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ABSTRACT

For the special case of non-linear gravitational clustering from an initially Poissonian
distribution, the counts-in-cells distribution fuction is obtained from the excursion
set, Press—Schechter multiplicity function. This Poisson Press-Schechter distribution
function has the same form as the gravitational quasi-equilibrium counts-in-cells
distribution function, predicted by the Saslaw-Hamilton thermodynamic model of
non-linear gravitational clustering, which fits the observed galaxy distribution well.

By changing an ad hoc guess in the Saslaw-Hamilton thermodynamic model, the
negative binomial distribution (which also fits relevant observations well) is derived
from the thermodynamic approach. At present, analytic simplicity is the primary
reason for preferring one guess over another, so the thermodynamic approach does
not, at present, yield a unique prediction for the gravitational counts-in-cells
distribution function. Two ways to constrain the parameter space of possible guesses
are described; one of these suggests that the negative binomial is not a physically
reasonable model.

One possible relation between the original Saslaw-Hamilton thermodynamic
model and the Poisson Press-Schechter approach is obtained. A system of non-
interacting, virialized clusters having a range of masses, the distribution of masses
being given by the Poisson Press—Schechter multiplicity function, is shown to be
consistent with the original Saslaw-Hamilton thermodynamic model. For this model
to work, the virialized clusters must be in thermal equilibrium with each other, so that
all clusters have the same temperature, independent of their masses. This last require-
ment and the idealization that the clusters do not interact gravitationally with each
other are in contradiction with observations.

Key words: galaxies: clusters: general — galaxies: evolution - galaxies: formation -
cosmology: theory — dark matter.

their model b was supposed to be independent of scale, most
comparisons of this functional form with counts-in-cells
analyses of galaxy catalogues and N-body simulations show

1 INTRODUCTION

The gravitational quasi-equilibrium distribution function

(hereafter GQED), good agreement provided b is allowed to depend (quite
} strongly) on scale. When treated purely as a fitting function

. _N(1-b) N-1 in this way, this GQED provides a good fit to counts-in-cells

f(N, V)= N [N(1=b)+Nb] distribution functions calculated for a number of two- and
three-dimensional galaxy catalogues (e.g. Saslaw & Crane

x exp[— N(1—-b)—Nb], (1) 1991; Lahav & Saslaw 1992; Sheth, Mo & Saslaw 1994),

and to simulations of gravitational clustering from Poisson
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where f(N,AV) denotes the probability that a randomly
placed cell of size V has exactly N particles, 7 is the average
number density of particles (so that N =7V is the average
number of particles in a cell), and b is a free parameter with
0<b<1, was first proposed by Saslaw & Hamilton (1984).
The GQED derives from their specific thermodynamic
model of non-linear gravitational clustering. Although in

initial conditions (e.g. Itoh, Inagaki & Saslaw 1993, and
references therein). Despite the (many) objections that may
be raised about the applicability of thermodynamic fluctua-
tion theory when describing non-linear gravitational cluster-
ing, the reasonably, and perhaps unexpectedly, good
agreement between the predicted GQED functional form
and the counts-in-cells distribution functions measured in
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relevant N-body simulations has served to justify a continued
interest in the thermodynamic quasi-equilibrium approach.

This paper undermines this ‘the proof of the pudding is in
the eating’ (Sahni & Coles 1994) justification of the thermo-
dynamic GQED model in two ways. Section 2 shows that the
GQED is not the only counts-in-cells distribution function
that can be derived from the quasi-equilibrium approach.
Indeed, to specify their quasi-equilibrium model, and thus to
specify the thermodynamics and the resulting GQED
counts-in-cells distribution function, Saslaw & Hamilton
(1984) made a guess regarding the functional form of the
ratio of the gravitational energy of correlations, W, to the
kinetic energy, K, associated with peculiar motions. This is
equivalent to the guess (e.g. Davis & Peebles 1977; Hamilton
1988) that must be made to close and solve the BBGKY
hierarchy. To date, there is little physical motivation to justify
their guess (Sheth 1994), so it remains an ad hoc assumption
in their model. Since, in their model, much of the gravita-

" tional physics is embodied in the functional form assumed
for — W/2K, this paper explores the consequences of chang-
ing their guess. As a specific example, it derives the negative
binomial distribution from this thermodynamic approach.
Since the negative binomial also provides a good fit to N-
body simulations and to observed galaxy catalogues (e.g.
Gaztaflaga 1992), it would appear that it has as much physi-
cal, gravothermal motivation as does the GQED.

Section 3 uses the results of Epstein (1983), who calcu-
lated the excursion-set mass spectrum (cf. Bond et al. 1991)
of a Poisson distribution, to show that the GQED can be
derived from a Press & Schechter (1974) type description of
non-linear gravitational clustering. The Press-Schechter
approach gives the probability that a cluster has a given
number of particles: the cluster multiplicity function. If these
Press—Schechter clusters are assumed to be idealized, point-
sized clusters, and the clusters are assumed to have a Poisson
spatial distribution, then the counts-in-cells distribution
function of this set of Poisson-distributed Press—Schechter
clumps is exactly the same as the GQED. In so far as the
Press—Schechter approach is independent of an underlying
thermodynamic theory, this derivation of the GQED is
effected without any explicit consideration of thermo-
dynamics. It also shows why the GQED functional form pro-
vides a good fit to counts-in-cells distribution functions
measured in simulations of gravitational clustering from Pois-
sonian initial conditions, but is not so accurate when the
initial conditions are significantly different from Poissonian
(e.g. Suto, Itoh & Inagaki 1990).

Therefore, until the thermodynamic approach is able to
provide some physical motivation for the correct, gravo-
thermodynamic choice of — W/2K, so that its functional
form is no longer ad hoc, or until some physical relation
between thermodynamics and the Press-Schechter approach
has been derived, this paper serves to undermine the thermo-
dynamic approach. Section 4 summarizes the results and
then derives and discusses a relation between the thermo-

dynamic and Press-Schechter approaches. The thermo-
dynamic model of non-interacting, virialized clumps that

results differs in an important way from the usual
Press—Schechter models of virialized clumps. It assumes that
all clusters have the same temperature, independent of
clump mass. This idealization, and the assumption that dif-
ferent clumps do not interact gravitationally, are in conflict
with observations.

2 THERMODYNAMICS AND GRAVITY
2.1 The GQED model

Standard statistical thermodynamic results (e.g. Hill 1956)
show that, for a system of identical particles interacting via a
pairwise attractive Coulomb potential, the internal energy, U,
and the pressure, P, are given by

U=%V—T<1 ~2b), and P=N7T(1 ~b), 2)

where T is the temperature of the system, N=rV is the
average number of particles in a member of the grand canon-
ical ensemble of systems, each of size V,and b= — W/2K isa
measure of the ratio of the interaction energy and the kinetic
energy due to peculiar velocities (note that K=3NT/2).
Without additional physical information, the functional form
of b is undetermined, except by a dimensional argument
(Landau & Lifshitz 1959, p. 93) which shows that, for the
inverse-square law force, b must be some function of the
combination (AT ~3). Otherwise, the choice for the exact
functional form for b(AT ~3) is not constrained. Note that the
thermodynamic description of the system is completely
specified only after the choice for b(7T ~3) has been made.
Also note that equation (2) for U and P is exact, and so
specifying the functional form for b(AT ~3) corresponds to
specifying what are known as the virial coefficients. [The
virial expansion for an imperfect gas is defined by writing the
pressure as a power series in the density, ie. P/T=X B/,
with B;=1, or, alternatively, P/T=rA—ZX(j/j+1)B,A’*",
with j = 1 for both expansions. The B; coefficients are knqwn
as virial coefficients, and the §; values are called irreducible
cluster integrals (cf. Hill 1956). As their name suggests, the §;
values are easily related to volume integrals of the j-point
correlation functions.]

When b=0 the system described above is an ideal gas,
and the system approaches the virial limit as b — 1. Therefore
Saslaw & Hamilton (1984) chose

_ baT™? 3)

1+ boaT >’
with b, independent of 7 and of 7, since this is the simplest
analytical form that has the appropriate ideal gas and virial-
ized limits, and since it is the first Padé approximation to a
more general function of (AT ~3). With this choice for b the
virial coefficients are B;=(—b,T ~*)~!, and the irreducible
cluster integrals are B;=—(j+1)(—b,T3)/j. Also, the
Euler relation, TS = U + PV — Nu, with equation (2) and the
standard thermodynamic relation between the entropy, S,
and P and U, and with equation (3) for b, requires that
by T ~3e#/T=pe ",

The counts-in-cells distribution, f(N,7AV), is obtained
from the generating function of its cumulants using thermo-
dynamic fluctuation theory:

K(t)Elng(e’)Eln(i f(N,riV)e'N)
> | o*mE
"X [a(um*LV’ )
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where InE=PV/T=N(1-b) (e.g. Green & Callen 1951;
Callen 1985). Using Lagrange’s theorem on the inversion of
series (Whittaker & Watson 1927), with the relation implied
by equation (3) for b(AT ~3), ie. b,T 3% T=be"?, and

N(1-b)=T3?Vb/b,, we find
T°v & | 9

K(t)= > — [ ]
bO k= lk' a( / )k TV
T’V 2 ¢ 9

® N1 boe”/TN
- bo k=1aa(,u/T)kNZ=:1 N! T

N(1-b) & ¢ 2 NYIN*[boet"\N
X2 S0

~N-p) 3 Ly HRL_e
. o (NB)leT™
=N(1—b)Nz=',1 = (e™—-1). (5)

Equations (4) and (5) show that equation (3) for b(AT ~3)
implies that the generating function for the counts-in-cells

distribution is
© Nb N-1 e - Nb
gls)=expj —N(1-b)|1- X (NB) e = ont. (6)
N1 N!

Now, the generating function of a Poisson distribution with
density A is e"41~%), Equation (6) is similar to the Poisson
generating function, except that s is replaced by the generat-
ing function of

(Nb) 1 -Nb

n(N,b)= N ,

(7

the Borel distribution (e.g. Moran 1984). That is, equation
(6) has the compound Poisson form, so that it can be under-
stood as describing a distribution of randomly distributed
point-shaped clusters (i.e. idealized clusters having no spatial
extent), where the probability, z(N,b), that a randomly
placed cluster has exactly N particles is given by the Borel
distribution of equation (7).

Equations (4) and (6) show that f(N, V) is obtained by
computing the Nth derivative of g(s) with respect to s, and
evaluating it at s=0. This shows that, with equation (3) for
b(AT ~3), the counts-in-cells distribution function is given by
equation (1). This distribution function is derived using a
completely different method from, but has the same func-
tional form as, the f(N, V) distribution function derived by
Saslaw & Hamilton (1984). Also, equation (6) for the
generating function has the same form as, but was obtained
in a different way from, that obtained by Hamilton, Saslaw &
Thuan (1985) and Saslaw (1989).

2.2 The negative binomial

'As emphasized above, for particles interacting with an
inverse-square law force, most of the physics in the thermo-
~dynamic equilibrium state (if it exists) is described by the
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functional form assumed for b. Since assuming some func-
tional form for b is equivalent to making some specific
assumptions that, essentially, enable one to close the BBGKY
hierarchy, then, while the physical reason for these assump-
tions remains unclear, this Saslaw—Hamilton solution of the
BBGKY hierarchy remains incompletely understood. In par-
ticular, so long as the primary motivating factor in choosing
equation (3) for b(AT ~3) is analytic simplicity, one’s under-
standing of the gravitational physics remains incomplete.

The following example illustrates this problem. Recall that
In E = PV/T= N(1 - b), whatever the functional form of b. If,
instead of equation (3), we assume that

© quNp/T
%[ N+1)] ®)

with g, being some function of T but not of 7, then repeating
the analysis above, and writing g,e*/"=Qand a =Q/(1 - Q),
we show that the first few cumulants of this distribution
[obtained by taking derivatives of InE=N(1-5b) with
respect to u/T, while holding T and V constant] are

x; =N,
x,=N(1+a),
=N(1+3a+2a?),
K, =N(1+7a+12a%+6a3), (9)

and that the generating function of the counts-in-cells dis-
tribution function is

_ -N(1-0)In(1-Q)|In(1-Qs)
g(s)"e"p{ 0 [ln(l—Q) 1“
1_QS) N(1-Q)/Q
(1 Q) | (10

Equation (10) is the generating function of a negative
binomial distribution (e.g. Moran 1984 ). This shows that, if b
is given by equation (8), rather than by equation (3), then the
counts-in-cells distribution function that is ‘predicted’ by
gravitational thermodynamics is a negative binomial.

It is possible to rearrange equation (8) to obtain b
as a function of AT "3 The Euler relation shows that

=bye/ T2, so that Q =byiT ~3/(1+ byAT ~3), and

b=1+[(1—Q)ln(1—Q)}=
0

Notice that, when b,AT ~3 is large, equation (11) shows that
b—1, and, when b,aT 3<1, a Taylor series expansion
shows that b~ 0. Although equation (11) is not as simple as
the Saslaw-Hamilton guess (equation 3), it has the required
physical limits. In this sense, the negative binomial distribu-
tion has as much physical motivation as does the GQED.

On the other hand, note that NV&j is the Nth factorial
cumulant of the distribution function, and_that scale-
invariant distributions are described by &, =S,&5 "1, with all
Sy values independent of scale (e.g. Fry 1985). Equation
(10), with the definition of the factorial cumulants, shows that
the factorial cumulant generating function for a negative
binomial distribution is

In(1+ b,aT ~3)
boaT

(11)
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o -N(1-0Q) Ot
1 +i)= ) — uy= In{1-
ng(l+1) El k!,“[k] 0 1-0

ok k-1

. 0
=3 —N(k—l)!(—) , (12)

k=1 k! 1-Q

where u;,; denotes the kth factorial cumulant. Since
E-N HIN) (]\-JZ)N-1

SvEsya="=n|— =(N-1)! (13)
TET N g

is independent of the cell size ¥, this shows that the negative
binomial is a member of the class of scale-invariant distribu-
tions.

So, if b is given by equation (11), rather than by equation
(3), then the quasi-equilibrium thermodynamic description
implies that scale invariance is a characteristic signature of
gravitational clustering. If b is given, instead, by equation (3),
a similar analysis of the factorial cumulants shows that this is
not the case (Saslaw & Sheth 1993). Therefore, while there
remains no physical justification for preferring equation (3)
to equation (11) (or vice versa) when calculating the correct
description of gravitational thermodynamics, the thermo-
dynamic model can be used to argue that scale invariance is a
characteristic signature of gravitational clustering, and that
the converse is also true!

Although the GQED and the negative binomial counts-in-
cells distributions look rather similar for a range of para-
meter choices, so that both provide adequate descriptions of
the observations presently available (e.g. Sheth, Mo & Saslaw
1994), the thermodynamics described by the two guesses
(equations 3 and 11, respectively), for the functional form of
b, may be quite different. Fig. 1 shows b(b,aT ~3) for the
GQED (solid line) and for the negative binomial (dashed
line). The curves (described by equations 3 and 11) are relat-
ively similar. However, using equation (2) for P, and noting
that b is a function of (byaT ~3), it can be seen that it is
equally permissible to write b as a function of the combina-

0 1 A ] A ) ) ] R ] A
0 20 40 60 80 100

Figure 1. b as a function of b,aT ~3 and of b,PT ~* for the GQED
(solid and dot-dashed curves) and the negative binomial (dashed
and dotted curves) models.

tion (byPT ~*). Then, equation (2), with equations (3) and
(11), shows that b=y and b=1-[y/(e’—1)], where
y=b,PT 4 for the GQED (dot-dashed line) and the
negative binomial (dotted line) models, respectively. These
two curves are quite different; whereas both curves show
b=0 when b,PT~*=0, they differ markedly as b—1.
Indeed, whereas b,PT~* satisfies the requirement that
0<byPT %<1 for 0<b=<1 in the GQED model, it varies
over a larger range (byPT ~*— o as b—1) in the negative
binomial model. To date, there is no physical theory for pre-
ferring one description of ‘gravitational thermodynamics’ to
the other, since there is no theory for the appropriate relation
between P and T when, for example, b— 1. For instance,
when b—1 in the GQED model, then Px T4 It is not clear
why gravitational thermodynamics should require this rela-
tion, which looks like the relation between the pressure and
the temperature for the blackbody relation (Stefan’s Law), to
hold in virial equilibrium.

While there is, to date, no physical theory that enables us
to treat either of these guesses as the correct gravothermo-
dynamic functional form for b(aT ~3), or, equivalently, for
b(PT %), there may be other ways to constrain the para-
meter space of possible guesses. For example, it may be
reasonable to require that b(AT ~3) should be a single-
valued, monotonic function of n7T~3 and that b(PT %)
should also be a single-valued, monotonic function of PT ~*.
Fig. 1 shows that both the GQED and the negative binomial
models satisfy this requirement. Additionally, the cosmic
energy equation

d R
3K+ W)+ (2K +W)=0 (14)

(Irvine 1961; Layzer 1963), where R is the scale factor of
the Universe and W and K denote the potential energy
due to the gravitationally induced correlations and the
kinetic energy of peculiar motions, respectively, strongly
suggests that the Universe expands adiabatically: that is,
dU+PdV=0, with U and P given by equation (2), and with
b=—W/2K. This is most easily solved by writing U as a
function of T and P (which is possible because b is a function
of PT~*), and by noting that dV/V=3dR/R. It may be
physically reasonable to require b=— W/2K to increase
monotonically as the Universe expands; this would provide
further constraints on the allowed functional forms for
b(AT ~3)[and, equivalently, for b(PT ~*)].

To illustrate this, Fig. 2 shows d In R/db, calculated sub-
ject to the cosmic energy constraint that dU+Pd V=0, as a
function of b, for the GQED model [dashed line; calculated
using the GQED result in Saslaw 1992, d In R/db=(1+6b)/
8b(1 - b)), and for the negative binomial model [solid line;
dInR/db=(1-b)"1—{(1-2b)(1—b)"2/8[1—(1-b)e’]},
with y = b, PT ~* as before]. The requirement that b increase
monotonically as the Universe expands means thatd In R/db
must always be positive. Fig. 2 shows that, whereas the nega--
tive binomial model violates this requirement, the GQED
does not. If this requirement that b increase monotonically
is, indeed, physically reasonable, then Fig. 2 suggests that,
whereas the GQED remains a physically viable model, the
negative binomial is not.

Thus this subsection serves to argue that it is important to
constrain the parameter space of possible guesses for the
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Figure 2. d In R/db, calculated subject to the cosmic energy con-
straint that dU + Pd V=0, as a function of b for the GQED (dashed
line) and for the negative binomial (solid line) models. The require-
ment that b increase monotonically as the Universe expands means
that d In R/db must always be positive.

functional form of b(AT ~3) [and, equivalently, of b(PT ~*)],
and provides two examples of constraints that may be physi-
cally reasonable. It also shows that, to date, this parameter
space of guesses is not adequately constrained, so that the
thermodynamic model developed by Saslaw and colla-
borators does not make a unique prediction as to the correct
gravothermal counts-in-cells distribution function.

There is one final remark concerning the applicability of
this thermodynamic approach. It has long been known that
for a gravitating system there is no true equilibrium state (e.g.
Padmanabhan 1990, and references therein). To apply
thermodynamics to a gravitating system, therefore, it is
necessary to modify the theory slightly so that certain regions
of phase space are rendered inaccessible and, in effect, this is
what the assumed ad hoc functional forms for b (equations 3
and 11) accomplish. Since the observations are as well
described by the negative binomial distribution function as
they are by the GQED, it appears that the determination of
the functional form for b that is required by gravity remains
an open question. This section provides two ‘guesses’ for this
functional form: equations (3) and (11); it is interesting that
both forms are in good agreement with observations of
galaxy positions and with simulations of gravitational cluster-
ing.

3 PRESS-SCHECHTER AND THE POISSON
DISTRIBUTION

The previous section shows that, to date, the thermodynamic
approach does not provide a unique description of gravita-
tional clustering: the functional form of b, which specifies the
thermodynamics, is determined ad hoc. Nevertheless, it is
interesting that the quasi-equilibrium approach is able to
derive a functional form, the GQED of equation (1), that fits
the observations and relevant N-body simulations very well.
This section provides an alternative derivation of the GQED
functional form that makes no explicit consideration of
thermodynamics.

Press—Schechter and thermodynamics 217

Epstein (1983) shows that the probability that a given par-
ticle of a Poisson distribution is at the centre of a cluster of
size k, at an overdensity threshold A, is

A k k=1 e-k/(1+A)
(1+A) (1+A) (k+1)1°

F(k,A)= (15)

This expression is the discrete analogue of the multiplicity
function (including the ad hoc factor of 2) obtained by Press
& Schechter (1974) for non-linear clustering from an initially
Gaussian field. This multiplicity function has an interesting
relation to the GQED distribution.

A number of analytic properties of the GQED distribu-
tion function (equation 1) are derived in Hamilton, Saslaw &
Thuan (1985), Saslaw (1989), and Sheth (1994). Of parti-
cular importance in the present work is the cluster decom-
position of the GQED. When b is independent of scale, the
results of the previous section show that this GQED can be
understood as describing a distribution of randomly dis-
tributed point-shaped clusters (i.e. idealized clusters having
no spatial extent; the extension to cases where the Poisson-
distributed custers have some non-trivial shape and density
profile is developed in Sheth & Saslaw 1994). For the
GQED, the probability, (N, b), that a randomly placed
cluster has exactly N particles is given by the Borel distribu-
tion of equation (7).

Since the first moment of the Borel distribution is
1/(1 - b) (e.g. Moran 1984), this Borel decomposition of the
GQED shows that, when the number density of particles is 7,
A(1=>b)n(N, b), with #(N, b) given by equation (7), gives an
expression for the number density of (Poisson-distributed)
clusters of size N. Multiplication of 7(1—b)#5(N, b) by N,
the number of particles in a cluster of size N, and division by
the number density of particles, 7, gives the probability, for a
GQED, that a particle is a member of an N-sized cluster.
Setting

b=1/(1+A), (16)

it can be seen that the Borel cluster decomposition of the
GQED is essentially the same as the cluster multiplicity func-
tion provided by equation (15). Since in the Borel decom-
position of the GQED the clusters have a Poisson spatial
distribution, if the Press-Schechter clumps described by
equation (15) are assumed to also have a Poisson spatial dis-
tribution then it is clear that this result is, in effect, a deriva-
tion of the GQED functional form that is effected without
any explicit consideration of thermodynamic fluctuation
theory.

In so far as the Press-Schechter theory describes non-
linear gravitational clustering in a density field that is initially
Gaussian (e.g. Lacey & Cole 1994), the GQED functional
form should describe clustering in a discrete distribution that
is initially Poissonian. Thus this derivation of the Borel dis-
tribution (i.e. essentially equation 15) shows why the GQED
functional form fits the N-body simulations of gravitational
clustering from an initially Poissonian distribution so well. It
also shows that the GQED functional form may be expected
to describe gravitational clustering from Poissonian initial
conditions regardless of whether or not the thermodynamic
theory developed by Saslaw & Hamilton (1984) applies.

This result also clarifies some results regarding N-body
simulations of gravitational clustering from initial conditions
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that are significantly different from Poissonian. Whereas
Saslaw (1985) and Suto, Itoh & Inagaki (1990) argue that the
better agreement between the GQED functional form and
counts-in-cells distribution functions for simulations of clus-
tering from Poissonian initial conditions, as compared to
non-Poissonian initial conditions, is due to ‘thermodynami-
cally unrelaxed structure’ in the non-Poissonian simulations,
this section shows explicitly that the lack of agreement is
almost certainly due to the intimate connection between the
GQED functional form and the Poisson distribution.

4 DISCUSSION AND AN EXTENSION

By changing an ad hoc guess in the Saslaw-Hamilton
thermodynamic model, the negative binomial distribution
(which also fits relevant observations well) was derived from
the thermodynamic approach (Section 2). There is, at
present, no reason (other than analytic simplicity) to prefer
one guess over another and so the thermodynamic approach
does not, at present, yield a unique prediction for the gravita-
tional counts-in-cells distribution function. Two ways to con-
strain the parameter space of possible guesses were
described. One of these, namely the requirement that the
ratio of potential correlation energy to (twice the) kinetic
energy of peculiar motions increase monotonically as the
Universe expands adiabatically, suggests that the negative
binomial is not a physically reasonable model. On the other
hand, the original Saslaw-Hamilton GQED model remains
physically viable.

However, the GQED functional form can be derived from
a Press—Schechter-type approach to describing non-linear
gravitational clustering from an initially Poissonian distribu-
tion (Section 3). The demonstrated lack of a unique predic-
tion, and the alternative, Press—Schechter, derivation (in
Section 3) of the GQED functional form, coupled with the
absence, at present, of a relation between the thermodynamic
and Press-Schechter approaches, when compounded with
the many questions that may be raised about the applicability
of thermodynamic fluctuation theory to non-linear gravita-
tional clustering, and when contrasted with the many suc-
cesses of the Press-Schechter approach, may serve to
undermine continued interest in the thermodynamic
approach.

That there may be some underlying connection between
the thermodynamic and the Press-Schechter approaches is
suggested by the following toy model. Consider the set of
Poisson-distributed Borel clusters that are obtained from the
Poisson Press-Schechter analysis. Let the number density of
clumps be 7(1 — b) when the number density of particles is 7.
Assume that these clumps are virialized, and let K; and W,
denote the kinetic and potential energies associated with the
ith clump. Also, let #" denote the kinetic energy associated
with the peculiar velocities of the clumps within a cell of size
V, characterized by a temperature 7. Since the clumps are
Poisson-distributed, assume that there is no energy asso-
ciated with the interaction between clumps. Now calculate
the total energy for this system.

If equipartition of energy holds, and since there are, on
average, N(1—b) clumps in a cell of size V, where N=7V,
then, on average, the kinetic energy associated with a cell is
3NT(1- b)/2=X. Since each clump is virialized, W, = —2K,.
If the mean square velocity of the particles is (v?)=3T, then

the kinetic energy of a clump with N particles is given by
treating one of the particles as the centre, and summing over
the energy due to the motion of the other N—1 particles
towards it. This prescription means that, on average, the
energy in a cell of size V that is contributed by the internal
energy of the clumps in itis N(1—b)(W+K)=N(1-b){(—K),
where

g Tbh
923 V-1V, b)=5>

=7 & 21-b)

(17)

12|M8

So, the average total energy, U, in a cell of size V is
the sum of the internal energy due to the clumps,
N(1—-b){—K)=—3NTb/2, and the kinetic energy due to
the random motions of the clumps, % =3NT(1 - b)/2. So,
U=3NT(1-2b)/2, and is identical to equation (2). More-
over, since in this model there are, on average, N(1 —b) in-
dependent objects in a cell of size V, the pressure is given by
the relation PV/T=N(1—-b). This expression is also
identical to that in equation (2). This suggests that, in
essence, the thermodynamic model that is specified by equa-
tions (2) and (3) corresponds to the treatment of the Borel
clumps of the Poisson Press—Schechter analysis as a mixture
of non-interacting virialized clumps that are in thermal equi-
librium.

Sheth (1995) uses equations (1) and (16), and a linear
theory analysis of the variance on large scales (e.g. Peebles
1980, section 70; Zhan 1989), to calculate the evolution of
the overdensity threshold, A, for this set of Poisson Press—
Schechter clumps. His analysis shows that, at late times, par-
ticularly in less dense cosmologies, the evolution of A slows
appreciably. If these clumps are virialized in the manner
assumed by the model in the previous paragraphs, then the
evolution, as the Universe expands, of the ratio — W/2K,
for this system is also easy to understand.

Consider a cosmology that initially has a Poisson distribu-
tion of particles that are at rest. Assume that, at least at early
times, Q = 1. Provided Q = 1, gravity will be able to build up
correlations that cause the Press-Schechter clumps to form,
and the peculiar velocities it induces on the particles means
that the Borel Press—Schechter clumps into which they form
will also have some net motions. If the clumps are virialized,
then — W/2K, = K [K +2¢), where ¢ is the contribution to
the kinetic energy that is due to the peculiar motions of the
clumps as above, and K was denoted by N(1 — b){K) earlier.
The evolution of W and K, is coupled, as shown by the
cosmic energy equation (equation 14). Without the relation
to adiabatic expansion (cf. the discussion preceding Fig. 2),
the Press—Schechter approach cannot describe the effects of
this coupling.

However, in the absence of correlations, the kinetic energy
of peculiar velocities decreases as R ~2. (To see this, let W=0
in equation 14.) In the model, however, the clumps are virial-
ized, so that W is certainly not zero. On the other hand, since
the model assumes that the clumps are independent, this-
decay of peculiar velocities will be a good approximation for
the behaviour of %; provided Q <1, since then the time-scale
for clustering to develop is less than the expansion time-scale
(e.g. Saslaw 1992). This condition obtains at late times in
cosmologies that are less dense than critical. Thus, at late
times in less dense cosmologies, =0, so — W/2K,,~ 1,
whatever the value of A. Therefore if this model of virialized

tot

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System

220z 1snbny 9| uo Jesn sonsnp Jo juswyedsq ‘SN Aq 022Z20L/€12/L/v . zZ/e10nie/seiuw/woo dnoolwepeoe//:sdiy woly pepeojumod


http://adsabs.harvard.edu/abs/1995MNRAS.274..213S

35!

FTOO5WNRAS, Z 74~ !

0.8

b(R)

0.6

0.4

0.2

Figure 3. Linear (dashed line) and adiabatic (solid line) evolution of
1/(1+A) (open circles) and — W/2K,, (filled circles) for a cosmo-
logy with € =0.1 when R = 26. To specify the adiabat, R, =2.38.

Press—Schechter clumps is correct then, in general, the rela-
tion — W/2K,,,=1/(1 + A) should always hold.

To illustrate this, Fig. 3 shows the evolution of — W/2K,,,
(filled circles) and of 1/(1+A) (open circles, determined
from the variance of particle counts in large cells), and the
corresponding adiabatic (solid curve) and linear theory
(dashed curves) descriptions of the evolution, measured in
N-body simulations, of an Q,=0.1 cosmology. The simul-
ations have cold, Poissonian initial conditions, from which
the subsequent motions of N,,,=4000 identical particles
were integrated directly. They were kindly made available by
Dr M. Itoh and Prof. S. Inagaki [see Itoh, Inagaki & Saslaw
(1988), and Sheth & Saslaw (1995) for details, and also for
results regarding other cosmologies]. In the text, b was used
to denote both the physical quantity — W/2K,, and the
statistical quantity (since it is obtained from the variance)
1/(1+ A). Fig. 3 shows how the evolution of these two quan-
tities differs. Whereas — W/2K,,,=1/(1+A) at early times
when Q = 1, at late times — W/2K,,,=1/(1 + A), as expected.

Fig. 3 suggests that, at least for low-density cosmologies in
which the initial distribution is cold and Poissonian, this
model of non-interacting, virialized, Poisson Press-Schechter
clumps provides a useful description of the clustering. How-
ever, for this model, which relates the Press-Schechter to the
thermodynamic approach, to work, all clumps were assumed
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to have the same temperature. That is, in the model all par-
ticles have the same mean square velocity, whatever the mass
of their host clump. This differs from the way in which cir-
cular velocities are usually assigned to Press-Schechter
clumps by, e.g., White & Frenk (1991). The idealization that
different clumps do not interact gravitationally, and this
assumption that the clumps are in thermal equilibrium, and
so all have the same temperature, are in conflict with obser-
vations (e.g. White & Frenk 1991, and references therein).

If this isothermal idealization is wrong, then why does
the expression for adiabatic expansion (solid line), which
depends crucially on the accuracy and applicability of the
thermodynamic approach, fit the measured values of
— W/2K (filled circles) so well (cf. Fig. 3)? At any epoch, in
these Q,=0.1 simulations the average clump size is
M ymp=(1—b)~!, where b=1/(1+ A) s given by the dashed
line, or by the open circles. The root-mean-square deviation
around this mean is Yb/(1—b)". Provided b= 0.4, this rms
dispersion is somewhat less than y1/(1 - b), the square root
of the mean. Thus, for small values of b, the distribution of
clump sizes around the average mass is small. Even when
b=0.6 (as it is at late times in the low-density simulations),
the distribution of clump sizes around the average mass
remains relatively small, and the number of clumps that are
more massive than the average, Ny, (1 —b) > 4> Maumy (M, D),
is also small. This occurs particularly because N, in these
simulations is only ~ 10* Therefore in low-density cosmo-
logies in which b remains relatively small, the approximation
that all clumps have the same temperature independent of
clump mass is relatively accurate, since most clumps have
approximately the same mass anyway.

At late times in more dense cosmologies, b=1/(1+A) is
greater than in less dense cosmologies, so the distribution of
clump sizes around the average, as well as the number of
clumps that are more massive than the average, is larger.
Therefore in simulations of denser cosmologies the adiabatic
expansion expression should fit the measured values of
— W/2K less well than in Fig. 3. This qualitative behaviour is
consistent with the evolution of — W/2K measured in an
ensemble of simulations of an Q=1 cosmology [Sheth &
Saslaw (1995); see their fig. 5, although, for reasons they
discuss, — W/2K in more dense cosmologies is more difficult
to measure reliably].

Therefore if there is a relation between the Press—
Schechter and the thermodynamic approaches, and if it has
the form described in the previous paragraphs, then the two
idealizations just described have strong implications for the
viability of the thermodynamic approach. They suggest that,
in the general case that is suggested by observations, in which
clumps interact gravitationally and so are correlated with
each other, and in which different clumps have different tem-
peratures, the thermodynamic model will, at best, only
provide an approximate description of the clustering pro-
cess.

Despite the various idealizations that are inherent in
the thermodynamic model and that are contradicted by
observations, we end with a caveat. In contrast to the
Press-Schechter model, the particular thermodynamic
model (equation 3) from which the GQED can be derived,
when combined with the adiabatic expansion interpretation
of the Irvine-Layzer cosmic energy equation, makes specific
predictions about the temporal evolution of the gravitational
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correlation and kinetic energies (cf. essentially, the informa-
tion in Fig. 2, and the solid curve in Fig. 3). These predic-
tions about the dynamics of clustering are, at present, outside
the scope of the Press-Schechter approach, and appear to be
in good agreement with N-body simulations (Fig. 3; Saslaw
1992; Sheth & Saslaw 1995). Moreover, whereas the
Press—Schechter mass function predictions are in good
agreement with N-body simulations in an average sense, they
are not so good on a particle-by-particle basis (Lacey & Cole
1994). This is just what would be expected if the thermo-
dynamic approach were, indeed, correct. It may therefore be
of interest to extend the simple thermodynamic approach
considered in this paper to describe a more general system in
which virialized clumps have a range of temperatures, and
where the gravitational interaction between different clumps
is not neglected.
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