · · · ◦ �̄(tm)),

(4.10)

where we have used the assumption that β(e) = 0. Thus,

m∑
l=1

α̇τ (tπ l (1) ◦ · · · ◦ tπ l (m)) =
m∑

l=1

⎛
⎝m−1∑

j=1

α̇τ (tπ l (1) ◦ · · · ◦ tπ l ( j))ατ (δ(tπ l ( j+1) ◦ · · · ◦ tπ l (m)))

⎞
⎠

+
m∑

l=1

(ατ ⊗ β)(�̄(tπ l (1)) ◦ · · · ◦ �̄(tπ l (m))).
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Since �̄(tπ l (1)) ◦ · · · ◦ �̄(tπ l (m)) is a linear combination of terms of the form

u ⊗
m∑

l=1

zπ l (1) ◦ · · · ◦ zπ l (m), (4.11)

where u ∈ F and z1, . . . , zm ∈ T , the second term of the previous sum vanishes and we get

m∑
l=1

α̇τ (tπ l (1) ◦ · · · ◦ tπ l (m)) =
m∑

l=1

m−1∑
j=1

α̇τ (tπ l (1) ◦ · · · ◦ tπ l ( j))ατ (δ(tπ l ( j+1) ◦ · · · ◦ tπ l (m)))

or, equivalently,

m∑
l=1

m∑
k=1

(−1)k+1
∑

0= j1<···< jk+1

α̇τ

(
tπ l ( j1+1) ◦ · · · ◦ tπ l ( j2)

) k∏
i=2

ατ

(
tπ l ( ji +1) ◦ · · · ◦ tπ l ( ji+1)

)
= 0,

which after integration leads to the stated result. �

4.2.1 Conditions for additive RK methods. In this section, we consider additive RK methods as de-
scribed in Araújo et al. (1997). Denoting the coefficients by (a[1]

i, j , b[1]
i ), . . . , (a[N ]

i, j , b[N ]
i ), we can define

recursively

Φ( ν) = (1, . . . , 1)T ∈ Rs, (4.12)

Φ([t1 · · · tm]ν) =
m∏

i=1

A[µ(ti )]Φ(ti ). (4.13)

We then have α([t1 · · · tm]ν) = (b[ν])TΦ(ti ). Now, consider two trees t1 and t2 inT . From the definition
of Φ, we easily get

Φ(t1 ◦ t2) = Φ(t1) · A[µ(t2)]Φ(t2),

where · denotes the componentwise product of vectors. More generally, for any m trees t1, . . . , tm ofT ,
it becomes

Φ(t1 ◦ t2 · · · ◦ tm) = Φ(t1)A[µ(t2)]Φ(t2) · · · A[µ(tm )]Φ(tm),

where the products (matrix-vector product or componentwise vector product) operate from right to left.
Denoting Xi = diag(Φ(ti )), we can thus write

α(t1 ◦ t2 · · · ◦ tm) = eT B[µ(t1)] X1 A[µ(t2)] X2 · · · A[µ(tm )] Xme

and the coefficients α(u) for u ∈ Ck((t1 · · · tm)) all have the form

k∏
i=1

(
eT B

[
µ

(
t
πl ( ji )

)]
Xπ l ( ji ) · · · A

[
µ

(
t
πl ( ji+1−1)

)]
Xπ l ( ji+1−1)e

)
,

where l ∈ {1, . . . , m} and 1 = j1 < j2 < · · · < jk = m + 1.
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DEFINITION 4.13 An aromatic multi-index ρ = (i [ν1]
1 · · · i [νm ]

m ) is an oriented cycle where the vertices

of the cycle are the ‘coloured’ indices i [ν1]
1 , i [ν2]

2 , . . . , i [νm ]
m . We denote by

C1(ρ) = {(i [ν1]
1 , . . . , i [νm ]

m ), (i [ν2]
2 , . . . , i [νm ]

m , i [ν1]
1 ), . . .}

the set of ordered multi-indices obtained by removing any edge of the cycle. If two edges of the cycle
are removed, then we get pairs of ordered coloured multi-indices, and we denote by

C2(ρ) = {((i [ν2]
2 , i [ν3]

3 ), (i [ν4]
4 , . . . , i [νm ]

m , i [ν1]
1 )), . . .}

the set of such pairs; more generally, we denote by Ck(ρ), k = 1, . . . , m, the set of k-tuplets of ordered
coloured multi-indices obtained by removing any k edges of the cycle.

DEFINITION 4.14 Given an arbitrary ordered coloured multi-index � = i [ν1]
1 · · · i [νl ]

l , we define

ψ(i [ν1]
1 · · · i [νl ]

l ) := b[ν1]
i1

a[ν2]
i1i2

· · · a[νl ]
il−1il

,

and if υ = (�1, . . . ,�k) is a k-tuplet of ordered multi-indices, then

ψ(υ) =
k∏

j=1

ψ(� j ).

Then, the volume-preserving condition for the m-cycle ρ = (i [ν1]
1 · · · i [νm ]

m ) reads

m∑
k=1

(−1)k+1
∑

υ∈Ck (ρ)

ψ(υ) = 0 for each (i [ν1]
1 , . . . , i [νm ]

m ) ∈ {1, . . . , s}m . (4.14)

It can be straightforwardly obtained from the conditions for the m-cycles o = (t1 · · · tm) by letting
t1, . . . , tm be arbitrary trees of colours, respectively, ν1, . . . , νm . As a matter of fact, each matrix Xl =
diag(Φ(tl)) then spans the whole set of diagonal matrices and the choice (Xl)r,r = δr,il leads to (4.14).

EXAMPLE 4.15 • For the coloured multi-index ρ = (i [ν1] j [ν2]), we obtain the conditions

b[ν1]
i a[ν2]

i j + b[ν2]
j a[ν1]

j i − b[ν1]
i b[ν2]

j = 0, ν1, ν2 = 1, 2, i, j = 1, . . . , s, (4.15)

i.e. the symplecticity conditions for additive RK methods (Araújo et al., 1997).

• For the cycle ρ = (i [ν1] j [ν2]k[ν3]), we get

b[ν1]
i a[ν2]

i j a[ν3]
jk + b[ν2]

j a[ν3]
jk a[ν1]

ki + b[ν3]
k a[ν1]

ki a[ν2]
i j − b[ν1]

i b[ν2]
j a[ν3]

jk − b[ν2]
j b[ν3]

k a[ν1]
ki − b[ν3]

k b[ν1]
i a[ν2]

i j

+ b[ν1]
i b[ν2]

j b[ν3]
k = 0, ν1, ν2, ν3 = 1, . . . , 3, i, j, k = 1, . . . , s.

• Assume that we have one colour only. Taking i = j = k in previous conditions gives

bi (3a2
i i − 3biaii + b2

i ) = 0, i = 1, . . . , s, (4.16)

which has no other real solution than b1 = b2 = · · · = bs = 0. This condition is by itself sufficient
to prove that there exist no volume-preserving RK methods and as a consequence that no RK method
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can preserve polynomial invariants of degree greater than or equal to 3 (see Calvo et al., 1997; Zanna,
1998; Hairer et al., 2002, Theorem IV 3.3.).

4.3 Systems with additional structure

We have so far obtained negative result about the existence of volume-preserving N -colour B-series
integrators, apart from the trivial case of composition of exact flows of divergence-free vector fields
(more precisely, apart from methods that can be formally interpreted as the exact flow of a vector field in
the Lie algebra generated by the original vector fields in the splitting). In this section, we consider three
particular cases where the vector fields f [ν] (ν = 1, . . . , N ) have additional structure such that volume-
preserving B-series methods exist apart from the trivial case of composition of volume-preserving flows.

The first case we consider is when each f [ν] is actually a Hamiltonian vector field (hence diver-
gence free) so that, obviously, any symplectic B-series method applied to such decomposition of the
original vector field is divergence free (conservation of the symplectic form implies conservation of the
volume form). We show algebraically that, in that case our volume-preservation conditions reduce to
the symplecticity conditions in Araújo et al. (1997).

The second case we consider is a class of divergence-free systems split in two parts with a particular
structure already considered in the literature (see Hairer et al., 2002). In such case, some symplectic
methods (one-stage symplectic additive RK methods and two-stage symplectic RK methods) turn out to
be volume preserving.

New volume-preserving methods for divergence-free systems split in three parts with a particular
structure (generalization of the previous case) are considered as a third case. Similar results could be
obtained for further generalizations of divergence-free systems split in N � 4 parts without any diffi-
culty.

4.3.1 Hamiltonian systems. For f = ∑N
ν=1 K −1∇H [ν], where K is assumed to be an invertible

skew-symmetric matrix, we have the following fundamental relation:

∀ t ∈ T , (K F∗(t))T = K F∗(t). (4.17)

Now, let us consider the transposition operator τ defined on AT as follows:

∀ o = (t1 · · · tk) ∈ AT , τ (o) = (tk tk−1 · · · t1). (4.18)

Due to relation (4.17), we have

∀ o = (t1 · · · tk) ∈ AT , div(o) = (−1)kdiv(τ (o)). (4.19)

This can be easily seen by considering the following identity:

div(o) = Tr(F∗(t1) · · · F∗(tk)) = Tr(F∗(tk)T · · · F∗(t1)T)

= (−1)kTr(K F∗(tk)K −1 · · · K F∗(t1)K −1).

THEOREM 4.16 Suppose that f is a sum of Hamiltonian parts (in possibly noncanonical form, i.e.
K is just assumed to be an invertible skew-symmetric matrix) f [ν] = K −1∇H [ν]. If the Hamiltonian
conditions on the modified vector field B(b),

∀ (u, v) ∈ T 2, b(u ◦ v) + b(v ◦ u) = 0, (4.20)
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or equivalently the symplecticity conditions on the B-series integrator B(a),

∀ (u, v) ∈ T 2, a(u ◦ v) + a(v ◦ u) = a(u)a(v), (4.21)

are satisfied, then the flow f̃h is divergence-free and the integrator volume preserving.

Proof. Conditions for two cycles are satisfied by the assumption. Now, consider a k-cycle o = (t1 · · · tk),
k ∈ N∗, then div(τ (o)) = (−1)kdiv(o). The two conditions corresponding to o and τ(o) can be merged
into one: ∑

u∈C(o)

b(u) + (−1)k
∑

u∈C(τ (o))

b(u) = 0. (4.22)

Now, consider a tree u ∈ C(o), for instance, u = t1 ◦ t2 ◦ · · · ◦ tk . The tree v = tk ◦ tk−1 ◦ · · · ◦ t1 belongs
to C(τ (o)) and we have b(u) = (−1)k−1b(v) since u and v belong to the same class of ‘free trees’ and
the distance between their roots is k − 1. Hence,

b(u) + (−1)kb(v) = (1 + (−1)2k−1)b(u) = 0 (4.23)

and condition (4.22) is satisfied. �

4.3.2 Two-cycle systems. In this section, we consider the special situation of systems of the form{
ṗ = f (q),

q̇ = g(p),
(4.24)

where f and g are smooth functions. In the framework of split systems, we can write them as(
ṗ

q̇

)
= f [1](q) + f [2](p), (4.25)

with

f [1](q) =
(

f (q)

0

)
and f [2](p) =

(
0

g(p)

)
.

Note that partitioned RK methods for systems of the form (4.24) can be interpreted as additive methods
for (4.25). Now, consider B-series with two colours, with black vertices (corresponding to f [1]) and
white vertices (corresponding to f [2]), due to the special form of (4.25), not all trees of T need to be
considered. If t = [t1, . . . , tm] , then F(t) vanishes as soon as one of the ti values has a black root. The
same obviously holds for trees with a white root so that only trees with vertices of ‘alternate’ colours
need to be considered. As for elementary divergences associated with aromatic trees, a lot also vanish:
if u = [v1, . . . , vm] and v = [u1, . . . , un] have, respectively, a black and a white root, F∗(u) and
F∗(v) have the following forms:

F∗(u) = ∂m+1 f [1]

∂(p, q)m+1
(F(v1), . . . , F(vm)) =

(
0 η(p, q)
0 0

)
,

F∗(v) = ∂n+1 f [2]

∂(p, q)m+1
(F(u1), . . . , F(um)) =

(
0 0

µ(p, q) 0

)
,
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with η = ∂m+1 f
∂qm+1 (F(v1), . . . , F(vm)) and µ = ∂m+1g

∂pm+1 (F(u1), . . . , F(um)). Aromatic cycles composed
of an odd number of trees are consequently irrelevant.

LEMMA 4.17 Let o be an aromatic tree of the form o = (t1 · · · t2l+1) with l ∈ N. Then, the correspond-
ing elementary divergence div(o) is zero.

Proof. Since o is composed of an odd number of trees, there exist two consecutive trees tk and tk+1 in
o (or possibly t2l+1 and t1), with roots of the same colour, say, for instance, black. Then, we have

F∗(tk)F∗(tk+1) =
(

0 ηk(p, q)

0 0

)(
0 ηk+1(p, q)

0 0

)
=

(
0 0

0 0

)

and div(o) = 0. �

THEOREM 4.18 A one-stage additive RK method formed of (A[1], b[1]) = (θ1, 1) and (A[2], b[2]) =
(θ2, 1) is volume-preserving for systems of the form (4.24) if and only if θ2 = 1 − θ1, i.e. if, and only
if, the method is symplectic.

Proof. Consider an aromatic multi-index ρ = (i [1]
1 · · · i [2]

2l ) composed of 2l indices with colours in
black/white order and let υ = (�1, . . . ,�k) ∈ Ck(ρ). Since all quantities are scalar, the indices
i [1]
1 , . . . , i [2]

2l take the value 1. Hence, if k1 and k2 denote the number of cuts before, respectively, a
black and a white root, we have

ψ(υ) =
k∏

j=1

ψ(� j ) = θ
l−k1
1 θ

l−k2
2 ,

and such a value of ψ(υ) can be obtained in (
l

k1

)(
l
k2

)
(4.26)

different ways from ρ with k = k1 + k2 cuts. Hence, the condition for volume preservation becomes

2l∑
k=1

(−1)k
∑

k1+k2=k,
0�k1,k2�l

(
l
k1

)(
l
k2

)
θ

l−k1
1 θ

l−k2
2 = 0,

i.e.

(θ1 − 1)(θ2 − 1) = θ1θ2 ⇐⇒ θ2 = 1 − θ1. (4.27)

�

THEOREM 4.19 Two-stage symplectic RK methods are volume preserving for separable systems of the
form (4.24).

Proof. Consider a two-stage RK method with coefficient matrix A ∈ R
2×2 and b ∈ R

2. One of the
following two situations occurs: either Φ( ) = e and Φ( ) = Ae := c are linearly independent or
for all trees t ∈ T , Φ(t) is co-linear to e. As matter of fact, if e and c are not linearly independent,
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being in a space of dimension 2 implies that c = λe, for λ ∈ R, and an easy induction then shows that
Φ(t) = λ(t)e, where λ(t) ∈ R for each t ∈ AT . The discussion in Section 4.2.1 shows that (4.9)
holds for a given m � 2 and for all o = (t1 · · · tm) ∈ AT if it holds in the particular case where
t1, . . . , tm ∈ { , }.

Let us write now the conditions for the modified vector field with coefficients β = log(α) to be
volume-preserving for the special situation of a cycle o = (t1 · · · t2m) with an even number of trees
chosen in the set { , }:

2m∑
l=1

β(tπ l (1) ◦ · · · ◦ tπ l (2m)) = 0. (4.28)

We first recall that owing to the symplecticity conditions, one has

β(tπ l (1) ◦ tπ l (2) ◦ · · · ◦ tπ l (2m)) = −β(tπ l (2m) ◦ tπ l (2m−1) ◦ · · · ◦ tπ l (1)).

One can easily check that condition (4.28) is automatically satisfied provided that t1, . . . , t2m ∈ { , }.
Following the proof of Theorem 4.12 in the particular case where t1, . . . , t2m ∈ { , }, one observes

that �̄(tπ l (1)) ◦ · · · ◦ �̄(tπ l (m)) is a linear combination of terms of the form (4.11), with z1, . . . , z2m ∈
{ , } (this is due to the fact that �̄( ) = e ⊗ and �̄( ) = e ⊗ + ⊗ ). We thus have
that as (4.28) holds whenever t1, . . . , t2m ∈ { , }, the volume-preserving condition (4.9) holds for
o = (t1, . . . , t2m) if t1, . . . , t2m ∈ { , }, which concludes the proof. �

4.3.3 Three-cycle systems. In this section, we consider the special situation of systems of the form

⎧⎪⎨
⎪⎩

ṗ = F (q),

q̇ = G (r),

ṙ =H (p),

(4.29)

where F , G and H are smooth functions. In the framework of split systems, we can write them as⎛
⎝ ṗ

q̇
ṙ

⎞
⎠ = f [1](q) + f [2](r) + f [3](p),

with

f [1](q) =
⎛
⎝F (q)

0
0

⎞
⎠, f [2](r) =

⎛
⎝ 0
G (r)

0

⎞
⎠ and f [3](p) =

⎛
⎝ 0

0
H (p)

⎞
⎠,

and consider three series, with black vertices (corresponding to f [1]), white vertices (corresponding to
f [2]) and box vertices (corresponding to f [3]). However, not all trees of AT need to be considered: if
t = [t1, . . . , tm] , then F(t) vanishes as soon as one of the ti values has a black or a box root. The same
obviously holds for trees with a white or a box root so that only trees with vertices of ‘alternate’ colours
in the order black/white/box need to be considered. As for elementary divergences associated with
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aromatic trees, a lot also vanish: if u = [v1, . . . , vm] , v = [w1, . . . , wn] and w = [u1, . . . , uo]2
have, respectively, a black, a white and a box root, F∗(u), F∗(v) and F∗(w) have the following forms:

F∗(u) = ∂m+1 f [1]

∂(p, q, r)m+1
(F(v1), . . . , F(vm)) =

⎛
⎝0 η(p, q, r) 0

0 0 0
0 0 0

⎞
⎠ ,

F∗(v) = ∂n+1 f [2]

∂(p, q, r)n+1
(F(w1), . . . , F(wn)) =

⎛
⎝0 0 0

0 0 µ(p, q, r)
0 0 0

⎞
⎠ ,

F∗(w) = ∂n+1 f [3]

∂(p, q, r)n+1
(F(u1), . . . , F(uo)) =

⎛
⎝ 0 0 0

0 0 0
ξ(p, q, r) 0 0

⎞
⎠ ,

with η = ∂m+1F
∂qm+1 (F(v1), . . . , F(vm)), µ = ∂n+1G

∂rn+1 (F(w1), . . . , F(wn)) and ξ = ∂r+1H
∂pr+1 (F(u1), . . . ,

F(uo)). Aromatic cycles composed of a number of trees which is not a multiple of three are consequently
irrelevant.

LEMMA 4.20 Let o be an aromatic tree of the form o = (t1 · · · tm). If there exists an index i in {1, . . . , m}
for which the three consecutive trees ti , ti+1 and ti+2 (or tm−1, tm and t1 if i = m − 1 or tm, t1 and t2
if i = m) have roots that are not in the order black/white/box, then the corresponding elementary
divergence div(o) is zero. In particular, if m = 3l + 1 or m = 3l + 2, then div(o) is zero.

Proof. Consider three consecutive trees of the aromatic tree o, say, for instance, t1, t2 and t3, and assume
that they have roots which are not in the order black/white/box. For instance, let us suppose that t1 has
a black root. If t2 also has a black root, then we have

F∗(t1)F∗(t2) =
⎛
⎝0 η1(p, q, r) 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝0 η2(p, q, r) 0

0 0 0
0 0 0

⎞
⎠ =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ .

If t2 has a box root, then we have similarly

F∗(t1)F∗(t2) =
⎛
⎝0 η1(p, q, r) 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 0 0

0 0 0
ξ2(p, q, r) 0 0

⎞
⎠ =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ .

If t2 has a white root, then it follows that

F∗(t1)F∗(t2) =
⎛
⎝0 η1(p, q, r) 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 µ2(p, q, r)
0 0 0

⎞
⎠ =

⎛
⎝0 0 (η1µ2)(p, q, r)

0 0 0
0 0 0

⎞
⎠

so that if t3 has no box root, then F∗(t1)F∗(t2)F∗(t3) = 0 once again. In all cases where t1, t2 and t3
do not have their roots with colours in the order black/white/box, we thus get div(o) = 0. In particular,
if m = 3l + 1 or m = 3l + 2, then there is necessarily such a sequence of three consecutive trees and
div(o) = 0. �
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THEOREM 4.21 A one-stage additive RK method formed of (A[1], b[1]) = (θ1, 1), (A[2], b[2]) = (θ2, 1)
and (A[3], b[3]) = (θ3, 1) is volume-preserving for systems of the form (4.29) if, and only if,

(θ1 − 1)(θ2 − 1)(θ3 − 1) = θ1θ2θ3. (4.30)

Proof. Consider an aromatic multi-index ρ = (i [1]
1 · · · i [3]

3l ) composed of 3l indices with colours in
black/white/box order and let υ = (�1, . . . ,�k) ∈ Ck(ρ). Since all quantities are scalar, the indices
i [1]
1 , . . . , i [3]

3l take the value 1. Hence, if k1, k2 and k3 denote the number of cuts before, respectively, a
black, a white and a box root, we have

ψ(υ) =
k∏

j=1

ψ(� j ) = θ
l−k1
1 θ

l−k2
2 θ

l−k3
3 ,

and such a value of ψ(υ) can be obtained in(
l
k1

)(
l
k2

)(
l
k3

)
(4.31)

different ways from ρ with k = k1 +k2 +k3 cuts. Hence, the condition for volume preservation becomes

3l∑
k=1

(−1)k
∑

k1+k2+k3=k,
0�k1,k2,k3�l

(
l
k1

)(
l
k2

)(
l
k3

)
θ

l−k1
1 θ

l−k2
2 θ

l−k3
3 = 0,

i.e. if (4.30) holds. �

EXAMPLE 4.22 The method corresponding to (θ1, θ2, θ3) = (0, 1/2, 1) (i.e. explicit Euler/midpoint/
implicit Euler) can be written for systems of the form (4.29) as

p1 = p0 + hF

(
q1 + q0

2

)
,

q1 = q0 + hG (r1),

r1 = r0 + hH (p0)

and is thus explicit, and it is equivalent to the composition of exact flows for f [1], f [2] and f [3]. As
an additional example, consider (θ1, θ2, θ3) = (1/3, 4/3, 1/3) so that the corresponding additive RK
method reads

P = p0 + h
3F (Q), p1 = p0 + hF (Q),

Q = q0 + 4h
3 G (R), q1 = q0 + hG (R),

R = r0 + h
3H (P), p1 = p0 + hH (P)

and is not explicit.
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