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University of Aarhus, Denmark
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Abstract

Recent work has shown that presheaf categories provide a general
model of concurrency, with an inbuilt notion of bisimulation based
on open maps. Here it is shown how this approach can also handle
systems where the language of actions may change dynamically
as a process evolves. The example is the π-calculus, a calculus
for ‘mobile processes’ whose communication topology varies as
channels are created and discarded. A denotational semantics is
described for the π-calculus within an indexed category of pro-
functors; the model is fully abstract for bisimilarity, in the sense
that bisimulation in the model, obtained from open maps, coin-
cides with the usual bisimulation obtained from the operational
semantics of the π-calculus. While attention is concentrated on
the ‘late’ semantics of the π-calculus, it is indicated how the ‘early’
and other variants can also be captured.

A version of this paper appears in Category Theory and Com-
puter Science: Proceedings of the 7th International Conference

CTCS ’97, Lecture Notes in Computer Science 1290. Springer-
Verlag, September 1997.

∗
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1 Introduction

The gap between domain theory and the theory of concurrency is nar-
rowing. In particular, the π-calculus, which for a long time resisted all
but operational semantics, has yielded to a fully abstract denotational
semantics; a key idea was to move to domains indexed by a category
of name sets (Stark 1996; Fiore, Moggi, and Sangiorgi 1996; Hennessy
1996). Why add yet another model, based this time not on familiar,
complete partial orders but instead on presheaf categories?
Several reasons can be given, even at this preliminary stage.
Models for concurrency are best presented as categories where one

can take advantage of the universality of constructions (see Winskel and
Nielsen (1995)). If domain theory is to meet models for concurrency, it
seems that the points of information in a complete partial order need
to be replaced by more detailed objects in a category. A problem with
the categories of traditional models is that they do not support higher-
order constructions. Presheaf categories, on the other hand, not only
include important traditional models like synchronisation trees and event
structures,1 but also support function spaces. We see presheaf models as
taking us towards a a new domain theory in which presheaf models are
analogous to nondeterministic domains (Hennessy and Plotkin 1979).
Another motivation comes in getting a more systematic and algebraic

understanding of bisimulation. A traditional way to proceed in giving a
theory to a process language has been first to endow it with an opera-
tional semantics, provide a definition of bisimulation, follow this by the
task of verifying that the bisimulation is a congruence (maybe by modify-
ing it a bit), and then establish proof rules. Often the pattern is standard,
but sometimes even getting a passable definition of bisimulation can be
tricky, as, for example, when higher-order features are involved. An ad-
vantage of presenting models for concurrency as categories has been that
they then support a general definition of bisimulation based on open
maps (Joyal et al. 1996). We can then exploit the universality of var-
ious constructions in showing that they preserve bisimulation (Cattani
and Winskel 1997). Presheaf categories come along with a concept of
open map and bisimulation. They themselves form a category (strictly a
bicategory of profunctors), in which the objects are presheaf categories,
yielding ways to combine presheaf categories and their bisimulations.

1In the sense that these traditional models embed fully, faithfully and densely in
particular presheaf models (Joyal, Nielsen, and Winskel 1996).
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The problem with general definitions is that it’s not always so easy to
see what their instances amount to. Indeed, a major task of this paper
is showing that the bisimulation on processes of the π-calculus obtained
from open maps coincides with a traditional definition (following up on
earlier work for value-passing processes (Winskel 1996)). However, the
presheaf model for the π-calculus contributes more than this. Along the
way, the presheaf model casts light on bisimulation for the π-calculus
and why operations preserve it; the normal form for processes in the
π-calculus (Fiore et al. 1996), which can be read off from the definition
of the model (Theorem 7); and suggests smooth translations between
variants of the π-calculus (Section 5). We also claim that, compared
to the domain model, the “domain equation” of our model is rather
simpler, because we seek a category of paths, not processes; the presheaf
construction then fills in the necessary nondeterminism. As a result the
system is particularly flexible: here we present the full ‘late’ π-calculus
in detail, but we also sketch how the same category holds models of the
‘early’ π-calculus and other popular variants.
The recent domain models for the π-calculus lie within a functor

category CpoI (Fiore et al. 1996; Stark 1996). Here I is the category
of finite sets of names and injections between them, representing the
fact that over time new names may be created and old names relabelled
to avoid clashes. Hennessy (1996) has followed the same approach in
his model for testing equivalences. The key to capturing the π-calculus
is that the categorical requirements of functoriality and naturality give
uniformity over varying name sets. Most notably CpoI is cartesian closed,
and the function space correctly handles the fact that old processes must
be prepared to receive new names. This paper makes the same step up
in the presheaf approach, to give a model of the π-calculus not in Prof
but in Prof I .
In the remainder of this section we provide a brief overview of the

material that we shall need: syntax and operational semantics of the
π-calculus; presheaf models for concurrency; the category Prof of pro-
functors; and the functor category Prof I. Section 2 presents our equation
for the π-calculus and analyses the path category P it defines. Section 3
builds three important operations on P: parallel composition, restriction
and replication. In Section 4 we show how to interpret processes in P and
prove full abstraction for the model. Section 5 closes with a description
of current and future adaptations of the work to other calculi.
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1.1 The π-calculus

The version of the π-calculus we use is entirely standard. We summarise
it only very briefly here: for discussion and further detail see the original
papers (Milner, Parrow, and Walker 1992a,b; Milner 1991). Processes
have the following syntax

P :: = x̄y.P | x(y).P | νxP | [x=y]P | 0 | P + P | P |P | !P

with x and y ranging over some infinite supply of names. Note that
we include the match operator [x=y]P , unguarded sum and unguarded
replication !P . This selection is fairly arbitrary: our model copes equally
well with mismatch [x6=y]P and processes defined by recursion, guarded
or unguarded. Similarly, it makes no difference if we restrict to one of
the popular subsets, such as the asynchronous π-calculus (Boudol 1992).
To simplify presentation we identify processes up to a structural con-

gruence, the smallest congruence relation satisfying

[x = x]P ≡ P !P ≡ P | !P
x(y).P ≡ x(z).P [z/y] z /∈ fn(P )

νy P ≡ νz P [z/y] z /∈ fn(P )

P + 0 ≡ P P +Q ≡ Q+ P (P +Q) +R ≡ P + (Q+R)

P | 0 ≡ P P |Q ≡ Q |P (P |Q) |R ≡ P |(Q |R).

Here P [z/y] denotes capture-avoiding substitution —which may of course
require in turn the α-conversion of subexpressions. This equivalence is
not as aggressive as the structural congruence of, say, Definition 3.1 in
(Milner 1992), which allows name restriction νx(−) to change its scope.
Nevertheless it cuts down the operational rules we shall need, with none
at all for matching and replication. All this is to some degree a matter
of taste: if we treat process terms as concrete syntax, with no structural
identification, the model is still valid. Indeed full abstraction then allows
us to read off the fact that α-conversion, commuting ‘+’ and so forth
all respect bisimilarity (replacing, for example, the proofs of Theorems 1
to 9 in (Milner et al. 1992b, §3)).
The operational semantics of processes are given by transitions of four

kinds: internal or ‘silent’ action τ , input x(y), free output x̄y and bound
output x̄(y). We denote a general transition by α, and define its free and
bound names thus:

fn(τ) = ∅ fn(x̄y) = {x, y} fn(x(y)) = fn(x̄(y)) = {x}

bn(τ) = ∅ bn(x̄y) = ∅ bn(x(y)) = bn(x̄(y)) = {y}.
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OUT x̄y.P
x̄y
−→ P SUM

P
α
−→ P ′

P +Q
α
−→ P ′

IN x(y).P
x(y)
−→ P PAR

P
α
−→ P ′

P |Q
α
−→ P ′ |Q

bn(α) ∩ fn(Q)
= ∅

RES
P

α
−→ P ′

νxP
α
−→ νxP ′

x /∈ fn(α) COM
P
x(y)
−→ P ′ Q

x̄z
−→ Q′

P |Q
τ
−→ P ′[z/y] |Q′

OPEN
P

x̄y
−→ P ′

νy P
x̄(y)
−→ P ′

x 6= y CLOSE
P
x(y)
−→ P ′ Q

x̄(y)
−→ Q′

P |Q
τ
−→ νy(P ′ |Q′)

Figure 1: Transition rules for π-calculus processes

The transitions that a process may perform are given inductively by
the rules in Figure 1. This is a late semantics, in that input substitu-
tion happens in the (COM) rule when communication actually occurs,
rather than at (IN). The chief difference between these rules and Table 2
of (Milner et al. 1992b) is that we let structural congruence do some of
the work. Thus there are no symmetric forms for the four right-hand
rules, and sometimes processes must be α-converted before they can in-
teract. Of course the possible transitions derived are exactly the same as
with the original definitions.
A symmetric relation S between processes is a bisimulation if for

every (P,Q) ∈ S the following conditions hold.

• For α = τ, x̄y, x̄(y), if P
α
−→ P ′ then there is Q′ such that Q

α
−→ Q′

and (P ′, Q′) ∈ S.

• If P
x(y)
−→ P ′ then there is Q′ such that Q

x(y)
−→ Q′ and for any name z,

(P ′[z/y], Q′[z/y]) ∈ S.

To check this second condition it is only necessary that z ranges over the
free names of P and Q, and one fresh name. This relation is strong, in
that τ -actions must match, and late, in that input actions must match
before the transmitted value is known. Two processes are (strong, late)
bisimilar if there is some bisimulation relating them. We write P ∼̇ Q
and observe that bisimilarity is itself a bisimulation, and contains all
others.
Bisimilarity is preserved by all process constructors except for input
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prefix x(y).P . This is because bisimilarity assumes all names are distinct,
while the substitution that happens on input can cause names to become
identified. One thus defines processes to be equivalent P ∼ Q if they are
bisimilar under all possible name substitutions. Equivalence is then the
smallest congruence containing bisimilarity.

1.2 Presheaf Models and Bisimulation

Let P be a small category. The category of presheaves over P, often
denoted by P̂ or by SetP

op

, is the category whose objects are contravariant
functors from P to Set (the category of sets and functions) and whose
arrows are the natural transformations between such functors.
A category of presheaves, P̂, is accompanied by the Yoneda embedding,

a functor yP : P→ P̂, which fully and faithfully embeds P in the category
of presheaves.
Via the Yoneda embedding we can regard P essentially as a full sub-

category of P̂. In our applications, the category P is to be thought of
as consisting of path objects, or computation-path shapes. The Yoneda
Lemma, by providing a natural bijection between P̂(yP(p), X) and X(p),
justifies the intuition that a presheaf X : Pop → Set can be thought of as
specifying for a typical path object p the set X(p) of computation paths
of shape p. The presheaf X acts on a morphism m : p→ q in P to give a
function X(m) saying how q-paths restrict to p-paths. A presheaf being
a colimit of path objects can be thought of as a collection of computation
paths glued together by identifying subpaths.
Bisimulation on presheaves is derived from notion of open map be-

tween presheaves (Joyal and Moerdijk 1994). Recall, a morphism h :
X → Y , between presheaves X, Y , is P-open iff for all morphisms m :
p→ q in P, the square

X(p)

hp

X(q)Xm

hq

Y (p) Y (q)Y m

is a quasi-pullback, i.e. whenever x ∈ X(p) and y ∈ Y (q) satisfy
hp(x) = (Y m)(y), then there exists x

′ ∈ X(q) such that (Xm)(x′) = x
and hq(x

′) = y. (This definition of open map, translates via the Yoneda
Lemma to an equivalent path-lifting property of h—see (Joyal et al.
1996).)
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We say that presheaves X, Y in P̂ are P-bisimilar iff there is a span of
surjective open maps between them. This is equivalent to there being a
subobject R →֒ X × Y such that the compositions with the projections

R →֒ X × Y
π1→ X and R →֒ X × Y

π2→ Y

are surjective open.
The category P̂, over a small category P, is the free colimit completion

of P. In more detail, the Yoneda embedding yP : P→ P̂ satisfies the uni-
versal property that for any functor F : P→ E , where E is a cocomplete
category, there is a colimit-preserving functor LanyP(F ) : P̂→ E , the left
Kan extension of F along yP, unique to within isomorphism, such that
F ∼= LanyP(F ) ◦ yP:

P
yP

F

P̂

LanyP(F )

E

Consequently, if G : P̂ → E is a colimit-preserving functor then, to
within isomorphism, G is the left Kan extension LanyP(G ◦ yP). Recall,
in addition, that LanyP(F ) is left adjoint to the functor taking Y in E to
the presheaf E(F (-), Y ).
Here we shall only be interested in left Kan extensions where E is

a presheaf category Q̂. They, and so any colimit-preserving functor be-
tween presheaf categories, preserve open maps. Because they preserve
colimits they necessarily preserve surjectivity of maps too (and hence
bisimulation). Spelt out:

Lemma 1 (Cattani and Winskel 1997). Let G : P̂→ Q̂ be any colimit-
preserving functor between presheaf categories. Then G preserves (sur-

jective) open maps: If h is a (surjective) P-open map in P̂, then G(h) is

a (surjective) Q-open map in Q̂.

Notation 2. If F : P→ Q̂ is a functor, we will often write F! for the left
Kan extension LanyP(F ) and F

⋆ its right adjoint, mentioned above. This
notation is reminiscent of a more usual one (that we shall also employ)
that given a functor F : P→ Q between small categories writes F! ⊣ F ⋆

for the left Kan extension LanyP(yQF ) and its right adjoint. In this
second case a further right adjoint is also present F ⋆ ⊣ F⋆, making F ⋆

into a colimit preserving functor.
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Thus we have a variety of general methods to obtain functors P̂→ Q̂,
several of them automatically preserving colimits and hence bisimilarity.
The following construction gives a relevant example.

1.2.1 A Lifting Construction

Given any category P, define P⊥ as the category isomorphic to P but for
a new initial object ⊥ freely added. Clearly there exists a full embedding
l(ift) : P→ P⊥. This gives rise to a triple of adjoint functors, l! ⊣ l⋆ ⊣ l⋆

P̂

l⋆

l!

P̂⊥
l⋆

where for any presheaf X ∈ P̂ and path p ∈ P we have l⋆(X)(p) ∼= X(p)
and l⋆(X)(⊥) ∼= {⋆}; from which l⋆(l⋆(X)) ∼= X.
The adjoint pair l⋆ ⊣ l⋆ plays an important rôle in (Joyal and Moerdijk

1995) where the base category P is actually the linear order ω of natural
numbers, and l⋆ is considered as a successor operator. It is not difficult
to prove the following proposition analogous to Lemma 2.2 loc. cit.

Proposition 3. l⋆ preserves surjective open maps.

1.3 Profunctors

There are several equivalent ways of presenting profunctors (also called
distributors and bimodules, see Borceux (1994)). For us, a profunctor

F : P → Q, between small categories P and Q, is a functor F : P → Q̂.
The composition G ◦ F of profunctors F : P → Q and G : Q → R is
defined to be the composition of functors

(LanyQ(G)) ◦ F ,

which is only defined to within isomorphism. Thus, we obtain a bicate-
gory2 of profunctors Prof .
Cat the category of small categories embeds in Prof : A functor F :

P → Q is sent to the composition yQ ◦ F with the Yoneda embedding

yQ : Q→ Q̂. The embedding Cat → Prof preserves small colimits.

2However, henceforth we won’t be pernickety in our category-theoretic terminol-
ogy, and use terms from traditional category theory, even when constructions, strictly
speaking, take place in a bicategory setting.
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It is helpful to view Prof as a category of “nondeterministic domains”
(Hennessy and Plotkin 1979; Hennessy 1996), analogous to those ob-
tained as the Kleisli category of a powerdomain monad. We exhibit an
adjunction to back up this claim. Write ω-Acc for the category of finitely
accessible categories, the category analogue of algebraic cpo’s; morphisms
are functors preserving filtered colimits. The functor

(−)0 : ω-Acc → Prof

takes a finitely accessible category C to its “basis” C0, a choice of skeletal
subcategory of its finitely presentable elements; a filtered-colimit preserv-
ing functor H : B → C is sent to the profunctor H0 : B0 → C0 such that
H0(B) = C(−, H(B)) : (C0)op → Set . The functor

(̂−) : Prof → ω-Acc

takes a profunctor F : P→ Q to a choice of left Kan extension LanyP(F ).
There is an equivalence of categories

ω-Acc(C, P̂) ≃ Prof (C0,P) ,

given by restriction to finitely presentable objects, expressing an adjunc-
tion between ω-Acc and Prof :

ω-Acc
(−)0

⊥ Prof
(̂−)

With bicategorical quibbles, there is good reason to call Prof the Kleisli

category of the monad (̂−)0, and to think of the monad as analogous to
powerdomains in that it introduces nondeterminism.
Turning the monad around we obtain a comonad !P = (P̂)0, amount-

ing to the finite-colimit completion of P, whose co-Kleisli category con-
sists of presheaf categories with filtered-colimit-preserving functors as
morphisms. In addition, the bicategory Prof is rich in constructions
which enable us to handle higher-order processes as presheaves. Many of
these constructions are associated with Prof being a model of classical
linear logic. The tensor ⊗ is of particular interest: on objects P ⊗ Q is
the product of categories P× Q; while on morphisms if F : P → P′ and
G : Q→ Q′ are profunctors then F ⊗G : P⊗Q→ P′⊗Q′ acts according
to:

((F ⊗G)(p, q))(p′, q′) = ((F (p))(p′))× ((G(q))(q′)) ,

8



where × is the product functor in Set . The unit of ⊗ is 1, the category
with a single object and morphism. Defining the linear function space
P→Q to be the product of categories Pop×Q, we see the natural bijection

Prof (P, [Q→ R]) ∼= Prof (P⊗ Q,R) .

It is easy to see that presheaves over P→Q correspond to profunctors, and
so, to within isomorphism, to colimit-preserving functors from P̂ to Q̂.
Filtered-colimit-preserving functors are represented, with the help of the
exponential !, as presheaves over !P→ Q. Products (&) and coproducts
(+,Σ) in Prof coincide on objects, where both are given by coproduct
of categories; similarly ⊤ and 0 are both the empty category. Linear
involution P⊥ is isomorphic to P→ 1 and so to Pop. Prof is compact-
closed: par (P) coincides with tensor (⊗), and ⊥ with 1.

1.3.1 A Diagonal

Later, in our treatment of replication in the π-calculus, we shall use
a diagonal map, which we now construct. Let P and Q be two small
categories. Take wP : P × Q → P and wQ : P × Q → Q to be the two
projection functors. By composing with the Yoneda embedding they can
be promoted to the status of maps in Prof and therefore give rise to a
universal profunctor wP,Q = 〈wP, wQ〉 : P⊗ Q→ P&Q.3 This induces an
adjoint pair between the associated presheaf categories:

P̂×Q

w!

⊥ P̂× Q̂
w⋆

.

Since Prof has products we also have that for any small category P a
diagonal arrow ∆P : P→ P&P is definable. By composing the extension
∆P,! with w

⋆
P,P, we obtain a functor

dP : P̂→ P̂× P .

It is not difficult to prove that for any presheaf X over P and for any two
objects p1, p2 of P:

dPX〈p1, p2〉 = X(p1)×X(p2) .

Like the lifting of Section 1.2.1, this is a structural arrow, and it makes
sense to establish the following preservation property.

3Given the “linear logic” structure of Prof , the map w does correspond to a form
of weakening.
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Proposition 4. Let P and Q be two small categories; then w⋆P,Q pre-
serves surjective open maps and, consequently, dP does too.

1.4 The Functor Category Prof I

As a π-calculus process evolves, the ambient set of channel names may
change. To take account of this variability, our path category for the π-
calculus will be indexed by I, the category of finite name sets and injec-
tive maps between them. Rather than Prof itself then, we are specifically
interested in the functor category Prof I.
Our first construction is an object of names N, the functor N : I →

Prof given by the composition I ⊆ Set → Cat → Prof , an inclusion
followed by two embeddings. This takes a set s ∈ I to the corresponding
discrete category, which we write also as s.
Several Prof operations can be extended pointwise to Prof I: lift-

ing (−)⊥, the involution (−)op, tensor ‘⊗’, which is the same as par ‘P’,
and product ‘&’, which is the same as coproduct ‘+’.
We do not know whether or not Prof I is monoidal closed with respect

to ⊗. There is however, a Yoneda lemma expressing an isomorphism

Â(s) ∼= Prof I(I(s,−),A)

for s in I and A in Prof I . Thus given objects A,B ∈ Prof I there is
always a candidate for the function space

“ ̂(A→ B)(s)” ∼= Prof I(I(s,−)⊗ A,B) ,

but this is only meaningful if we can exhibit it as an actual presheaf.
Conveniently, for the purposes of the π-calculus it is enough to take
function spaces N→ A and it happens that these do exist. On objects
they turn out to be given by

(N→ A)(s) = s× A(s) + A(s+ 1) . (1)

A presheaf over this comprises a pair 〈F, Y 〉, where F : s→ A(s) is a

profunctor arrow from the discrete category s, and Y ∈ ̂A(s+ 1).
Paths of (N→ A)(s) can be seen, rather loosely, as elements of the

graph of a function. Thus a path in the s × A(s)-component of (1) we
write as (x7→p) for name x ∈ s and path p ∈ A(s). A path in the A(s+1)-
component we write as (∗7→p′) for p′ ∈ A(s + 1). In a similar spirit we

10



can inject a presheaf X ∈ Â(s) into the left x-component as (x7→X), and

a presheaf Y ∈ ̂A(s+ 1) into the right component as (∗7→Y ).
Here we have used a convention that we shall follow throughout, that

for any set of names s we write ‘∗’ for the extra element provided in s+1,
subscripting ‘∗s’ when necessary.
This said we can now describe the action of the profunctor (N→A)(i)

when i : s→ s′ is an arrow in I. On the component s× A(s)

(x 7→ p) 7→ (i(x) 7→ A(i)(p)) , (2)

while on A(s+ 1)

(∗s 7→ p
′) 7→

∑
y/∈Im(i)

(y 7→ A[i, y](p′)) + (∗s′ 7→ A(i+ 1)(p
′)) . (3)

Here [i, y] : s+1→ s′ is the injection that extends i over s+1 by taking
∗s to y ∈ (s′ \ Im(i)). Note how in this second equation the path (∗s 7→p′)
serves as a ‘seed’ to set paths for all the fresh names of s′ not in the
image of i.
To handle name creation we use a construction δ on Prof I , defined by

δA = A( + 1). This is in fact also a form of function space from N to A,
arising from the construction of Day (1970) which lifts the disjoint union
‘+’ of I to a symmetric monoidal closed structure on Prof I . Approx-
imately speaking, δA comprises functions that will only accept a fresh
name as argument. This allows processes to synchronize on the choice of
a local name, as required by the (CLOSE) rule of Figure 1. Stark (1996)
expands on this a little.

2 The Equation

We derive a suitable π-calculus path object P in Prof I from the following
equations:

P ∼= P⊥ +Out + In

Out = (N⊗ N⊗ P⊥) + (N⊗ (δP)⊥) (4)

In = N⊗ (N→ P)⊥ (5)

Unfolding, the four components of P represent silent action, free out-
put, bound output and input respectively. We give the solution to this
equation in two stages: first we describe recursively at each set s the
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corresponding path category P(s); and then we specify the profunctor
arrow that connnects P(s) to P(s′) for any injective function i : s→ s′.
From the descriptions of the constructors δ and →, we can think of

the family P(−) as being recursively described by

P(s) = P(s)⊥ + s× s× P(s)⊥ + s× P(s+ 1)⊥

+ s× (s× P(s) + P(s+ 1))⊥ .

Our minimal P(s) is thus a poset, in fact a forest of trees. We have four
kinds of root: τ., x!y., x!∗. and x? for any x, y ∈ s. Above these in
the order relation we find respectively: τ.p, x!y.p, x!∗.p′, x?(y 7→p) and
x?(∗7→p′), where the last two lie above x? and where p is an object of P(s)
while p′ is an object of P(s+1). The arrows of P(s) are the prefix order,
with for example

x?(y 7→p) ≤ x?(y 7→p̄) iff p ≤ p̄ in P(s)

x?(∗7→p′) ≤ x?(∗7→p̄′) iff p′ ≤ p̄′ in P(s+ 1).

Definition 5. We have already used for the objects of P(s) a notation
suggesting the sequence of “atomic” actions that a path represents. In
order to describe the arrow part of the functor P, and later on for the
semantics of processes, we now give presheaf analogues of the evident
prefix operations on paths.

• For α one of τ or x!y we have a prefixing functor α : P(s)⊥ → P(s).

This gives an operation on presheaves α. = α! ◦ l⋆ : P̂(s) → P̂(s)
with

α.X(p) =





{⋆} if p = α.

X(p′) if p = α.p′

∅ otherwise.

Similarly with Y ∈ ̂P(s+ 1) we apply (x!∗)! ◦ l⋆ in order to obtain

x!∗.Y ∈ P̂(s).

• Given X ∈ P̂(s) and x, y ∈ s we define x?(y 7→X) ∈ P̂(s) by

x?(y 7→ X) (p) =





{⋆} if p = x?

X(p′) if p = x?(y 7→p′)

∅ otherwise.

Again we could also have obtained this from a path map (x?(y 7→ )).
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• Suppose that 〈F, Y 〉 is a presheaf over (N→ P)(s), i.e. a

profunctor F : s→ P(s) and a presheaf Y ∈ ̂P(s+ 1). We define

x?〈F,X〉(p) =





{⋆} if p = x?

F (y)(p′) if p = x?(y 7→p′)

Y (p′) if p = x?(∗7→p′)

∅ otherwise.

Once again we could instead have derived this from the
operations on paths taking 〈y, p〉 ∈ s× P(s) to x?(y 7→p) and
p′ ∈ P(s+ 1) to x?(∗7→p′).

Lemma 1 and Proposition 3 are sufficient to show that all these functors
preserve surjective open maps.

Moving on to the morphism part of P, we need a profunctor P(i) : P(s)→
P(s′) for every injection i : s→ s′. We work by induction on the structure
of paths in P(s). In the base cases minimal paths in P(s) go to the same
in P(s′), regarded via Yoneda as presheaves:

P(i)(τ.) = τ. P(i)(x!y.) = i(x)!i(y).

P(i)(x!∗s.) = i(x)!∗s′ . P(i)(x?) = i(x)?

The inductive steps are:

P(i)(τ.p) = τ.P(i)(p) P(i)(x!∗s.p
′) = i(x)!∗s′.P(i+ 1)(p

′)

P(i)(x!y.p) = i(x)!i(y).P(i)(p) P(i)(x?(y 7→ p)) = i(x)?(i(y) 7→ P(i)(p))

P(i)(x?(∗ 7→ p′)) = i(x)?(N→ P)(i)(p′) .

In the last of these we use the non-trivial action of (N→ P)(i) from (3)
to ‘fill in’ input behaviour on receiving names from (s′ \ Im(i)).

2.1 A Decomposition Result

We will now observe that every presheaf X ∈ P̂(s) decomposes into a
sum of disjoint components rooted at one of the minimal path objects
τ., x!y., x!∗., x? where x, y ∈ s. The decomposition not only allows us to
read off a normal form for presheaves, but also leads to a natural notion
of transitions for presheaves.

13



Let m be a minimal object in P(s) and X ∈ P̂(s). Any x ∈ X(m)
determines a sub-presheaf C of X as follows:

C(p) =

{
{ y ∈ X(p) | X(m, p)(y) = x } if m ≤ p

∅ otherwise

for p ∈ P(s), and when p ≤ q define the function C(p, q) : C(q)→ C(p)
by

C(p, q)(z) = X(p, q)(z) for z ∈ C(q)

— because X is a contravariant functor it follows that

X(m, p)(X(p, q)(z)) = X(m, q)(z) = x

so that X(p, q)(z) ∈ C(p). It is easily checked that C is a presheaf and
indeed a sub-presheaf of X because its action on morphisms (p, q), when
p ≤ q, restricts that of X.

Notation 6. In this situation, we shall say that C is a rooted component
of X at x.

Rooted components of X are pairwise disjoint in the sense that if m,m′

are minimal objects of P(s) and C is a rooted component at x ∈ X(m)
and C ′ is a rooted component at x′ ∈ C(m′), then if C(p) ∩ C ′(p) 6= ∅
for any p ∈ P(s), then m = m′ and x = x′. Thus, X is isomorphic to a
sum of its rooted components:

X ∼=
∑
m

∑
x∈X(m)

Cx (6)

where m ranges over minimal objects of P(s) and Cx is the rooted com-
ponent of X at x.

We analyse further the form of rooted components of X ∈ P̂(s). A

rooted component Ci at i ∈ X(τ.) is isomorphic to τ.Xi where Xi ∈ P̂(s)
is given by

Xi(p) = Ci(τ.p), on objects p ∈ P(s), and

Xi(p, q) = Ci(τ.p, τ.q) : Xi(q)→ Xi(p), on morphisms p ≤ q of P(s).

We write X
τ
−→ X ′ when there is i ∈ X(τ.) such that X ′ = Xi. The

assignment i 7→ Xi is a bijection between the sets X(τ.) and {X ′ |
X

τ
−→ X ′}.
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A rooted component Cj at j ∈ X(x!y.), for x, y ∈ s, is isomorphic to

x!y.Xj, where Xj ∈ P̂(s) is given by

Xj(p) = Cj(x!y.p), on objects p ∈ P(s), and

Xj(p, q) = Cj(x!y.p, x!y.q), on morphisms p ≤ q of P(s).

We write X
x!y
−→ X ′ when there is j ∈ X(x!y) such that X ′ = Xj.

The assignment j 7→ Xj is a bijection between the sets X(x!y.) and

{X ′ | X
x!y
−→ X ′}.

A rooted component Ck at k ∈ X(x!∗.), for x ∈ s, is isomorphic to

x!∗.Xk, where Xk ∈ ̂P(s+ 1) is given by

Xk(p
′) = Ck(x!∗.p

′), on objects p′ ∈ P(s+ 1), and

Xk(p
′, q′) = Ck(x!∗.p

′, x!∗.q′), on morphisms p′ ≤ q′ of P(s+ 1).

We write X
x!∗
−→ X ′ when there is k ∈ X(x!∗.) such that X ′ = Xk.

The assignment k 7→ Xk is a bijection between the sets X(x!∗.) and

{X ′ | X
x!∗
−→ X ′}.

Let Cl be a rooted component at L ∈ X(x?). Define for any y ∈ s,

Xyl ∈ P̂(s) as

Xyl (p) = Cl(x?(y 7→ p)), and

Xyl (p, q) = Cl(x?(y 7→ p), x?(y 7→ q)) : X
y
l (q)→ X

y
l (p).

Define also X∗l ∈
̂P(s + 1) as

X∗l (p
′) = Cl(x?(∗ 7→ p

′)), and

X∗l (p
′, q′) = Cl(x?(∗ 7→ p

′), x?(∗ 7→ q′)) : X∗l (q
′)→ X∗l (p

′).

Then Xl can be regarded as a pair 〈λy.X
y
l , X

∗
l 〉 with λy.X

y
l : s→ P(s).

We write X
x?
−→ 〈F, Y 〉 when there is l ∈ X(x?) such that F (y) is

isomorphic to Xyl for every y ∈ s and Y is isomorphic to X
∗
l . The

assignment l 7→ 〈λy.Xyl , X
∗
l 〉 is a bijection between the sets X(x?) and

{〈F, Y 〉 | X
x?
−→ 〈F, Y 〉}.

This analysis of rooted components transforms (6) into the following
result.
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Theorem 7 (Decomposition of Presheaves). Let X ∈ P̂(s). Then

X ∼=
∑

i∈X(τ.)

τ.Xi +
∑
x,y∈s

∑
j∈X(x!y.)

x!y.Xj +
∑
x∈s

∑
k∈X(x!∗.)

x!∗.Xk

+
∑
x∈s

∑
l∈X(x?)

x?〈λy.Xyl , X
∗
l 〉 .

This gives a similar decomposition of morphisms, which preserves surjec-
tive opens.

Proposition 8. Let X, Y be two presheaves over P(s) with f : X → Y
a surjective open map beween them. Then the following “restrictions” of
f are surjective open:

fi : Xi → Yi′ where i ∈ X(τ.) and i′ = fτ.(i)

fj : Xj → Yj′ where j ∈ X(x!y.) and j
′ = fx!y.(j)

fk : Xk → Yk′ where k ∈ X(x!∗.) and k
′ = fx!∗.(k)

f yl : X
y
l → Y

y
l′ where l ∈ X(x?) and l′ = fx?(l)

f ∗l : X
∗
l → Y

∗
l′ where l ∈ X(x?) and l′ = fx?(l).

2.2 Indexed Late Bisimilarity for P

The previous section gave a notion of transitions on presheaves; naturally
enough, this leads to a form of bisimilarity.

Definition 9. A P-late bisimulation is a family (Rs)s∈I of symmetric

binary relations on presheaves in P̂(s) such that for any finite name set s
and any two presheaves X, Y over P(s), if X Rs Y then

X
τ
−→ X ′ ⇒ ∃Y ′. Y

τ
−→ Y ′ & X ′ Rs Y

′

X
x!y
−→ X ′ ⇒ ∃Y ′. Y

x!y
−→ Y ′ & X ′ Rs Y

′

X
x!∗
−→ X ′ ⇒ ∃Y ′. Y

x!∗
−→ Y ′ & X ′ Rs+1 Y

′

X
x?
−→ 〈F,X ′〉 ⇒ ∃〈G, Y ′〉. Y

x?
−→ 〈G, Y ′〉 & X ′ Rs+1 Y

′

& ∀y ∈ s. F (y) Rs G(y) .

We say that X, Y ∈ P̂(s) are P-late bisimilar iff X Rs Y for some P-late
bisimulation (Rs)s∈I.

Lemma 10. P-late bisimilarity is an equivalence relation.

Using Proposition 8 we can show that this P-late bisimilarity corresponds
exactly to open map bisimilarity:
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Lemma 11. Suppose X and Y are presheaves over P(s). Then:

(i) If f : X → Y is a surjective open map then X and Y are P-late
bisimilar.

(ii) If X Rs Y for some P-late bisimulation (Rs)s∈I then X and Y are
related by a span of surjective open maps.

Combining these gives:

Proposition 12. Two presheaves X and Y over P(s) are P-late bisim-
ilar if and only if they are connected by a span of surjective open maps.

Moving to a larger set of free names does not affect P-late bisimilarity.

Proposition 13 (Weakening). IfX, Y ∈ P̂(s) are P-late bisimilar then
so are P(i)!(X) and P(i)!(Y ) for any injection i : s→ s

′.

Moving to smaller name sets is a little more complicated. For any i :
s→ s′ in I define ei : P(s)→ P(s′) by induction as follows (omitting the
trivial base cases):

ei(τ.p) = τ.ei(p) ei(x!y.p) = i(x)!i(y).ei(p)

ei(x!∗s.p) = i(x)!∗s′ .ei+1(p) ei(x?(y 7→ p)) = i(x)?(i(y) 7→ ei(p))

ei(x?(∗s 7→ p
′)) = i(x)?(∗s′ 7→ ei+1(p)) .

This differs from P(i) in having a much simpler action on input of un-
knowns x?(∗7→p′). Even so e⋆i , which by Proposition 1 preserves open
maps, turns out to be a left inverse to P(i)!. This allows us to prove the
following result.

Proposition 14 (Strengthening). For X, Y ∈ P̂(s) and i : s → s′

in I, if P(i)!(X) and P(i)!(Y ) are P-late bisimilar over P(s′) then so are
X and Y over P(s).

These results suggest that we could have imposed similar uniformity
constraints on the family (Rs)s∈I in Definition 9: we conjecture that
without loss of generality we can require that R  (P&P) be a cartesian
subobject in Prof I .

3 Constructions

3.1 A Restriction Operator

We define here the operator that will be used to interpret name restriction
in π-calculus processes. It arises as a natural family of profunctor arrows
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indexed by finite sets s and their elements:

νy∈s : P(s) −→ P(s− {y}) .

Naturality means that for any injective function i : s→ s′, the following
square commutes:

P(s) +
νy∈s

+P(i)

P(s− {y})

+P(i′)

P(s′) +
νi(y)∈s′

P(s′ − {i(y)})

where i′ : (s − {y}) → (s′ − {i(y)}) is the restriction of i. In particular
we can observe that the family (ν∗∈s+1)s define a natural transformation
ν : δ(P)

.
→ P.

We define the νy∈s simultaneously for all s by induction on the struc-
ture of the paths. So for each path in P(s), according to its structure:

νy∈s(τ.p) = τ.νy∈s(p)

νy∈s(x!z.p) =





x!z.νy∈s(p) if x, z 6= y

x!∗s−{y}.P(bs,y)(p) if x 6= y and z = y

∅ otherwise

νy∈s(x!∗s.p
′) =

{
x!∗s−{y}.νy∈s+1(p′) if x 6= y

∅ otherwise

νy∈s(x?(z 7→ p)) =

{
x?(z 7→ νy∈s(p)) if x, z 6= y

∅ otherwise

νy∈s(x?(∗s 7→ p
′) =

{
x?(∗s−{y} 7→ νy∈s+1(p′)) if x 6= y

∅ otherwise

where bs,y : s → (s − {y}) ∪ {∗s−{y}} is the bijection that renames y to
∗s−{y}. The base cases are the evident instances of these for null p: for
example νy∈s(τ.) = τ. .
The only complication in this definition is the clauses that ensure

restriction correctly turns free output into bound output, as summarised
in this result:

Lemma 15. Let X be a presheaf over P(s) and let x, y ∈ s. If X
x!y
−→ X ′,

then νy∈s,!(X)
x!∗s−{y}
−→ P(bs,y)!(X

′).
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Observe that if y, z are two different elements of a set s, then

νz∈s−{y} ◦ νy∈s = νy∈s−{z} ◦ νz∈s.

This suggests a definition of ν as a contravariant functor from I to Prof
with ν(s) = P(s) and ν(i) : P(s′)→ P(s) the restriction, in any order, of
the elements of (s′ \ Im(i)).

3.2 Parallel Composition

We give an inductive definition for parallel composition of presheaves
over P(s) based on the decomposition result of Section 2.1. We then
outline how the same definition arises from an interleaving operation on
paths, and so deduce that surjective open maps are preserved.

Definition 16. Let X and Y be two presheaves over P(s) with the re-
spective decompositions indexed by i, j, k, l and i′, j′, k′, l′. Define X‖sY
inductively as follows:
∑
i∈I

τ.(Xi‖sY ) +
∑
x,y∈s

∑
j∈Jx!y

x!y.(Xj‖sY ) +
∑
x∈s

∑
k∈Kx

x!∗s.(Xk‖s+1P(i)!(Y ))

+
∑
x∈s

∑
l∈Lx

x?〈λy.(Xyl ‖sY ), X
∗
l ‖s+1P(i)!(Y )〉

+
∑
i′∈I′
τ.(X‖sYi′) +

∑
x,y∈s

∑
j′∈J ′

x!y

x!y.(X‖sYj′) +
∑
x∈s

∑
k′∈K′x

x!∗s.(P(i)!(X)‖s+1Yk′)

+
∑
x∈s

∑
l′∈L′x

x?〈λy.(X‖sY
y
l′ ),P(i)!(X)‖s+1Y

∗
l′ 〉

+
∑
x,y∈s

∑
j∈Jx!y

∑
l′∈L′x

τ.(Xj‖sY
y
l′ ) +

∑
x∈s

∑
k∈Kx

∑
l′∈L′x

τ.ν∗∈s+1,!(Xk‖s+1Y
∗
l′ )

+
∑
x,y∈s

∑
j′∈J ′

x!y

∑
l∈Lx

τ.(Xyl ‖sYj′) +
∑
x∈s

∑
k′∈K′x

∑
l∈Lx

τ.ν∗∈s+1,!(X
∗
l ‖s+1Yk′) ,

where i : s→ s+ 1 is the obvious inclusion function.

Much as with the prefixing operations of Definition 5, a more system-
atic approach begins with the profunctor arrow

‖s,⊥ : P(s)⊥ ⊗ P(s)⊥ −→ P(s)⊥

that interleaves pairs of paths. Judicious use of Kan extension and the
lifting maps of Proposition 3 give the parallel composition of presheaves
as a bifunctor

‖s : P̂(s)× P̂(s) −→ P̂(s)
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with the following preservation property:

Proposition 17. Let X, Y, Z,W be presheaves over P(s). If maps f :
X → Z and g : Y → W are surjective open, then so is f‖sg : X‖sY →
Z‖sW .

3.3 Replication

In the same way that the operational semantics of π-calculus replication
vanishes into structural congruence, its presheaf interpretation is built
entirely from arrows already at hand. Given any small category P, define
the “replicated” category P∞ by solving the following recursive equation4

P
∞ = 1& (P⊗ P∞).

This P∞ is easily calculated to be equivalent to
∑
n∈ω P

n, where P0 = 1
and Pn+1 = P ⊗ P · · · ⊗ P, (n + 1) times. Taking now the diagonal and
parallel composition maps at P(s) we can inductively define replicated
versions

d∞s : P̂(s)→ P̂
∞(s) and ‖∞s : P̂

∞(s)→ P̂(s).

Replication itself is simply their composition !s = ‖∞s ◦ d
∞
s , and the

inductive definition ensures that for any presheaf X over P(s):

!s(X) = X ‖s !s(X).

4 The Interpretation

4.1 Semantics

Following (Stark 1996), we give the interpretation to process terms in two
steps. First we associate a process P with free names in s to a presheaf

([P ])s ∈ |P̂(s)|. Then later, in the full interpretation, we take account of
all possible name substitutions by giving a process P with free names s
a denotation as a natural transformation:

[[P ]] : N |s|
.
−→ P .

4Note the relationship beween the way P∞ is defined and the way the linear logic !
can be defined in presence of infinite products.
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Let s be a set of names. For π-calculus processes whose free names
lie in s we inductively define:

([0])s = ∅ ([P +Q])s = ([P ])s + ([Q])s
([x̄y.P ])s = x!y.([P ])s ([P |Q])s = ([P ])s‖s([Q])s
([!P ])s = !s(([P ])s) ([ νxP ])s = νx∈s+{x}(([P ])s+{x}

([[x = x]P ])s = ([P ])s ([[x = y]P ])s = ∅ if (x 6= y)

([x(y).P ])s = x?〈F, Y 〉 where F (z) = ([P [z/y]])s for any z ∈ s,
and Y = ([P [∗s/y]])s+1.

Lemma 18. Let i : s → s′ be an injective function between finite sets,
with x = 〈x1, x2, . . . , x|s|〉 the names in s. Then for any process P using
these names,

P(i)!(([P ])s)
∼= ([P [i(x)/x]])s′ .

The free names of a process may be bound differently in different con-
texts. To cope with this, we interpret a process P with |s| free names as
a natural transformation [[P ]] : N|s|

.
−→ P, where

[[P ]]s′ :

|s|−times︷ ︸︸ ︷
s′ × s′ · · · × s′ −→ P(s′)
〈a1, a2, . . . , a|s|〉 7−→ ([P [a/x]])s′

Thus the denotation of a process with free names s carries an environ-
ment N |s| as a parameter. The proof that this is indeed a natural trans-
formation depends on Lemma 18, that the ([−])-interpretation respects
name substitution.

4.2 Full Abstraction

We can now show our major result, that bisimulation between processes
in the π-calculus coincides with that obtained in the model via open
maps.
The first two propositions establish a bisimulation between a process

P with free names in s and its denotation ([P ])s.

Proposition 19. Let P be a process whose free names lie in s. Then

• P
x̄y
−→ Q implies ([P ])s

x!y
−→ X with X ∼= ([Q])s

• P
x̄(y)
−→ Q implies ([P ])s

x!∗s−→ X with X([Q[∗s/y]])s+1
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• P
x(y)
−→ Q implies ([P ])s

x?
−→ 〈F, Y 〉 with F (z) ∼= ([Q[z/y]])s and

Y ∼= ([Q[∗s/y]])s+1
• P

τ
−→ Q implies ([P ])s

τ
−→ X with X([Q])s

Proposition 20. Let P be a process whose free names lie in s. Then

• ([P ])s
x!y
−→ X implies ∃Q with P

x̄y
−→ Q and ([Q])s

∼= X

• ([P ])s
x!∗s−→ X implies ∃Q, y with P

x̄(y)
−→ Q and ([Q[∗s/y]])s+1

∼= X

• ([P ])s
x?
−→ 〈F, Y 〉 implies ∃Q, y with P

x(y)
−→ Q and

([Q[∗s/y]])s+1
∼= Y

and F (z) ∼= ([Q[z/y]])s
• ([P ])s

τ
−→ X implies ∃Q with P

τ
−→ Q and ([Q])s

∼= X.

Using these results and Proposition 12 we can deduce the following.

Theorem 21. Let P and Q be two π-calculus processes with free names
in s. Then P is late bisimilar to Q if and only if ([P ])s and ([Q])s are
connected by a span of surjective open maps.

Suppose now that P is a π-calculus process with free names sP . Then
for any larger set of names s, an injection i : sP → s induces a natural
transformation πsP ,i : N|s|

.
→ N|sP | that projects |s|-tuples of names to

|sP |-tuples. When i is simply an inclusion and no confusion arises we
write this as πsP .

Theorem 22. Let P and Q be two π-calculus processes with free names
sP and sQ respectively. Take sP,Q to be the union sP ∪ sQ. Then P is
late equivalent (bisimulation congruent) to Q if and only if for any finite
set s and any |sP,Q|-tuple a of elements of s, [[P ]]sπ

sP
s (a) and [[Q]]sπ

sQ
s (a)

are connected by a span of surjective open maps.

Note that it is sufficient here to take s to be exactly the free names sP,Q of
the two processes. We can also present this result using the 2-categorical
setting of our model:

Corollary 23. Let P and Q be two π-calculus processes with free names
sP and sQ respectively. Then P is late equivalent to Q if and only if
[[P ]] ◦ πsP and [[Q]] ◦ πsQ are connected by a span of modifications whose
components are surjective open maps.

These results show a precise correspondence between operational and
denotational notions of process equivalence; notice though that we do not
interpret equivalent process by equal elements in the model. This could

be arranged, by quotienting the categories P̂(s) to make every open map
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invertible, but there seems little reason to do so. In particular this is not
likely to be very well-behaved as open maps do not form a calculus of
fractions.

5 Other Results and Future Work

The model we have described is just one drawn from a spectrum of name-
passing process calculi that can be described within Prof I . We outline
some possibilities below.

5.1 Late vs. Early

We have given the π-calculus here in its late version, where a process
x(y).P carries out input in two stages: it first synchronizes with another
process that is prepared to send on channel x; then, later, the transmit-
ted value is substituted for y in the body of P . There is an alternative
early semantics where these two steps happen together and processes
synchronize on (channel,value) pairs. The operational consequences of
this choice are discussed in (Milner et al. 1992b, §2.3). There is a corre-
sponding early bisimulation ‘∼̇E’ and early equivalence ‘∼E ’, which are
both strictly coarser than their late forms.
We can follow these late and early alternatives in our denotational

semantics. In presheaf models, synchronization points are marked by
lifting (−)⊥ in the equation for the path category. An early version
of (5) would be

InE = N ⊗ (N → P⊥) (7)

where instead of paths x?, x?(y 7→p) and x?(∗7→p′) we now have x?y,
x?∗, x?y.p and x?∗.p′. Solving this new equation in Prof gives an object
PE, and we conjecture that this provides a fully abstract model for the
early π-calculus, for suitably adjusted interpretation functions ([−])E and
[[−]]E.
More directly, this early model seems to arise as a collapse of the late

one. A recursively defined morphism of path categories, k : PE → P,
induces an arrow in Prof I

k⋆ : P −→ PE (8)
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which we conjecture maps the late semantics for processes into the early
one:

k⋆(([P ])s) = ([P ])
E
s ∈ PE(s) k⋆ ◦ [[P ]]s = [[P ]]

E
s : N

s → PE

for any process P with free names in s.
We can even move the synchronization point for output: clause (4)

has a later variant

OutL = N ⊗ (N ⊗ P)⊥ . (9)

It turns out that this makes no difference to process bisimilarity, but it
does correspond closely to the presentation style of (Milner 1991). There

processes synchronize on channel names alone, P
x̄
−→ C or P

x
−→ F ,

becoming concretions C (name-process pairs, N ⊗P) and abstractions F
(name-to-process functions, N→P) respectively. Actual communication
is represented by the application of abstractions to concretions F • C .
The domain models of the π-calculus in (Fiore et al. 1996; Stark

1996) do not cover the early version, chiefly because rearrangements like
equation (7) are harder to express. There the domain equation for pro-
cesses uses the Plotkin powerdomain to mark synchronization; while our
equation for paths uses the much simpler lifting operation.

5.2 Other π-calculi

The development of our model has been purely denotational, with no op-
erational manipulation of processes through expansion laws or the like.
As a consequence, there are no required operators in the language, and
the model remains valid for any subset of the π-calculus. Even so, par-
ticular sublanguages may fit simpler equations. For example, the asyn-
chronous π-calculus of Boudol (1992) constrains output to the form x̄y.0,
suggesting the clause

OutA = N ⊗N (10)

to replace (4). The πI-calculus of Sangiorgi (1995) allows only bound
output x̄(y).P , equivalence to νy(x̄y.P ) in the original π-calculus. Ev-
ery communication now passes a fresh name, and we would replace (5)
and (4) with

InI = Out I = N ⊗ δP . (11)
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Moreover the morphism P(i) now arises from the category map ei intro-
duced just before Proposition 14, with the restrictions ν(i) from the end
of Section 3.1 being e⋆i , the left inverse, and now also right adjoint, to
P(i)!. This gives some support to Sangiorgi’s claim that the πI-calculus
is a simpler, more symmetric version of the π-calculus.
These examples show the flexibility of our approach by drawing on

the rich categorical structure of Prof I . As ever in category theory, this
also leads us to look at the maps between models: we hope to find further
morphisms like (8), from ‘late’ to ‘early’, that might tie together the wide
selection of customized π-calculi proposed in recent years.
More speculatively, while we do not have a general function space

in Prof I , where it does exist we are no longer be constrained to pass-
ing just names or other ground values. Process-passing systems like
CHOCS (Thomsen 1993) or even the full higher-order π-calculus of San-
giorgi (1992) could then fit into our framework. The difficulties here lie
not just in writing plausible equations, but also in extracting their op-
erational content to see if the semantics and bisimilarities that arise fit
any existing scheme.
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