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Abstract

Background Global climate is changing more rapidly
than ever, threatening plant growth and productivity
while exerting considerable direct and indirect effects
on the quality and quantity of plant nutrients.
Scope This review focuses on the global impact of
climate change on the nutritional value of plant foods.
It showcases the existing evidence linking the effects of
climate change factors on crop nutrition and the

concentration of nutrients in edible plant parts. It focuses
on the effect of elevated CO2 (eCO2), elevated temper-
ature (eT), salinity, waterlogging and drought stresses,
and what is known regarding their direct and indirect
influence on nutrient availability. Furthermore, it pro-
vides possible strategies to preserve the nutritional com-
position of plant foods under changing climates.
Conclusions Climate change has an impact on the accu-
mulation of minerals and protein in crop plants, with
eCO2 being the underlying factor of most of the reported
changes. The effects are clearly dependent on the type,
intensity and duration of the imposed stress, plant geno-
type and developmental stage. Strong interactions (both
positive and negative) can be found between individual
climatic factors and soil availability of nitrogen (N), po-
tassium (K), iron (Fe) and phosphorous (P). The devel-
opment of future interventions to ensure that the world's
population has access to plentiful, safe and nutritious food
may need to rely on breeding for nutrients under the
context of climate change, including legumes in cropping
systems, better farmmanagement practices and utilization
of microbial inoculants that enhance nutrient availability.

Key words Climate change . Environmental factors .

Elevated carbon dioxide .Minerals . Nutrient
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Introduction

Although the total global cultivated land area available
for farmers has not changed significantly in the last 25
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years (O'Mara 2012), in many regions of the world crop
yields have considerably increased. This has been due
mostly to agricultural intensification practices and to
targeted efforts in plant breeding aiming to increase
yield. Nonetheless, human population is growing at a
fast pace, with a 33% increase expected to happen in the
next 30 years, reaching 9.6 billion by 2050 (Godfray
et al. 2010; Manners and van Etten 2018; Ziervogel and
Ericksen 2010). Consequently, global demands for food
will continue to rise throughout this century. Crop yields
and nutritional security are extremely dependent on the
climatic conditions projected for the future, and conse-
quently, most of the food produced for human consump-
tion is under its menace (Burritt 2019). Despite efforts to
increase global food availability, a key requirement for
food and nutrition security, the global burden of malnu-
trition and micronutrient deficiencies remains alarming
and closely linked to climate changes, particularly in
low income communities (FAO 2017). Furthermore,
climate changes are also responsible for changing the
relationships between crops, pests, pathogens and
weeds. It can also aggravate several trends, including
decreasing pollinator insects, increasing water scarcity
and ozone concentrations at ground level and reducing
fishery levels. Therefore, it is imperative to know in
more detail the impacts of climate change on food
security and undernourishment and its potential
implications for nutritional outcomes, reviewed by
Myers et al. (2017) and Fanzo et al. (2018).

Climate change is a multifactorial stress (Gray and
Brady 2016), and in the last decades, plants have expe-
rienced significant environmental fluctuations, which
resulted in the global warming of the planet and in
perturbations of the hydrological cycles. These environ-
mental changes are likely to worsen, and their frequency
of occurrence is likely to increase in the upcoming
decades. Without mitigation and adaptation strategies,
these changes will have a cumulative effect as time
progresses (Fanzo et al. 2018). Therefore, in the coming
decades climate changewill present a major challenge to
agriculture, natural ecosystems, and global economies,
for producing enough and nutritious food, which has
been reflected in a sustainable intensification of agricul-
tural systems (Pretty et al. 2018).

Climate change has varying effects on plants re-
sponses at the level of molecular function, developmen-
tal processes, morphological traits, and basic physiolog-
ical responses. It has been well documented that eCO2

increases plant growth and yield by enhancing

photosynthesis, while oftentimes improving crop
water-use efficiency (Dietterich et al. 2015; Grover
et al. 2015; Guo et al. 2015; Han et al. 2015; Li et al.
2018b). However, improved plant growth at eCO2 con-
trasts with reducing grain quality responses, which are
being recognized across a range of plant species (Dong
et al. 2018b; Myers et al. 2014). This suggests that eCO2

changes the equilibrium among plant carbon metabo-
lism and mineral uptake, and nutrient-use efficiency
(Nakandalage and Seneweera 2018). Micronutrient de-
ficiencies are a substantial public health problem, pre-
senting serious health and nutritional consequences
(Anandan et al. 2011). A great deal of emphasis has
been given in recent decades to zinc (Zn) and iron (Fe)
nutritional deficiencies, particularly in developing coun-
tries where a considerable proportion of people depend
on grains and legumes as main food sources of these
elements (Myers et al. 2014). Micronutrient limitation
has also an impact on the susceptibility of plants to
biotic and abiotic stresses. However, the response large-
ly depends on plant genotype and each mineral element
has complex interactions with several changing climate
variables (Nakandalage and Seneweera 2018).

Elevated CO2 is closely related to increased demands
for nutrients and water, resulting from increased plant
growth. (Briat et al. 2015). Extending this knowledge to
micronutrients, is also of particular importance be-
cause of their role in key biochemical pathways.
In order to manipulate the most effective pathways
for nutrient provision, it is important to propose
predictive models that explain the future response
mechanisms of plants to approaching worldwide
environmental changes.

Herein we have focused on the current understanding
of how climatic changes, with emphasis to eCO2, impact
the nutritional quality of crop plants and their associated
molecular and physiological response mechanisms.
In addition, analysis of the interaction between
CO2 enrichment and low soil nutrient availability
will also be addressed. The final part of the review
will be dedicated to report some of the strategies
that can be used to preserve nutrient concentrations in
future climates.

An overview of climate changes as a global problem

The climatic conditions in which our food-producing
systems depend on have been shifting quickly and are
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projected to continue their current pathways unless sig-
nificant interventions are made. The main cause of
climate change is the release of anthropogenic green-
house gases to the atmosphere, which have intensely
increased since the pre-industrial era, determined largely
by economic and population growth, and are now higher
than ever. Constant release of greenhouse gases has led
to atmospheric concentrations of CO2 at an unprece-
dented level and will cause further warming and exac-
erbate changes of the climate system, increasing the
likelihood of severe and permanent impacts for
people and ecosystems (Myers et al. 2017).
These impacts, together with those of other anthro-
pogenic drivers, have been the dominant cause of
the observed global warming during the last de-
cades. Thus, significant reductions in greenhouse
gas emissions are required and here governmental
authorities have a major role to play (Fanzo et al.
2018; IPCC 2014; Myers et al. 2017). Overall, 1.0
°C increase in global warming since the pre-
industrial era has been observed, and is expected
to reach 1.5 °C by 2050 if increases at the current
rate are maintained (IPCC 2018). Moreover, it is
expected that almost two billion people will be
affected by almost complete water deficiency over
the course of this century, and that close to 65%
of the human population will be affected by cir-
cumstances of par t ia l water insuff ic iency
(Nezhadahmadi et al. 2013). Oscillations in the
occurrence and intensity of normal precipitation
patterns are also increasingly becoming a major
global problem for agriculture, with a direct effect on
the bioavailability of plant nutrients in the soil. The
consequences may be a change in soil moisture that is
a key factor in nutrient acquisition, as soil water pro-
vides the medium in which plants absorb and transport
nutrients from, and that can affect nutrient allocation
(Fischer et al. 2019).

Even if there will be yield improvements in
some crops in different regions of the world, the
global impact of climate change on agricultural
products is expected to be negative, threatening
global food security. Developing countries, which
are already vulnerable to food shortage, are likely
to be most seriously affected (Nelson et al. 2009).
Consequently, our ability to ensure the required amounts
of food and nutritional quality in the face of rapidly
changing environmental conditions will be an important
task for the near coming future.

The importance of micronutrients in humans

and in plants

Micronutrients play a decisive role in maintaining
health, because they have an essential role in cognitive
growth and development, in reproductive functions and
cell metabolism, and also in immune system responses
of humans (Nakandalage and Seneweera 2018). Dietary
deficiencies of micronutrients (i.e. hidden hunger) are
considered as a global public health problem and it is
already estimated to affect around two billion people
worldwide (Haddad et al. 2015).

Accordingly, Fe limitation adversely disturbs growth,
immune function and is the most common and wide-
spread nutritional disorder in the world causing anemia
(Murgia et al. 2012). Millions of people in developing
countries are anemic comprising 50 and 40% of preg-
nant women and preschool children, respectively (Bouis
and Saltzman 2017). Current studies show that Fe-
deficit in the first year of life is responsible for perma-
nent effects on brain development, structure and func-
tion (Beard 2008). Furthermore, 0,2% of deaths in chil-
dren under 5 years of age can be attributed to Fe defi-
ciency (Murgia et al. 2012).

Various biological functions have been atributed to
Zn, since it cooperates with many enzymes and other
proteins and performs critical structural, functional and
regulatory roles in the body (Krężel and Maret 2016). A
large consumption of cereal-based foods is considered
the main driver to Zn deficiency, since cereals have low
concentration and bioavailability of Zn and cannot meet
the human demand for Zn (Cakmak and Kutman 2018).
Nowadays, wheat, rice and corn account for about 60%
of the world's daily energy consumption, and bread
wheat alone is the staple food for about 35% of the
world's population (Poursarebani et al. 2014). In Asian
countries with a high incidence of Zn and Fe-deficien-
cies, rice and wheat deliver over 70% of the daily calorie
intake in rural areas (Cakmak et al. 2010; Cakmak and
Kutman 2018).

The goal of biofortification is to solve some of these
problems by increasing the concentration of
micronutrients in the edible parts of crops and improv-
ing their bioavailability and absorption in the human
body after digestion (Carvalho and Vasconcelos 2013;
Ramzani et al. 2016; Vasconcelos et al. 2017). More
than 20 million people in developing countries are con-
suming biofortified crop products. These include beans
and pearl millet fortified with Fe, maize, cassava and
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sweet potato fortified with provitamin A, and rice and
wheat fortified with Zn (Bouis and Saltzman 2017).
Vitamin A enriched rice (golden rice) produced by
transgenic approaches has been made available since
the beginning of this century (Wesseler and Zilberman
2014). However, this rice has not been introduced in any
country, largely due to the lack of regulatory approval
processes. These varieties have enormous nutritional
potential and can be an effective economic solution
reducing health costs.

Plants require 14 mineral nutrients to achieve for
optimal development and growth (Marschner 2012).
These elements are structural components of numerous
macromolecules including nucleic acids, phospholipids,
certain amino acids, and several coenzymes and play a
central role in plant cellular metabolism (Grusak 2001).
In addition, they are beneficial in chlorophyll biosyn-
thesis, redox reactions, plasma membrane integrity and
contribute to the osmotic potential of cells (Nakandalage
and Seneweera 2018).

Micronutrient insufficiencies impact plant growth
and yield by limiting the biosynthesis or expression of
important mechanisms of energy capture and/or metab-
olism (Grusak 2001). Therefore, an increase in the vul-
nerability to abiotic stresses is usually encountered in
plants that experienced micronutrient deficiency
(Bencke-Malato et al. 2019; Hajiboland 2012; Jin
et al. 2009). A comprehensive understanding of
how these abiotic factors affect the regulatory
mechanisms of micronutrients in plants is essen-
tial, in order to mitigate their negative effects on
the nutritional quality of crop plants when grown under
a changing climate.

The influence of eCO2 on mineral accumulation

The atmospheric CO2 levels have been progressing
from the 280 ppm preindustrial reference levels
(Ainsworth and Long 2005; Myers et al. 2017) to cur-
rent global levels which are now above 400 ppm (IPCC
2018). Although the increasing concentration of atmo-
spheric CO2 is the main driver of harmful anthropogenic
climate changes, it can also improve crop performance
by increasing rates of photosynthesis and water-use
efficiency, particularly in C3 plants. The putative posi-
tive effect in agriculture is in fact denoted to as the “CO2

fertilization effect” (Ainsworth and Long 2005; Bowes
1993; Bunce 2015; Dietterich et al. 2015; Högy and

Fangmeier 2008; Loladze 2014; Long et al. 2004;
Myers et al. 2017; Ziska and Bunce 2007). This effect
has already been observed in crop plants and vegetables,
including wheat (Dong et al. 2018c; Fernando et al.
2012a; Han et al. 2015; Högy and Fangmeier 2008),
maize (Zong and Shangguan 2014), rice (Guo et al.
2015; Pang et al. 2006; Yang et al. 2007), barley
(Haase et al. 2008; Mitterbauer et al. 2017), bean
(Bunce 2008; Ma et al. 2017), soybean (Bunce 2015;
Kumagai et al. 2015), cowpea (Dey et al. 2017), potato
(Kumari and Agrawal 2014), lettuce, carrot, parsley
(Dong et al. 2018b; Long et al. 2004; Mortensen 1994)
and tomato (Jin et al. 2009) among others. However,
longer treatments with eCO2 might lead to photosyn-
thetic acclimation, due to increased soluble sugars lead-
ing to an imbalanced C:N ratio, accelerated leaf senes-
cence and/or limited growth rate (Ainsworth and Long
2005; Ainsworth et al. 2004; Kaplan et al. 2012;
Ludewig and Sonnewald 2000).

Future models of climate change for the period of
2000-2100 predicted an overall decrease of the growing
season length and crop transpiration, and increase in
water-use efficiency, biomass production, and yields,
but with considerable variation among crop models
(Ahmed et al. 2017; Bassu et al. 2014).

Despite all the compelling evidence, there is still
insufficient knowledge on the role of eCO2 in shifting
the nutritional composition of crops and on the direct
consequences to humans (Dong et al. 2018b; Duval
et al. 2012; Fernando et al. 2012a; Guo et al. 2015;
Högy and Fangmeier 2008; Jablonski et al. 2002; Li
et al. 2018b; Loladze 2002; Myers et al. 2014).
Therefore, Figure 1 gives an overview of the influence
of climatic changes, particularly eCO2, on grain mineral
concentrations and the mechanisms proposed as respon-
sible for changing the plant mineral content.

Using a meta-analysis of FACE and non-FACE stud-
ies, Loladze (2014) described a significant reduction in
overall mineral concentration (~8%) in C3 plants, in-
cluding foliar and edible tissues. Precisely, CO2 enrich-
ment lowered Fe, Zn, and Cu by 6.5–10%, with Mn
showing no significant changes. Through a detailed
analysis of various plant groups, eCO2 reduced the
mineral concentrations in crops (-7.2%), wild (-9.7%),
herbaceous (-7.5%), and woody (-9.6%) plants combin-
ing data from foliar and edible tissues. Regarding dif-
ferent tissues, eCO2 decreased mineral concentrations in
foliar (-9.2%) and edible (-6.4%) tissues, including
grains (-7.2%). The cereal specific decreases in grains
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were -7.6, -7.2 and -6.9% for wheat, rice and barley,
respectively (Loladze 2014).

Similar findings were obtained byMyers et al. (2014)
in the edible portions of C3 grasses and legumes grown
under field conditions at eCO2. A significant reduction
in protein concentration in C3 grasses (-6.3% in wheat
grains and -7.8% in rice grains), and no significant
effects in soybeans or C4 crops were detected at eCO2.
Authors also evaluated phytate concentration that af-
fects mineral bioavailability. The phytate concentration
declined significantly at eCO2 in wheat, which might
partly counterbalance the nutritional impact of lower Fe
and Zn concentrations in this crop caused by eCO2, and
thus increasing their bioavailability (Myers et al. 2014).
Decreases in the concentration of these important
micronutrients in such significant food crops will put
at risk the populations of the developing world. Iron
concentration was also significantly reduced in soybean
seeds at fresh edible stage (R6), while Zn and Mn
concentrations varied among cultivars (Li et al.
2018b). It was also found that eCO2 decreased N, Mg,
Fe, and Zn concentrations, and not affected P, K, S, Cu,
and Mn concentrations in the edible part of vegetables
(Dong et al. 2018b).

Nowadays, there is strong evidence that Zn deficien-
cy is a significant global health problem affecting 17%
of the world's population, and that increasing CO2 levels
lower the concentration of Zn in significant food crops
(Myers et al. 2017; Myers et al. 2015; Myers et al.
2014). In a meta-analysis with previously published data
from FACE and growth chamber experiments, Myers
et al. (2014) found a significant reduction in Zn concen-
tration in wheat (-9.1%), rice (-3.1%), barley (-13.6%),
field peas (-6.8%), and soybean (-5.0%) grown at eCO2.
Similarly, eCO2 decreased by 9.4% the Zn concentration
in vegetables as described by Dong et al. (2018b). Thus,
due to increased concentrations of atmospheric CO2 it
was anticipated that 138 million of people will be placed
at new risk of Zn deficiency by 2050, and the most
affected populations live in Africa and South Asia, with
a particular incidence in India with 48 million people at
risk (Myers et al. 2015).

The mechanisms responsible for the overall decline
of plant mineral concentrations are not completely
deciphered. Despite the “carbohydrate dilution” being
a likely cause, it cannot elucidate all the mineral reduc-
tions because of the heterogenous response of each
mineral tested for a given crop or for different species
(Loladze 2002; Poorter et al. 1997). Moreover,

decreases in transpiration rates reduces mass flow of
nutrients, and shifting nutrient allocation driven by al-
tered biochemical processes between tissues can both
change nutrient uptake (McGrath and Lobell 2013). In
addition, root architecture modification and down-
regulation of photosynthesis, reviewed in Taub and
Wang (2008), and also inhibition of nitrate assimilation
by decreased photorespiration (Bloom et al. 2002) have
been proposed to elucidate the variations in mineral
concentrations.

The CO2 concentration has also a direct effect on the
bioavailability of nutrients in soils, and consequently
affecting the number and diversity of existing microor-
ganisms. A positive effect on soil nutrient bioavailabil-
ity was described under CO2 enrichment conditions
(Jablonski et al. 2002; Kimball et al. 2002). However,
the increase in plant growth with eCO2 may have a
disadvantage in terms of competition for micronutrient
acquisition with microorganisms prevailing in the soil
(Guo et al. 2015). Abbas et al. (2009) showed that eCO2

promoted increases in P, K, Fe, Mn and Zn in the soil.
Possibly, eCO2 -induced changes in soil pH improves
some exudation processes which affects the availability
of nutrients in the soil. Similarly, it was described that
eCO2 responses averaged across two N treatments in-
creased the concentrations of Ca, Mg, Fe, Zn and Mn at
the soil surface by 15.6, 9.5, 23.4, 138.2 and 16.9%,
respectively (Guo et al. 2015). In another study, Jin et al.
(2019) described the interaction of long-term CO2 con-
ditions with different soil types (chromosol, vertosol,
and calcarosol) on grain nutrient concentrations of
wheat, field pea, and canola. At eCO2, the concentra-
tions of N, P, and Zn decreased by 6, 5, and 10%,
respectively, regardless of soil, crop and year. In addi-
tion, the concentrations of K, Fe, Mn and Cu were not
affected by CO2 enrichment in any crop grown in the
soils tested.

Data concerning the impact of CO2 on other
micronutrients, including selenium (Se), chromium
(Cr), and iodine (I), in food crops is still very limited.
To our knowledge only two studies specified CO2 re-
sponses to Se and Cr accumulation (not significantly
lowered by eCO2) in wheat (Högy et al. 2013, 2009),
and none report data pertinent on I. Given that a billion
people are I-deficient and I is the primary reason of
preventable brain damage, cretinism, and lower IQ in
children (Loladze 2014), so studies focusing on the
impact of climate change on I content in food crops
would be important.

Plant Soil (2019) 443:1–26 5



Furthermore, eCO2 may increase mycorrhizal colo-
nization and protect plants against some stresses, having
led to improved P nutrition, particularly on legumes
(Jakobsen et al. 2016) and increased soil organic carbon
decomposition (Cheng et al. 2012) facilitating the avail-
ability of some nutrients. In sum, a clear understanding
of the nutrient-related processes that are impacted by
climate change will increase our ability to predict re-
sponses for diverse crops and could benefit farmers in
agronomic management to adapt crops to higher CO2.

One important final consideration under eCO2 is the
overall effect of lower mineral concentrations while in
promoting higher yields. For some situations it has been
suggested that regardless of the decrease in grain nutri-
ent concentrations at eCO2, overall availability of Fe,
Zn, Mn, B, Cu, Ca, N, and other macronutrients on a
land area basis would actually be enhanced, due to grain
yield increase at eCO2 conditions (Asif et al. 2017a;
Fernando et al. 2012b). However, a trade-off effect must
be considered because per serving size, the actual

amount of minerals provided will still be lower, albeit
the higher overall grain yields, which may not be sus-
tainable in the long run due to CO2 acclimatization
effects and faster depletion of mineral nutrients from
the soil.

The influence of eCO2 on protein accumulation

Elevated CO2 has generally been shown to decrease the
concentration of protein in grains of many crops species
(Dong et al. 2018b; Högy and Fangmeier 2008; Medek
et al. 2017; Myers et al. 2017, 2014), directly affecting
human nutrition (Toreti et al. 2019). Consequently, mil-
lions of people may face protein deficiency since a great
part of worldwide population depends on plant proteins
(Medek et al. 2017).

Medek et al. (2017) confirmed that when grown
under eCO2 conditions expected by the middle of this
century (500-700 ppm), a lower protein concentration

Fig. 1 Schematic illustration of the influence of climatic changes,
driven by increased greenhouse gas (GHG) emissions, on grain
mineral concentrations and their bioavailability in soil. The effects
of CO2 on nutrient concentrations in edible tissues of C3 plants are
reflected in FACE and non-FACE studies. The mechanisms pro-
posed as responsible for changing the plant mineral concentration
are: "carbohydrate dilution" in which there is an increase in carbon
(C) assimilation relative to the mineral concentration, decrease in
transpiration rates that reduces mass flow of nutrients, and shifting
nutrient allocation by altered biochemical processes between

tissues can affect nutrient uptake. In addition, down-regulation of
photosynthesis and increased photorespiration have been also
expected to elucidate the variations in mineral concentrations.
The CO2 concentration has also a direct effect on the bioavailabil-
ity of nutrients in soils and, consequently, affecting the quantity of
existing microorganisms. Possibly, due to changes in soil pH,
eCO2 improves the exudation processes affecting nutrient avail-
ability. Furthermore, the role of eCO2 increasing mycorrhizal
colonization and organic matter (OM) decomposition in the soil,
facilitating the availability of several nutrients
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was found in C3 grains (wheat, rice and barleywith -7.8,
-7.6, and -14.1%, respectively), potato (-6.4%), vegeta-
bles (-17.3%), and fruit (-23.0%). The eCO2 was also
responsible for a slight decrease in protein in legume
species (-3.5%), and no significant effects were found in
oil crops and C4 plants. Accordingly, they anticipated a
decrease in protein intake under eCO2 conditions by
>5% in 18 countries predominantly throughout Middle
East and India. Moreover, it was highlighted that almost
12% of the world’s population is currently at risk of
protein deficiency. In the case of constant atmospheric
CO2, they predict that globally, 15% (1.4 billion people)
of world population would be at risk of protein deficien-
cy by 2050 due mainly to demographic changes.
However, with projections of CO2 levels above
500 ppm by 2050, it was expected that an additional
148.4 million people will be at risk of protein deficiency
compared to the 2050 aCO2 scenarios.

The effects of other climate change factors

on nutrient accumulation

A permanent state of equilibrium in nutrient concentra-
tion is a decisive regulatory factor in maintaining nutri-
tional quality and determining the ability of plants to
withstand the impact of climate changes (Nakandalage
and Seneweera 2018). Several studies have shown that
several climatic changes may disturb the nutrient accu-
mulation in major crops as demonstrated in Table 1.
Therefore it is important to look at those studies dealing
with the nutritional impact of eCO2 (Bunce 2015;
Dietterich et al. 2015; Jin et al. 2015; Kumagai et al.
2015; Myers et al. 2014) or combined with water scar-
city (Wu et al. 2004), soil mineral deficiency (Asif et al.
2018; Haase et al. 2008; Jin et al. 2009, 2014, 2015),
elevated temperature (eT) (Bellaloui et al. 2016;
Chaturvedi et al. 2017; Fernando et al. 2014), or salt
stress (Chrysargyris et al. 2019; Petretto et al. 2019;
Petropoulos et al. 2017; Scagel et al. 2019).

The effect of drought on nutrient accumulation was
studied by Fischer et al. (2019) comparing food crops in
two different regions of East Africa. Severe drought
caused a decrease in nutrients, whereas mild drought
actually caused an increase in nutrient concentrations.
This shows that that the effects on nutrient accumulation
are very depended not only on the type of climatic
change but also on it intensity level. Water stress also
resulted in significant changes in mineral concentrations

of legumes (Hummel et al. 2018; Wijewardana et al.
2019) and vegetables (Sarker and Oba 2018).
Contrastingly, limiting irrigation of grapevine in a glass-
house experiment did not result in significant differ-
ences in leaf micronutrient concentrations. However,
when drought was accompanied by Zn deficiency, au-
thors found that Zn pulverization was effective in in-
creasing Zn, Fe and Mn in leaf blades (Sabir and Sari
2019). Da Ge et al. (2010) reported a field study in order
to assess the nutritional quality in maize grains at differ-
ent soil moisture levels. Severe drought increased N, Ca,
Mg, Cu and Zn accumulation by 12%, 28%, 11%, 18%,
and 33%, respectively, when compared to control.
However, significant decreases in P and K concentration
by 17% in both minerals were observed at severe
drought. This suggests that the effects of drought on
mineral concentration are nutrient specific.

The effects of combined water and heat stresses were
studied by Velu et al. (2016) in 54 field-grown wheat
varieties. Grain Zn concentration was higher under heat
and drought stress conditions, whereas a lower increase
of grain Fe was observed in water stress environments.

The interaction of drought stress with eCO2 on wheat
was reported by Wu et al. (2004), and the authors found
that CO2 enrichment alleviated the negative effects of
drought stress, increasing water-use efficiency.
However, grain quality was lower under eCO2 as
reflected by consistent decreases in mineral nutrients
(N, P, K and Zn). Parvin et al. (2019) observed a reduc-
tion in Fe, Zn, P, and S concentrations in faba bean and
lentil facing drought and eCO2 conditions. Asif et al.
(2017a) reported interaction of eCO2, drought and soil
Zn availability in wheat. It was found that eCO2

combined with low water and/or Zn availability resulted
in reduced grain Zn and protein values. In addition, Asif
et al. (2018) found that eCO2 partially improved the
detrimental effect of soil K deficiency on wheat grain
yield.

Climate changes are also characterized by soil-
related waterlogging complications due to natural fac-
tors or by human activities such as excessive irrigation
and low drainage (Smethurst et al. 2005). Waterlogging
leads to a decreased O2 availability in the soil with
possible accumulation of phytotoxins, leaf chlorosis,
stomatal closure (Wei et al. 2018) and restricted crop
performance by decreasing soil mineral nutrient acces-
sibility (Ashraf 2012). When Medicago sativa was ex-
posed to flooding stress, a marked reduction in leaf and
root nutrient accumulation (B, Cu and Zn) was
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observed. Similar findings were obtained in barley and
wheat shoots indicating that Cu, Zn, and Mn concentra-
tions decreased significantly. The concentration of Fe
was not affected (Steffens et al. 2005). Tarekegne et al.
(2000) demonstrated that waterlogging-sensitive wheat
genotypes appeared to accumulate less Cu and Zn.
Conversely, there were higher concentrations of Fe in
waterlogged roots of stressed plants (Smethurst et al.
2005).To the best of our knowledge, there are no studies
yet that have looked at the combined effect of
waterlogging and eCO2 and their influence on plant
nutritional quality, two conditions that are likely to
interact in the future.

Sublett et al. (2018) studied the consequence of eT
(+8°C) on lettuce in a greenhouse experiment, and
found a decrease in leaf Mg, K, Ca Mn and Mo concen-
trations. When looking at temperature and eCO2, it was
shown that the combination of both factors may restore
soybean (Köhler et al. 2018) and wheat (Asif et al. 2019)
seed Fe and Zn concentrations to levels obtained under
ambient CO2 (aCO2). However, since there is a strong
species and cultivar dependency on these responses,
care must be taken to look at these aspects in detail. In
a field study, Fernando et al. (2014) observed a cultivar-
based response of wheat to eCO2with high temperature.
In addition, a decreasing trend in phytate concentration
was also detected. Perceived genetic variability in terms
of grain minerals could be easily combined into future
wheat breeding programs to enable adaptation to climate
changes.

In a FACE experiment, Fernando et al. (2012a) grew
wheat at aCO2 and eCO2 in combination with two
different sowing dates to mimic high temperature during
grain filling. Grain mineral (Ca, S, Fe and Zn) concen-
trations were lower under eCO2 conditions. Most of the
grain mineral concentrations were significantly in-
creased at late sowing date, suggesting that at eT may
counterbalance some of the negative effects of eCO2 on
grain mineral concentration. Contrasting findings were
obtained in rice (Chaturvedi et al. 2017) and soybean
(Bellaloui et al. 2016). Qiao et al. (2019) also investi-
gated the effects of eT in combination with eCO2 on
grain quality of soybean and maize grown in open-top
chambers in a Mollisol during five growing seasons.
Elevated temperature with eCO2 increased K, and Fe,
whereas Ca and Zn concentrations were not statistically
affected in both species. In addition, P and Mn concen-
trations were species dependent. The metabolic re-
sponses to eT (+10°C) under eCO2 were studied in tallT
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fescue, a cool-season grass species. Plants showed a
significant increase in the quantity of several organic
acids, amino acids, and carbohydrates involved in pho-
tosynthesis, respiration, and protein metabolism.
Consequently, it was determined that eCO2 could
play a role in mitigation of heat stress damage (Yu
et al. 2012). In rice, eCO2 at ambient temperature
increased plant growth and led to increased seed
yield. However, increasing temperature to 35°C or
higher, exceeded the beneficial effects of eCO2

(Madan et al. 2012). The combination of eCO2
with eT has a variable effect on growth and pho-
tosynthesis, and is dependent on the range of
temperature increase, but in general eCO2 reduced the
negative impact of eT (Köhler et al. 2018; Qiao et al.
2019; Yu et al. 2012). This was confirmed in soybean
and maize over five-year growing seasons in open top
chambers (Qiao et al. 2019).

Soil salinity is a global problem for agricultural pro-
duction, since almost 20% percent of the total arable
land is deteriorated due to high salinity (Neocleous et al.
2014; Scagel et al. 2019). There are several studies
assessing the effects of salinity on mineral concentration
and nutritional quality on crops plants. These studies
have been conducted mainly in vegetables
(Chrysargyris et al. 2019; Neocleous et al. 2014;
Petretto et al. 2019; Petropoulos et al. 2017; Scagel
et al. 2019), with contrasting responses among different
species (Table 1). Pérez-López et al. (2015) stud-
ied the effect of salt stress combined with eCO2

on the nutritional quality of two differently
pigmented lettuce cultivars. The red cultivar was
the best adapted to eCO2 because it better adjusted
mineral uptake. They concluded that eCO2 alone
or in combination with short environmental salt
stress allows increasing the concentration of some
minerals. Hu et al. (2007) induced short-term
events of drought and salinity stress in maize and
found that both stresses frequently originate lower
nutrient accessibility in soil and low nutrient trans-
location in plants. However, reduction in the mi-
cronutrient concentrations in the grain was not
detected.

It is now clear that one of the main nutrient groups
being impacted by climate change are minerals, and one
of the biggest challenges of today’s agricultural sector is
to increase crop productivity and maintain nutritional
quality of grains in a sustainable way, despite the influ-
ences of climate change.

Plant molecular and physiological responses

to climate change factors

Plant responses underlying nutritional losses due to
climate change involve complex biological processes
that include several physiological and metabolic mech-
anisms. How plants respond to these changes has been
the subject of several studies (Ahuja et al. 2010; Dong
et al. 2018b; Feng et al. 2014; Hashiguchi et al. 2010;
Hatfield and Walthall 2014; Hummel et al. 2018;
Nakandalage and Seneweera 2018; Nakashima et al.
2009; Newton et al. 2011; Saeed et al. 2012). In this
section, we will discuss the current understanding of
how plants respond to environmental stresses at the
molecular and physiological level.

Vicente et al. (2018) reported the impacts of eCO2,
temperature and N supply on the regulation of C and N
metabolism in durum wheat. They found a coordination
between C and N metabolisms at biochemical and tran-
scriptional levels. Genes fromN uptake and assimilation
were co-expressed with genes belonging to the respira-
tory pathway, highlighting the coordination between the
synthesis of organic N compounds and C metabolism.
Moreover, included in this coordination were Rubisco
and nitrate reductase activities. The combination of eT
with eCO2 in soybean seed composition and transcript
levels was also studied. The impact of temperature on
seed composition and transcripts level was pronounced,
particularly on Gm8, similar to ADR12, and on Gm19,
similar to β-glucosidase, but there was no effect of CO2

concentration (Thomas et al. 2003). Additionally, a net-
work analysis of relationships between biochemical pa-
rameters of soybean grains showed that interaction of
eCO2with eT significantly affect carbohydrate and lipid
metabolisms (Palacios et al. 2019). However, as
previously shown, in some cases, a positive inter-
action of eCO2 and eT may also occur (Pérez-
Jiménez et al. 2019; Vu and Allen 2009) particu-
larly in biomass accumulation. Parameters such as
leaf area, leaf dry weight and stem dry weight of sugar-
cane was increased under eCO2 or eT (4.5°C). Such
changes were even greater under the combined treat-
ment of eCO2 and eT (Vu and Allen 2009).

As previously mentioned, the effects of CO2 enrich-
ment on plants depend on soil water availability, and
plants can greatly benefit from eCO2 in terms of bio-
mass accumulation when enough water is provided (Wu
et al. 2004; Zhao et al. 2006). Most studies confirm that
CO2 enrichment tends to mitigate drought negative
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effects (Asif et al. 2017a; Bencke-Malato et al. 2019; Li
et al. 2018a; Sicher and Barnaby 2012; Wang et al.
2018a; Yuhui et al. 2017) by improving plant water
relations, reducing stomatal opening and transpiration,
increasing photosynthesis, shortening crop growth peri-
od and increasing the antioxidant activity (Kumar et al.
2019). In rice, both treatments have no interactive ef-
fects onmaximal quantum yield of PSII photochemistry,
intrinsic efficiency of PSII and non-photochemical
quenching. However, in soybean eCO2 reduced the
negative effects of drought on effective quantum yield
of PSII photochemistry and photochemical quenching
coefficient (Wang et al. 2018a), showing that these
responses are very species specific.

Drought and temperature induce oxidative damage in
legumes and grasses. These effects may be mitigated by
eCO2, more extensively in legumes, due to lowered
photorespiration and reduction of NADPH oxidase ac-
tivity. The increased antioxidant activity (flavonoids and
tocopherols) possibly also contributes to the stress mit-
igation effect of CO2 enrichment (Abdelgawad et al.
2015). In another study looking at drought and eCO2,
in maize, transcript levels of 14 genes encoding stress
responsive proteins were monitored. All the transcripts
were induced by drought except for rbcS1, but this
response was delayed by CO2 enr ichment .
Accordingly, eCO2 had a larger impact on maize re-
sponses to drought at the beginning rather than at the
end stages of water stress (Sicher and Barnaby 2012),
showing that the importance of the developmental stage
on understanding these responses.

Li et al. (2018a) used a metabolomics approach to
search for metabolites that were affected by eCO2 under
drought stress in cucumber leaves. The results showed
that under severe drought, eCO2 changed several meta-
bolic pathways related to the metabolism of several
amino acids and carbohydrate synthesis. In eCO2 plants
accumulated more amino acids and carbohydrates,
1,2,3-trihydroxybenzene, pyrocatechol, glutamate, and

L-gulonolactone, for better tolerating drought stress. The
improved root growth and mitigation of drought stress
under eCO2 was also described by Burgess and Huang
(2014). This could be associated with alteration in pro-
teins involving nitrogen metabolism (glutamine synthe-
tase), energy metabolism involving respiration (glycer-
aldehyde-3-phosphate dehydrogenase), and stress de-
fense by increasing antioxidant metabolism (ascorbate
peroxidase, superoxide dismutase, and catalase) and
chaperone protection (HSP81-1).

Elevated CO2 and salinity, individually, seem to af-
fect plant growth in opposite directions (Shahbaz and
Ashraf 2013; Zaghdoud et al. 2016). Salt stress, in
contrast to eCO2, is generally considered a negative
driver for growth of crop plants, especially in arid and
semi-arid zones (Zaghdoud et al. 2016). This was con-
firmed by Kazemi et al. (2018) in rice who described a
significant cultivar-dependent response to eCO2 under
different salinity concentrations. Both treatments, be-
sides influencing secondary metabolism, can disturb
the oxidative system while acting in different directions,
with salinity provoking, and eCO2 alleviating, oxidative
stress (Sgherri et al. 2017). Similarly, Kanani et al.
(2010) investigated the effects of eCO2 with salinity
on the transcriptional and metabolic responses of
Arabidopsis thaliana. The observed metabolic differ-
ences suggest that eCO2 mitigates the metabolic effect
of the salinity stress. However, a strong similarity was
observed between the transcriptional responses to salt
stress and combination of eCO2 with salt stress (Kanani
et al. 2010). In lettuce, both treatments originated a
higher concentration of phenolic compounds, in partic-
ular luteolin, and increased plant growth and nutritional
quality comparing to salinity alone (Pérez-López et al.
2015). Broccoli treated with 90 mM NaCl and eCO2,
had higher photosynthetic rate and water-use efficiency.
These factors led to greater leaf area and biomass as well
as to increased abundance of aquaporins in roots and
leaves at eCO2, in comparison with aCO2 (Zaghdoud
et al. 2013). In Bermuda grass, salinity stress induced a
reduction in leaf water content, leaf photosynthetic rate,
transpiration rate, stomatal conductance, and cellular
membrane stability. Elevated CO2 mitigated the depres-
sion of those physiological parameters and promoted
osmotic adjustment by accumulation of soluble sugars,
proline, and glycine betaine under salinity stress
(Yu et al. 2015).

Recently, a transcriptome combined with proteome
study discovered key factors involved in alfalfa
waterlogging-based responses. The authors identified
genes-related to beta-amylase, ethylene response factor,
calcineurin B-like interacting protein kinases, glutathi-
one peroxidase, and glutathione-S-transferase with key
roles in conferring alfalfa tolerance to waterlogging
(Zeng et al. 2019). Elevated CO2 is also capable of
reducing the negative effects of waterlogging as dem-
onstrated in several species (Arenque et al. 2014;
Lenssen et al. 1995; Pérez-Jiménez et al. 2017a, b;
Shimono et al. 2012). Hence, waterlogging affected
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sweet cherry cultivars severely by reducing photosyn-
thesis, stomatal conductance, transpiration, chlorophyll
fluorescence and plant growth (Pérez-Jiménez et al.
2017a). Proline accumulation, to cope with oxidative
damage, was also observed. Nevertheless, increasing
CO2 concentration not only mitigated all these effects
but also induced the production of soluble sugars and
starch in the leaf (Pérez-Jiménez et al. 2017b). In woody
plants, Lawson et al. (2017) found species-specific ef-
fects of CO2 concentration and waterlogging on plant
growth, gas exchange, and functional traits, and no
evidence for an overall effect of eCO2 in mediating plant
responses to flooding. In pea and soybean, an associa-
tion among tolerance to hypoxia (induced by flooding),
the rate of reactive oxygen species production, and
antioxidant enzyme activities was recognized. The en-
vironment with the higher CO2 concentration induced
higher changes in the processes of reactive oxygen
species accumulation and activities of lipoxygenase
and antioxidant enzymes (Ershova et al. 2011).

In fact, the observed nutritional impacts due to cli-
mate change may also be linked to alterations in below
ground interactions between plants and microorgan-
isms. In flooded soils, rice plants responded more pos-
itively to the CO2 enrichment than the non-flooded soil.
The results advocate that in tropical rice soils, eCO2

amplified C accumulation in the soil, which possibly
stimulates growth of N fixing bacteria and thereby
higher available N (Das et al. 2011). In wheat, a mutu-
alistic symbiosis with arbuscular mycorrhizal increased
carbohydrate and nutrient accumulation in plants ex-
posed to eCO2 and salinity (Zhu et al. 2018b). Thus,
looking at the impact of climate change on below
ground traits and linking these with processes of nutrient
absorption and accumulation seems like a promising
line of research for future studies. However, care must
be taken at factoring in issues of low nutrient availability
in the soil.

Effects of eCO2 under low soil nutrient availability

The availability of nutrients in the soil has a significant
influence on the effects of eCO2 on plant nutritional
quality. Usually, a low nutrient availability limits the
eCO2 effect on plant photosynthetic rates, possibly
resulting in less carbon available for producing second-
ary compounds (Dong et al. 2018b).

Under different levels of N supply, rice grain quality
was not significantly affected by eCO2 in a FACE
experiment (Yang et al. 2007). In addition, soil mineral
bioavailability was enhanced by eCO2 in rice, both
under high and low N supply. It was also demonstrated
that eCO2 can favor the translocation of Ca, Mg, Fe, Zn
and Mn from the soil to the stem, leaf and panicle but
decreased in grains (Guo et al. 2015). However, Haase
et al. (2007) observed symptoms of N deficiency in
common bean plants grown under eCO2 conditions.
The authors suggest that this is possibly due to
improved root exudation and a related stimulation
of soil microbial growth causing enhanced plant-
microbial N competition. Asif et al. (2019) studied
the interactive effects of predicted climate (eCO2

and +3°C) and N and Zn supply on growth and
yield of wheat plants. In both predicted climate
and environment conditions, low supply of N,
significantly decreased straw and grain yield by affect-
ing the number of spikes per plant and number of grains
per spike.

The bioavailability of soil P to plants is often restrict-
ed due to their strong bonding in insoluble forms.
However, plants generally develop potential adaptive
mechanisms that enhance P uptake in plants under P
starvation (Wissuwa et al. 2005). The photosynthetic
inhibition caused by low P supply could be overcome
by eCO2. Furthermore, photosynthetic down-regulation
at eCO2 could be reversed by increasing P supply. This
might be due to the availability of sufficient P to support
increased protein degradation and metabolic rates at
eCO2, enhancement in Rubisco activation, ribulose-1,5
bisphosphate regeneration and global energy demands
(Pandey et al. 2015). In addition, in cotton plants grown
under P stress, an apparent limitation of CO2 diffusion
across stomata and mesophyll was observed (Singh
et al. 2013; Singh and Reddy 2014). Under limited P
supply, eCO2 increased acid phosphatase activity, re-
sponsible for hydrolyzing insoluble P in the soil
(Barrett et al. 1998; Niu et al. 2012). However, there
are some studies reporting no increase in root phospha-
tase activity in response to P shortage caused by eCO2

(Norisada et al. 2006;Wasaki et al. 2003). Elevated CO2

with low P supply also results in increased root dry
matter. Changes in the processes at the soil level
including root morphology, exudation and mycor-
rhizal association are also influenced by eCO2 and P
bioavailability (Pandey et al. 2015; Pang et al. 2018;
Watts-Williams et al. 2019).

Plant Soil (2019) 443:1–26 13



Potassium is an important plant nutrient with a sig-
nificant role in key physiological processes as described
by Cakmak (2005). Yilmaz et al. (2017a) determined
growth performance and antioxidant response in wheat
plants grown at different K levels under different CO2

conditions. In low and deficient K plants, biomass was
either not affected or even decreased by eCO2.
Additionally, limitation of K induced oxidative stress,
and eCO2 had no significant impact on the antioxidant
system. Similarly, K deficiency clearly limited the ef-
fects of eCO2 induced biomass enhancement in both
well-watered and drought stressed plants (Asif et al.
2017b). Under severe K limitat ion, several
photosynthesis-related parameters were down regulated
in common bean. However, eCO2 also stimulated car-
bon assimilation and K utilization efficiency when K
deficiency was not severe (Singh and Reddy 2018).

Magnesium has a determinant role in biosynthesis of
proteins, nucleic acids, ATP and chlorophyll by activat-
ing several enzymatic reactions involving carboxylases,
polymerases, kinases, and phosphatases (Cakmak and
Kirkby 2008). To our knowledge, there is only one
published study dealing with interaction of eCO2 with
low and adequate Mg treatments on durum wheat
growth and nutrient composition. Low Mg plants
responded to eCO2 by decreasing biomass, particularly
in roots and eCO2 increased photosynthesis in adequate-
Mg plants, but not in low Mg plants. Leaf carbohydrate
concentration was increased 2-fold by low Mg at aCO2

and 3-fold at eCO2, (Yilmaz et al. 2017b) suggesting
that lowMg and eCO2 decreased carbohydrate transport
from source to sink tissues.

In plants, Zn is associated with the activity of several
enzymes, it has a structural role in cell metabolism and
is implicated in DNA replication and transcription as an
intrinsic component of Zn metalloproteins. Zinc defi-
ciency is related with the suspension of photosynthetic
activity since this mineral is required for the activity of
carbonic anhydrase and because the availability of sub-
strate for carboxylation is limited under Zn limitation
(Broadley et al. 2012). Asif et al. (2017a) noticed that
eCO2 increased wheat grain yield, number of spikes per
plant and straw yield under sufficient and low Zn con-
ditions. Furthermore, Zn efficiency (yielding ability un-
der low Zn supply) was positively affected by eCO2

which also reduced grain Zn concentration.
Ironmetabolism in crop plants as well as its influence

on productivity are already well referenced in the liter-
ature (Briat et al. 2015; İncensu et al. 2015; Kobayashi

and Nishizawa 2012; Li et al. 2008; López-Millán et al.
2009; Zocchi et al. 2007). Therefore, similar to eCO2 it
is very likely that restricted Fe availability will impact
on nutritional quality of foods, which we will consume
in the future (Vasconcelos et al. 2014; Vasconcelos et al.
2017). So far, researchers have been assessing these
issues independently and studies linking these two im-
portant aspects are scarce.

Expanding this knowledge to Fe is of particular in-
terest because of its major role in the photosynthetic
process and because its bioavailability to plants is often
limited, particularly in calcareous soils, which represent
30% of cultivated soils (Briat et al. 2015; Robin et al.
2008). Several papers described organic acid concentra-
tion increases, mainly citrate and malate, in xylem sap,
leaf apoplastic fluid and whole leaves of plants with Fe
deficiency (Abadía et al. 2002; Larbi et al. 2010; López-
Millán et al. 2009; López-Millán et al. 2000). Further
changes include shifts in the redox state of the cyto-
plasm, increases in the activity of phosphoenolpyruvate
carboxylase and in several enzymes of the Krebs cycle
and of the glycolytic pathway. For a detailed description
of the metabolic changes induced in Fe-stressed plants,
see Zocchi (2006) and Zocchi et al. (2007).
Transcriptomic (Thimm et al. 2001), proteomic and
metabolomic studies (Brumbarova et al. 2008; Li et al.
2008; Rellán-Álvarez et al. 2010; Rodríguez-Celma
et al. 2016) in Fe-deficient plants have also reported
increases in root transcript and protein abundances,
respectively, of enzymes-related to the glycolysis,
Krebs cycle, anaerobic respiration, stress-related and
metabolism-related proteins, among others. In barley,
CO2 enrichment increased biomass production in Fe-
deficient and Fe-sufficient plants, both in hydroponics
and soil experiments. Higher Fe accumulation in shoots
(+52%) of barley grown in soil without Fe supply under
eCO2 conditions were achieved, demonstrating an im-
proved Fe-use efficiency (Haase et al. 2008). Similar
findings were obtained in tomato (Jin et al. 2009). Plant
biomass and root-to-shoot ratio were greater under
eCO2 conditions than plants grown in aCO2. Root and
shoot Fe concentration significantly increased in Fe-
deficient plants under eCO2 attenuating the symptoms
of chlorosis, and were not changed in the Fe-sufficient
plants. Authors also suggested some involvement of
nitric oxide in enhancing Fe deficiency responses (in-
creased ferric chelate reductase activity, and expression
of FRO1, IRT1, and FER genes in roots) when Fe
limitation and eCO2 occured together. The nutrient
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supply and, accordingly, the nutrient status of plants
should be a critical issue defining growth responses to
the eCO2. It was observed that eCO2 treatments signif-
icantly increased the Fe concentrations in tomato leaves
and alleviated the Fe deficiency induced chlorosis when
grown in Fe-limited medium (Jin et al. 2009).

The data concerning the interaction of eCO2 and Fe
deficiency are very scarce in the literature despite the
importance of this micronutrient in plant metabolism.
Thus, a better understanding of the interaction of these
two factors and how they affect metabolic pathways in
plants is required.

Strategies to preserve the nutritional content

in future climates

As described in the previous sections, the combination
of different climate change factors will impact precipi-
tation patterns, plant physiology and the functioning of
the ecosystem, ultimately resulting in environmental
constraints which limit nutrient uptake and accumula-
tion. Several practices are under way to mitigate and/or
adapt to climate change consequences (Fig. 2), but the
high variability in research regarding their real environ-
mental impact impair the definition of a strategy to be
successfully implemented in supply chains (Parajuli
et al. 2018).

The practices associated to agricultural production
are a main target for climate change mitigation.
Agricultural planning and farmers’ sensitization might
contribute not only for climate change mitigation, but
also to climate change adaptation. For example, one
strategy frequently mentioned in adaptation frameworks
is the relocation and protection of farms, namely by
moving crop production to promote food security from
extreme weather events (Prior et al. 2018).

With climate change, soil quality declines, mostly
because soil microbial communities are deeply affected,
negatively impacting the degradation of organic pollut-
ants (Ai et al. 2018) and soil organic matter (Chen et al.
2016) or nitrogen fixation (Lobo et al. 2018). In order to
prevent nutritional losses of crops farmers must work
towards yield optimization and smart fertilization deci-
sions. Currently, fertilization decision support systems
can be accessed via online platforms. These are based on
algorithms that include experimental data on soil nutri-
tion and crop nutritional requirements and provide
farmers fertilizer recommendations and professional

fertilization information specific to their farming condi-
tions (Elia and Conversa 2015; He et al. 2011). This
allows utilizing a controlled amount of fertilizer, achiev-
ing optimum yields and increasing nutrient-use efficien-
cy. Nowadays, the development of technologies for non-
invasive nutritional estimation in plants is growing.
With these, crop monitoring and diagnosis are improved
and targeted, once again facilitating the optimum fertil-
izer application for desirable production outcomes
(Zheng et al. 2018). Examples of these techniques in-
clude hyperspectral imaging, successfully utilized in
discriminating N nutritional levels in tea plants (Wang
et al. 2018b), as well as N, P, K, S, Cu, Zn, Fe and Mn
levels in maize and soybean plants (Pandey et al. 2017);
unmanned aerial vehicle based multispectral imagery
applied in the estimation of plant nitrogen concentration
and management of N fertilizer application in rice
(Zheng et al. 2018) and in wheat (Zhu et al. 2018a);
and reflectance spectroscopy through which authors
were able to characterize Fe deficiency symptoms in
grapevine and prospect the possibility of detecting in
field Fe deficiency conditions (Rustioni et al. 2017).

Additionally, sustainable alternatives to synthetic fer-
tilizers which may sustain plant nutrition in a changing
climate include plant growth-promoting bacteria
(PGPB) inoculants, which can be used as biological
fertilizers (Olanrewaju et al. 2017). These are associated
with many mechanisms that improve not only plants’
health, but also soil conditions, such as, phosphate
solubilisation, nitrogen fixation, siderophore and phyto-
hormone production, ethylene regulation and biological
control (Lobo et al. 2018). For example, the inoculation
of Pseudomonas fluorescens in a grass species was able
to aid in the decomposition of the increased plant C
inputs associated with eCO2, while promoting plant
productivity (Nie et al. 2015). In another study, the best
performing PGPB under drought stress conditions was
selected from field-grown sorghum (Silva et al. 2018).
Also, under drought stress conditions, the application of
N fixing bacteria reduced the requirement of chemical
fertilizer and enhanced macro and micronutrient con-
centrations inMedicago scutellata (Shabani et al. 2015).
Even in poor soil strata, a mixture of five PGPB was
found to have a significant impact on nutrient availabil-
ity, alongside with the capacity to rehabilitate the soil
(Radhapriya et al. 2018).With this strategy, it is possible
to perform a pre-selection of the PGPB to optimize plant
growth for each specific field condition (Silva et al.
2018). This might be optimal for small farming
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conditions, but in a wider scale, challenges still
reside regarding stability and economic feasibility
(Lobo et al. 2018).

Another efficient strategy for climate change mitiga-
tion is the inclusion of legumes in farming systems,
since it allows to naturally reduce the amount of inor-
ganic N fertilizer, reduce CO2 emissions, amend soil
physical properties, maintain soil fertility and decrease
pest susceptibility, as recently reviewed by Karkanis
et al. (2018). A predictive model that included climate
data from the last 80 years demonstrated that the inclu-
sion of a legume in a crop rotation system would de-
crease 25% of the greenhouse gas emission (Ma et al.
2018). Besides decreasing denitrification, the inclusion
of legumes in intercropping systems has also contribut-
ed to improve P-fertilizer-use efficiency and led to in-
creased plant availability of P, Fe and Zn (Xue et al.
2016). Although the use of legumes or legume-residues
as cover crops (green manure) might be associated with
some disadvantages, such as, lack of persistence or
excess N supply in high vigor crops, they have much
lower environmental impact than non-leguminous
crops, lower energy demand per unit area and lower
global warming potential (Tani et al. 2017). This strate-
gy is key in the modern paradigm of ‘sustainable inten-
sification’ (Mungai et al. 2016; Pretty et al. 2018), where
we find it urgent to shift agriculture practices to be
more sustainable and efficient, while also meeting rising
human needs.

Amongst the most common promising sustainable
agricultural practices, reduced or no-till farming de-
creases decomposition rates of organic matter and en-
hances recycling of nutrients, soil structure and water
infiltration (Barão et al. 2019). Although this technique

was used in ancient agriculture, during Europe’s agri-
cultural revolution, tilling was largely adopted, which in
the long run, resulted in soils which are eroded, nutri-
tionally poor and deprived of microbial activity
(Gomiero 2016; Lal et al. 2007). Lately, the benefits of
no-till farming have been discussed in the context of
sustainable agriculture, however, due to its fall into
disuse, information on the implementation and econom-
ics of this strategy is still scarce in certain agricultural
areas, which prevents its successful and widespread
implementation (Bavorova et al. 2018). Nowadays,
technologies for no-till farming are more effective
and require less efforts from the farmers (Rafiq
et al. 2017). Evidence has shown that these prac-
tices also reduce methane emission (Zhao et al. 2016),
contribute to the reduction in dissolved-P loss when
combined with other land management strategies
(Daryanto et al. 2017) and influence the distribution of
pesticides between the soil solution and the solid phase
(Elias et al. 2018).

While limited research focus has been put on under-
standing the regulatory mechanisms of differential gene
expression under climate change conditions, newest
genetic technologies will most certainly impulse sus-
tainable practices in agriculture. However, the limiting
conditions to transfer strategies from the research field
to crop improvement impair further advances (Kromdijk
and Long 2016). Historically, the major focus of plant
breeders has been on yield and resistance, but as plants’
nutrient content decrease is progressively evident, re-
versing this problem should also be a priority. Hence,
some approaches are under development and are based,
for example, on the identification of QTLs for nutrient
efficiency under eCO2 and warmer temperatures

Fig. 2 Strategies for mitigation
and adaptation to climate changes
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(Pilbeam 2015) or on the study of differentially
expressed genes in response to eCO2 (Zhang et al.
2018). With this information, predictive models can be
designed and selection for increased food quality can be
made (Dwivedi et al. 2018). This can be achieved with
the application of gene editing tools (Haque et al. 2018)
such as the CRISPR/Cas9 system, which has been suc-
cessful in developing rice lines with improved seed
longevity, high amylase content and resistant starch
(Mishra et al. 2018).

Concluding remarks

Several studies have been conducted in recent
decades on the effects of climate change on plant
productivity and yield parameters. However, there
is a lack of knowledge dedicated to the nutritional
dynamics, particularly, on micronutrient-use effi-
ciency under climate changes, which impacts crop nu-
trient uptake, transport, and remobilization. Rising CO2

has been shown to affect the nutritional value of not only
cereals and legume crops, but also fruits and leafy
vegetables, but few studies point out that this is not a
generalizable phenomenon.

Nowadays, we are facing a compromise between the
necessities for higher yields and the prevention of food
quality loss. Knowing that nutrient deficiencies are one
of the major causes of quality and production
losses around the world, understanding the inter-
action of these stresses with eCO2 is of paramount
importance. It seems clear that we can no longer
underestimate the effect of eCO2 on food mineral
composition and that the likelihood of growing less
nutritious food in the future is a real threat both to
agriculture and human health.

In this way, a better understanding of the genetic
mechanisms, and of the physiological and molecular
processes determining mineral nutrient absorption is
essential and will help to improve the nutritional perfor-
mance of grains subject to climate change. In addition,
germplasm screening to identify varieties that have a
better use of nutrients will provide the tools for
biofortification strategies.
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