
Introduction

Worldwide growth in energy demands, as well as environmental

concerns related to exploration and use of geo-energy resources

affect the exploration and production strategies for these

resources globally, and also in the Netherlands. Significant

amounts of gas have been discovered and produced over the

last 50 years in the Netherlands onshore and offshore and there

remain potentially large volumes of gas yet to be found and

developed (Herber & De Jager, 2010; EBN, 2011). Finding and

producing more conventional and unconventional gas and oil

before the currently aging infrastructure is abandoned is a high

priority. There is also an increasing focus on alternative geo-

energy supplies, such as geothermal energy, and on subsurface

storage of hydrocarbon gases and CO2. This has resulted in a

rapid increase in the multiple-use of the Dutch subsurface pore

space. It is a great challenge to ensure a responsible present

and future use of the subsurface. 

In this context, knowledge of the subsurface pressures and

fluid dynamic conditions is of critical importance for safely

optimising the responsible current and future use of the

subsurface. Pre-drill knowledge on pore pressures and leak-off

pressure conditions allows for appropriate selection of mud

weight, well bore trajectories and drill casing programs, thereby

enabling safe and cost-effective drilling. Research on pressure

and fluid dynamics in sedimentary basins and the development

and application of hydrodynamic analysis for characterising oil

and gas resources in the Netherlands started in the late eighties

and continued to develop ever since (Verweij, 1990a, b; Bloch

et al., 1993; Verweij, 1999, 2003, 2006; Verweij & Simmelink, 2002;
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Abstract

This paper presents and discusses the distribution of fluid and leak-off pressure data from the subsurface of onshore and offshore Netherlands in

relation to causes of formation fluid overpressure and the permeability framework. The observed fluid pressure conditions demonstrate a clear

regional difference between the southern and the north and north-eastern part of the study area. In the southern area, formation fluid pressures

are close to normal and well below measured leak-off pressures. In the north, formation fluids are overpressured and may locally even approach

the measured leak-off pressures. The regional differences in fluid overpressure can, in large part, be explained by differences in geologic framework

and burial history. In the south, relatively low rates of sedimentary loading and the presence of relatively permeable sedimentary units have led

to the currently observed normally pressured conditions. In the northern area, relatively rapid Neogene sediment loading plays an important role

in explaining the observed overpressure distributions in Cenozoic mudstones, Cretaceous Chalk and Rijnland groups, and probably also in Jurassic

units. The permeability framework of the northern and north-eastern area is significantly affected by Zechstein and Triassic salt deposits and

structures. These units are characterised by very low permeability and severely restrict fluid flow and pressure dissipation. This has created

hydraulically restricted compartments with high overpressures (for example overpressures exceeding 30 MPa in the Lower Germanic Trias Group in

the Terschelling Basin and Dutch Central Graben).
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Verweij et al., 2009a, b, 2011). In this paper we present and

discuss the distribution of fluid pressures and leak-off

pressures in relation to causes of fluid overpressure and the

regional permeability framework in particular. 

Database

Formation pressures encountered in oil and gas wells have been

measured in the Netherlands for over 50 years by a wide range

of companies using a variety of different tools and methodolo -

gies. An integrated database of pressure, leak-off pressure,

temperature and water chemistry data was created during two

joint-industry projects executed by TNO and CSIRO from 2002-

2007. It was populated with information from about 700 oil

and gas wells (Simmelink et al., 2003, 2008). The pore fluid

pressures in the database include measured pressures in oil, 

gas and water phases. The leak-off pressure derived from real

leak-off tests corresponds to fracture initiation. Most leak-off

pressure data in the database, however, are from formation

integrity tests and from reported leak-off pressure values

(assumed to represent the highest pressure achieved during

testing before actual leak-off) and may underestimate the

strength of the tested formations.

From 2007 onward, the pressure and leak-off pressure data -

base was further extended with a selection of measure ments

derived from about 100 additional onshore and offshore wells

to a total amount of about 800 wells (Fig. 1). This pressure

database provided the key data for this paper. 

Approach

Hydrodynamic-based approaches were used to characterise and

analyze the fluid pressure and leak-off pressure distributions

in combination with stratigraphic and structural information.

The hydrodynamic approaches involve the use of single-well

and multi-well pressure-depth plots, regional overpressure maps

and hydraulic head maps. Verweij (1993), Dahlberg (1995), Otto

et al. (2001), Bachu & Michael (2002) and Verweij et al. (2011)

provide an overview of hydrodynamic analysis techniques. Here

we present pressure-depth plots, leak-off pressure-depth plots,

and a selection of overpressure maps and cross-sections.

The overpressure, or excess pressure, of a fluid at a certain

depth is the difference between the measured pore fluid pressure

and the hydrostatic pressure at that depth. In the calculations

we used a hydrostatic gradient of 0.01 MPa/m that represents

seawater density (1020 kg/m3). In reality, the hydrostatic

gradient is determined by the actual density of the formation

water which is related to its salinity. The salinity of most of the

formation water in the Dutch subsurface is well above that of

seawater and shows large variations in all stratigraphic units

(Verweij, 2003; Verweij et al., 2011). Fluid overpressures may

also incorporate the effect of the density contrast between a

petroleum fluid and pore water. Hence fluid overpressures may

reflect pore water salinity, the density contrast between a

petroleum fluid and pore water (if the pressure was measured

in a petroleum fluid), as well as geological causes of overpres -

suring. In this paper a fluid overpressure is an overpressure of

one of the pore fluids: water, gas, condensate, or oil. A pore

water overpressure or formation water overpressure concerns

the overpressure of the pore fluid ‘water’.

General factors of influence on pressure distributions

The virgin pore pressure conditions in the Dutch subsurface are

controlled by the combined influence of a) past and/or ongoing

pressure-influencing mechanisms, and b) characteristics of the

geologic framework.

The existence of pore fluid overpressures indicates that

there is disequilibrium between a) and b) in the sense that the

fluid pressure regime has not adjusted to the evolving geologic

framework and is in a transient state. The time required to

propagate or dissipate pore water overpressures by water flow

through a water-saturated permeable rock framework is propor -

tional to its hydraulic diffusivity (related to properties such as

porosity, permeability, compressibility of the rock and the

viscosity and compressibility of the pore fluid). The propagation

and dissipation of fluid overpressures by multiphase flow is in

addition influenced by differences in capillary pressures of the

rock framework. 

A variety of mechanisms has been proposed to explain the

generation of pore water overpressures in sedimentary basins

(Mann & Mackenzie, 1990; Neuzil, 1995; Osborne & Swarbrick,

1997; Grauls, 1998; Yardley & Swarbrick, 2000; Yassir & Addis,

2002; Neuzil, 2003):

1.  An increase in compressive stress, by processes such as

sedimentary loading, vertical or lateral tectonic loading and

glacial loading.

2.  An increase in fluid volume, induced by processes such as

temperature increase (aquathermal pressuring), production

of water by diagenetic and metamorphic processes (for

example mineral dehydration), and hydrocarbon generation

(gas generation from late stage source rock maturation and

from oil cracking).

3.  Fluid movement and associated redistribution of over -

pressures.

Stress-related mechanisms are considered to be the most

likely causes of overpressure in many sedimentary basins 

(e.g. Osborne & Swarbrick, 1997). An important stress-related

mechanism is sedimentary loading. In reality, different pressure-

influencing mechanisms may operate simultaneously during

continuous burial of sedimentary units subject to sedimentary

loading: not only the loading itself, but also aquathermal

pressuring, dehydration of minerals and/or generation of gas,

while fluid movement redistributes pressures continuously.

Moss et al. (2003) indicated that stress-related mechanisms,
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such as sedimentary loading, and gas generation are the two

dominant causes thought to contribute to overpressures in

Central North Sea basins. These are also important mechanisms

in the Dutch subsurface. Sedimentary loading is the most

studied and best understood of the overpressure mechanisms. 

Assuming that sedimentary loading is the pressure generating

mechanism, then the competition between sedimentary loading

and the pressure-dissipating mechanism (formation water flow,

compaction and dewatering of the rock framework) will control

an overpressure distribution. Reservoir rocks in hydraulic

communication with the ground surface through continuous

permeable reservoir or fault networks will allow flow of formation

water induced by sedimentary loading. Equilibrium in such a

reservoir is maintained between the increase in overburden

load and the expulsion of pore water. However, a rapid increase

in overburden load caused by a high sedimentation rate requires

faster expulsion of water throughout the porous medium.

When sediments are unable to dewater during subsidence, the

pore water will bear part of the increase in overburden load and

become overpressured. Lithologies – such as mudstones – with

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 91 – 4 | 2012 467

Fig. 1.  Location of wells included in the

pressure database.



high matrix compressibilities as well as low permeabilities are

especially susceptible to overpressuring. Overpressuring in

such lithologies is accompanied by a slow down or even stop of

compaction (a process known as disequilibrium compaction).

Lithologies such as sandstones and limestones, with relatively

low matrix compressibilities and high permeabilities (aquifers),

allow water flow and redistribution of overpressures. The above

described mechanical compaction in sedimentary units in

response to increases in effective stress slows down as rock

loses porosity and becomes more rigid. In addition, sediments

also compact chemically during burial, mostly controlled by

increasing temperatures (Bjørlykke, 2010).

Geological and fluid geological setting

Geological setting

The main geological characteristics and mechanisms of

influence on present-day pressure and fluid flow conditions

are summarised below. The mechanisms include past and

present processes of different duration. Detailed information

on the geology of the Netherlands is given in Van Adrichem

Boogaert & Kouwe (1993), TNO-NITG (2004), Duin et al. (2006),

Wong et al. (2007), Doornenbal & Stevenson (2010), Kombrink

et al. (this issue) and references therein. 

The dominant features of the present-day structural

framework and stratigraphic build-up of onshore and offshore

Netherlands are shown in representative cross-sections in 

Fig. 2. Figure 3 shows important structural elements in the

study area. Numerous deep faults and elongated salt structures

disrupt the lateral continuity of pre-Cenozoic sedimentary

sequences (Fig. 2). Large elongated salt structures related to

basin boundary faults occur especially along the Step Graben,

Dutch Central Graben, Terschelling Basin, north-eastern edge

of the Broad Fourteens Basin and Lauwerszee Trough. The

structural framework reflects the complex history of extension

and compression related to world-wide reorganisations of

lithospheric plates (Ziegler, 1990; Duin et al., 2006; De Jager,

2007). The regional variation in burial history across the study

area is described in Fig. 4.

Geological history

Late Paleozoic

During the Late Carboniferous Namurian and Westphalian, the

Netherlands were located in the northern foreland of the

Variscan Mountains. Deposition of Westphalian fluvio-deltaic

sediments in the area includes carbonaceous shales and a large

number of coal layers. Variscan transpressive forces in Early 

to Middle Permian induced strong uplift and erosion of

Carboniferous strata, creating the Base Permian Unconformity.

Westphalian coals and carbonaceous shales (the principal source

rocks for gas in the Netherlands), are preserved in large part of

the area (De Jager & Geluk, 2007). The Carboniferous was

covered by Rotliegend, Zechstein, Triassic and Lower Jurassic

sediments that were initially deposited in the Southern Permian

Basin. Important Upper Permian sediments are the terrestrial

coarser grained clastic (conglomerates and sandstones of

fluvial and aeolian origin of the Slochteren Formation) and

finer grained desert lake deposits (claystones, siltstones and

evaporites of the Silverpit Formation) of the Upper Rotliegend

Group (Grötsch & Gaupp, 2011). The Slochteren Formation grades

northward into the Silverpit Formation. The marine Zechstein

evaporites, carbonates and clays overlie the Upper Rotliegend

Group. The southern limit of Zechstein salts runs through the

southern part of the Broad Fourteens and Central Netherlands

basins; in the south the Zechstein is predominantly clastic. The

strong influence of the Zechstein salt on the successive

structural development is depicted in Fig. 2.

Mesozoic

During the Early Triassic, initially widespread subsidence of the

area of the Southern Permian Basin resulted in regional

deposition of lacustrine claystones and aeolian and fluvial

sandstones of the Lower Germanic Trias Group. Subsequently,

sedimentation in the basin became progressively influenced by

the development of swells and lows. The Hardegsen event

induced uplift of these swells and caused deep erosion of

sediments of the Lower Germanic Trias Group on the swells

(Geluk & Röhling, 1997; Geluk, 2005). Gradually, marine

influence increased during deposition of the Upper Germanic

Trias Group that consists mainly of lacustrine and shallow

marine claystones, carbonates and evaporites (Röt to Keuper

units). The Late Triassic transgression covered most of the

previous swells. Thick open marine clays of the Jurassic Altena

were deposited regionally during the Early to Middle Jurassic.

Restricted conditions during the Toarcian are associated with

the deposition of bituminous clays of the Posidonia Shale

Formation. The subsequent Mid and Late Kimmerian tectonic

phases (Middle-Late Jurassic) accompanied the break-up of the

previous Southern Permian Basin. Initially, the Mid- Kimmerian

tectonic phase caused erosion of Jurassic and Triassic strata in

most parts of the Netherlands. The Late Kimmerian tectonic

phases caused a differential dynamic development of the main

structural elements in the area shown in Fig. 2. Sedimentation

concentrated in rapidly subsiding rift basins during Late Jurassic

to earliest Cretaceous times (Mesozoic basins, Figs 3 and 4).

Deposition of the Schieland, Scruff, and Niedersachsen groups

in the basins was characterised by significant lateral facies

changes. The adjacent platforms and highs were uplifted and

deeply eroded (affecting the Jurassic Altena Group, Germanic

Trias Group and even Zechstein and Rotliegend groups; Figs 2,

3 and 4d-e). Deep erosion (down to Carboniferous) occurred in

the Early Cretaceous on the Texel-IJsselmeer High, Winterton

High and Peel Block. The siliciclastic Rijnland Group marks the

onset of the Cretaceous transgression over the Late Kimmerian
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Unconformity (Jeremiah et al., 2010). During the Late

Cretaceous clastic input into the basin was further reduced and

led to widespread deposition of chalk (Chalk Group). Chalk

deposition was interrupted in the Mesozoic basins by inversion

movements during the Sub-Hercynian tectonic phase. The

central parts of the Broad Fourteens, Central Netherlands, West

Netherlands Basins, and Roer Valley Graben experienced strong

uplift (Fig. 4b, c). Inversion of the Dutch Central Graben was

strongest in its southern half. While the sedimentary fill of the

basins became folded, uplifted, and subject to erosion, deposition

of chalk continued in adjacent areas.
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a.

b.

c.

Fig. 4.  Overview of burial histories at different

locations in onshore and offshore Netherlands;

a. southern edge of the West Netherlands Basin;

b. inverted centre of the West Netherlands Basin;

c. inverted centre of the Broad Fourteens Basin;

d. Central Offshore Platform; e. Cleaverbank

Platform; f. southern part of the Dutch Central

Graben. See Fig. 3 for location of the wells. 
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Cenozoic

The Laramide regional phase of erosion in Mid-Paleocene

terminated the deposition of chalk. This phase was followed by

regional subsidence of the Cenozoic North Sea Basin and

deposition therein of siliciclastic sediments of the Lower,

Middle and Upper North Sea groups (Wong et al., 2007; Fig. 5).

The Lower North Sea Group reaches a maximum thickness in

the northern offshore and thins toward the south. It consists

of predominantly marine clays with sandy deposits along 

the southern edge of the basin (sedimentation was locally

concentrated in the Voorne and Lauwerszee Troughs). The

regional subsidence was interrupted by the Late Eocene-Early

Oligocene uplift, related to the Pyrenean tectonic phase. 

Pyrenean compressive tectonics involved uplift and erosion

of the southern onshore (West Netherlands Basin) but also

extended westward into the offshore (Nalpas et al., 1995; De

Lugt et al., 2003). During the Oligocene, the sea transgressed

across the previously eroded areas. This resulted in marine

deposits of the Middle North Sea Group. Sedimentation was

interrupted again at the end of the Oligocene, related to the

Savian phase of erosion. In the Neogene, deltas prograded from

the south and southeast of the Netherlands and from the

Fennoscandia border into the North Sea Basin (Sørenson et al.,

1997; Overeem et al., 2001; Kuhlmann et al., 2004). The West

Netherlands Basin was uplifted and eroded during the Pyrenean

and Savian phases and sedimentation and subsidence was
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limited during the Neogene (Fig. 4a, b). In contrast, the Roer

Valley Graben and Zuiderzee Basin (located on the former

Central Netherlands Basin) developed into depocentres. The

Roer Valley Graben was reactivated and developed as part of

the NW European rift system from the Late Oligocene onwards

(Michon et al., 2003; Van Balen et al., 2005; Worum et al., 2005),

with subsidence accelerating during Pliocene and Quaternary.

Major depocentres developed in the northern offshore area

after Miocene times (Sørensen et al., 1997; Overeem et al., 2001).

Sedimentation rates in the depocentres started to increase during

the Pliocene and remained high during the Quaternary (Figs 4c,

d, e, f). In the Pleistocene, thick Elsterian and Saalian ice sheets

covered the northern on- and offshore during their maximum

advance. The thickness maps of the entire North Sea Group and

the Upper North Sea Group show the net result of the Cenozoic

and Quaternary burial and sedimentation history (Fig. 5).

Petroleum geological setting

In general, hydrocarbon generation from Carboniferous source

rocks was widespread until the Middle Jurassic and continued

in the basins until Late Cretaceous inversion (De Jager & Geluk,

2007). On the platforms and highs hydrocarbon generation was

interrupted due to uplift and erosion in Late Jurassic - Early

Cretaceous times. Reburial and associated heating of the

Westphalian source rocks in basins, platforms and highs beyond

previously experienced temperatures induced a later phase of

hydrocarbon generation in Cenozoic times (e.g. along the edges

of the West Netherlands Basin, De Jager et al., 1996; Noord-

Holland, Central Offshore, Cleaverbank and Friesland Platforms:

Verweij, 2003; Verweij et al. 2009c, 2010, 2012; Abdul Fattah et

al., 2012). The pore water pressures in the Carboniferous source

rocks in these areas may have been affected or are still affected

to a greater or lesser extent by gas generation. Most trapped

gas is reservoired in the Upper Rotliegend and Triassic sand -

stones. The Jurassic Posidonia Shale Formation is considered to

be the most important source rock for oil in the Netherlands

(De Jager & Geluk, 2007). 

Lithostratigraphic build up

The position of the Netherlands at the southern edge of large

basins during the majority of post-Carboniferous geological

history has directly affected the facies distribution. Generally,

more coarse-grained clastic deposits occur in the south. Clear

differences in facies between the south and the north are

apparent in, for example, the Upper Rotliegend Group (sand -

stones of the Slochteren Formation in the south and mudstones

and evaporites of the Silverpit Formation in the north), Zechstein

Group (clastics in the south versus evaporites in the north),

Upper Germanic Trias Group (salts absent in the south), Rijnland

Group (sandstones concentrated in southern half of the area),

Lower North Sea Group (sandy in southern onshore).

Stratigraphic groups of large areal extent are (Fig. 2):

Limburg, Upper Rotliegend, Zechstein, Rijnland and Chalk groups,

and the Lower and Upper North Sea groups. The presence of the

Germanic Trias and Jurassic Altena groups is more scattered.

Its largest thickness occurs in the Mesozoic basins, while in the

remaining area it is missing entirely or partly due to erosion.

The current distribution of the Upper Jurassic Schieland, Scruff

and Niedersachsen groups is restricted to the Mesozoic basins.

Hydrogeological setting

An extensive overview of the characteristic features of

external and internal processes acting on the sedimentary fill

of onshore and offshore Netherlands and their role in shaping

the hydrogeological setting of the Netherlands from Late

Carboniferous to present-day is given in Verweij (1999, 2003)

and Verweij & Simmelink (2002).

The most important lithostratigraphic units controlling

formation pressure distribution and flow conditions in the

Dutch subsurface are the salt members of the Zechstein Group,

because of their extremely low permeability and their regional

continuity (Fig. 2). A lesser role is played by the evaporite

members of the Upper Germanic Trias Group (such as those of

the Röt and Keuper formations) and the Silverpit Evaporite

Member of the Upper Rotliegend Group in the northern offshore,

because of a more restricted distribution. These evaporites are

absent in the southern part of onshore and offshore Netherlands.

Here clay-rich deposits of low matrix permeability dominate the

entire stratigraphic sequence. Mudstones of the Lower North

Sea Group are present across the entire offshore with decreasing

thickness from north (>900 m in offshore A block) to south (to

less than 100 m in the centre of the West Netherlands Basin).

Moreover, the Lower North Sea Group sediments become

increasingly sandy in the south. 

The more permeable stratigraphic units consist of sands,

sandstones and carbonates. The main permeable units forming

reservoirs (aquifers) are: the sandstone members of the Limburg

Group and Slochteren Formation of the Upper Rotliegend

Group, carbonate members of the Zechstein Group, sandstone

members of the Lower Germanic Trias Group, Solling Formation

of the Upper Germanic Trias Group, sandstone members of the

Schieland, Scruff and Niedersachsen groups, Vlieland Sandstone

Formation of the Rijnland Group, Cenozoic sands (in southern

onshore) and Quaternary sands of the Upper North Sea Group.

The permeability of the Chalk Group varies and both reservoirs

and seals (aquitards) occur (Verweij, 2006).

Regional facies distributions over the onshore and offshore

Netherlands (see below) result in generally more permeable

facies in the south and an increasing number of interspersed

sealing layers towards the northern part of the study area. This

provided vertical barriers to flow and pressure dissipation to a

greater degree in the north. In addition, numerous deep faults

and elongated salt structures disrupt the lateral hydraulic

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 91 – 4 | 2012474



continuity of pre-Cenozoic fluid-stratigraphic units (Fig. 1).

Large elongated low permeability salt structures related to

basin boundary faults occur especially along the Step Graben,

Dutch Central Graben, Terschelling Basin, north-eastern edge

of the Broad Fourteens Basin and Lauwerszee Trough. 

The dominant features of the permeability framework thus

lead to a regional subdivision of the Netherlands onshore and

offshore into a more fault-dominated southern and a salt-

dominated northern area that define distinct hydraulic

characteristics.

Regional differences in geological and hydrogeological

factors of influence on pressure and fluid flow

conditions

The burial history distribution since Late Cretaceous (Figs 4

and 5), is a potential geological factor of influence on present-

day overpressure distributions. There are important regional

differences in burial history during this time period: major 

Late Cretaceous and Early Cenozoic uplift and erosion are

concentrated in the south (including West Netherlands, Broad

Fourteens, Central Netherlands basins, Roer Valley Graben)

with the overall thickness of the North Sea Group increasing

northward. Greater sedimentary thickness corresponds to areas

of greater subsidence and increased sedimentary loading rates.

The thickness of the Upper North Sea Group increases north -

wards as well, with a local depocentre in the Roer Valley Graben

(Fig. 5).

The observed regional differences in the permeability

framework in combination with those of the burial history lead

to a regional subdivision of the Netherlands on- and offshore

into a southern and northern area with distinct differences 

in characteristics important for pressure generation and

dissipation. 

Regional fluid pressure and leak-off pressure 
distributions 

The multi-well cross plots (Figs 6, 7, 8 and 9) present the fluid

pressure and leak-off pressure versus depth for each of the main

lithostratigraphic units and for important structural elements. 

The multi-well cross plots (Figs 6, 7, 8 and 9) reveal a number

of interesting features:

A.  Leak-off pressures (Figs 6, 7, 8 and 9)

1.  There is a general increase in leak-off pressures with depth

in all structural elements (Figs 6, 8 and 9); 

2.  The leak-off pressures gradually approach the lithostatic

gradient at greater depths in the Step Graben, Dutch Central

Graben, Terschelling Basin, Schill Grund High and Lower

Saxony Basin. Similar patterns of leak-off pressure increasing

with depth have been observed in the northern and central

North Sea (Gaarenstroom et al., 1993; Giles et al. 1999); 

3.  The cross plots for the Broad Fourteens Basin, Cleaverbank

Platform and Central Offshore Platform do not reveal a clear

trend of leak-off pressures approaching the lithostatic 

with depth. Instead the data show a lot of scattering. The

leak-off pressures in these structural elements include

measurements from various lithologies within the Zechstein

Group. In this case, differences in leak-off pressures can be

associated with various facies in the Zechstein Group, as

shown in Fig. 7. Leak-off pressures in the salt units of the

Zechstein Group reach higher values than those in its

anhydrite, carbonate and clastic units, both at shallow and

greater depth. A similar but less clear facies dependence

was observed in the Triassic groups, and for the Upper

Rotliegend Group on the Cleaverbank Platform; 

4.  Leak-off pressures in the West Netherlands Basin, located

south of the area of occurrence of Zechstein and Triassic

salts, show the least scattering. They fall well below the

lithostatic gradient.

B.  Fluid pressures (Figs 8 and 9)

1.  There is a clear regional difference in overpressure conditions

in the southern, northern and north-eastern parts of the

area. Fluid overpressures in all stratigraphic units in the

southern area (Broad Fourteens Basin, southern part Central

Offshore Platform, West Netherlands Basin) are normal or

close to normal. Stratigraphic units of pre-Cenozoic age in

the northern and north-eastern area (Step Graben, Dutch

Central Graben, Terschelling Basin, Schill Grund Platform,

Lauwerszee Trough, and to a lesser extent in the Lower

Saxony Basin) are overpressured;

2.  The fluid pressure conditions on the Cleaverbank, Central

Offshore, and Friesland platforms are transitional between

the southern and the northern offshore area;

3.  Depth exerts a first order control on the fluid pressures:

a.  In the southern area the fluid pressures increase broadly

parallel to the density corrected hydrostatic gradient;

b.  In the northern area at shallow depth, the lower-bound

of the fluid pressure data distribution increases parallel

to the density corrected hydrostatic pressure gradient but

deviates from this at greater depths (for example; fluid

overpressures all exceed 8 MPa at depths beyond 2250 m

in the Terschelling Basin; minimum overpressure reaches

magnitudes of approximately 9 MPa at 4 km depth in the

southern Dutch Central Graben);

4.  Very high values of overpressure were observed in the

Limburg Group in the Step Graben (exceeding 30 MPa), the

Upper Rotliegend Group in the southern Dutch Central

Graben (exceeding 40 MPa) and the onshore Lauwerszee

Trough (exceeding 20 MPa), and in the Lower Germanic Trias

Group in the Terschelling Basin (exceeding 35 MPa); 

5.  Fluid overpressures in the Zechstein Group show a wide

variation from <1 MPa to >40 MPa (Cleaverbank and Central

Offshore platforms, Step Graben). The location of the strata
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within the Zechstein Group (enclosed in evaporites of the

Zechstein Group, or situated at the top or bottom of the

group) significantly influence the formation pressure

conditions where the highest overpressures are observed in

intervals enclosed by evaporitic units. Even in the southern

offshore area (Broad Fourteens Basin), where formation

pressures are generally close to hydrostatic in other

stratigraphic units, the overpressures in the Zechstein may

reach much greater magnitudes; 

6.  Significant lateral variations in pressure at the same depth

of measurement occur in the Lower Germanic Trias Group

and along the northern boundary of the Upper Rotliegend

sandstone reservoir (e.g. Friesland Platform, Lauwerszee

Trough).

C.  Relation between fluid pressures and leak-off pressures 

     (Figs 8 and 9)

1.  The southern areas characterised by normal or close to normal

fluid pressure are well below measured leak-off pressure;

2.  The fluid pressures in the northern area may approach the

measured leak-off pressures as observed in the Step Graben,

Dutch Central Graben, Terschelling Basin, Schill Grund

Platform, northern part Friesland Platform and Lauwerszee

Trough. This may occur at relatively shallow depths. For

example, the pore fluid pressures are near leak-off in: a) the

Chalk at depths of <2000 m (Step Graben) and at approxi -

mately 1500 m (Dutch Central Graben); b) the Rijnland Group

at <2000 m (Dutch Central Graben); and c) the Schieland/

Scruff Group at <2500 m (Terschelling Basin). In addition,

very high fluid overpressures in the Triassic units in the

Terschelling Basin, Schill Grund High and Step Graben also

approach the realm of leak-off pressures; 

3.  The difference between lithostatic (~vertical stress) and

leak-off pressure increases with depth in the normally

pressured southern part of the area (West Netherlands

Basin), but decreases with depth in the northern part at

depths with severe overpressures. If we assume that the

lower bound of measured leak-off pressures is indicative of

the horizontal minimal stress, this is in accordance with the

general increase in difference between principal stresses

due to the increase of frictional strength of the crust with

depth (Zoback, 2010; as observed in the West Netherlands

Basin), and with the decrease of this difference as severe

overpressure develops due to the decrease of its frictional

strength with elevated pore pressure and decreased

effective normal stress (Zoback, 2010).

Pressures, fluid dynamics and geological & 
hydrogeological framework

The multi-well cross plots (Figs 6, 7, 8 and 9) and cross-sections

(Figs 10, 11, 14, 15 and 16) illustrate the regional variation in

fluid pressure and excess fluid pressure in relation to the

geological framework. The following sections present detailed

descriptions of the pressure distributions in the main

stratigraphic units and discuss the associated fluid dynamics. 

Pressure distribution and fluid dynamics in Cenozoic

North Sea Group

There are only a limited number of pore pressure measure -

ments available for the North Sea Group and these principally

cover the northern offshore (A, B, and northern F blocks). The

measurements for the sandy units of the Upper North Sea

Group show pore water overpressures not exceeding 0.5 MPa. A
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number of measurements suggest higher pore water over -

pressure do occur at deeper levels in the Lower North Sea Group.

Cenozoic mudstones are known to be susceptible to overpres -

suring in environments of rapid sedimentation worldwide, for

example in the UK, Danish and Norwegian North Sea sectors

(Japsen, 1999; Evans et al., 2003). Japsen’s (1999) study of

interval velocities of the Cenozoic includes the northern parts

of offshore Netherlands. He identified an area of relatively low

velocities for the depth of burial of the Paleogene in the A and

B blocks and northern F blocks and adjacent Central North Sea

area. Japsen suggested that the identified velocities of the

Paleogene are low relative to depth because of overpressured

and undercompacted conditions related to rapid Late Cenozoic

loading. The analysis of sonic and 3D seismic data in the

southern Dutch Central Graben by Winthaegen & Verweij (2003)

confirmed such regional undercompaction and overpressuring

of the mudstones of the Lower North Sea Group. 

Vejbaek (2008) suggested that the top of a transition zone

between overpressured conditions to hydrostatic conditions in

the Lower Cenozoic sediments in the Danish North Sea coincides

with a layer of intense faulting. Non-tectonic polygonal fault

networks have been identified within layer-bound fine-grained

sediments in different passively subsiding basins worldwide,

including the Central North Sea (e.g. Cartwright & Dewhurst,

1998; Goulty, 2002). The now preferred interpretation for the

occurrence of such faults is the exceptionally low coefficient of

friction of these fine-grained sediments as measured by Goulty

(2002, 2008; Goulty & Swarbrick, 2005). This in combination

with a zone of effective stress minimum that, according to

Vejbaek (2008), occurs close to the top of the overpressured

interval in Cenozoic mudstones in the Danish North Sea explains

the relation between the top of the overpressured zone and

small-scale intra-formational faulting in the upper part of the

Palaeogene. Seismic interpretation by Steegh et al. (2000)

revealed a similar layer of intense faulting in the Dongen Clay

Formation of the Lower North Sea Group in block L8 in the

Dutch North Sea. Recently a layer of intense faulting was also

recognised from seismic in different parts of the Dutch North Sea

(Schill Grund and Ameland platforms and northern offshore;

Fig. 12). Possibly this zone of intense faulting in North Sea
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Fig. 12.  Seismic cross-section showing layer of intense faulting below the Mid-Miocene Unconformity (block F3 in the Dutch Central Graben). Map view

shows the polygonal nature of the faults. These polygonal faults may mark the top of the transition zone between overpressured and normal pressured

conditions in Cenozoic sediments.



Group mudstones below the Mid-Miocene Unconformity also

reflects the top of current palaeo-overpressuring in Lower

Cenozoic sediments in offshore Netherlands.

The southward decreasing thickness and increasing sand

content of the Lower North Sea Group reduces the likelihood of

undercompaction and overpressuring in the southern offshore

and onshore. 

Pressure distribution and fluid dynamics in the

Cretaceous Chalk Group

Figure 13 shows the pore water overpressure distribution in the

Chalk Group in the offshore Netherlands and adjacent UK,

Norwegian and Danish parts of the Central Graben. The Dutch

pressure data are in accordance with results of regional pressure
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and hydrodynamic studies in the UK, Norwegian and Danish

sectors of the Central Graben (Dennis et al., 2000; Moss et al.,

2003; Surlyk et al., 2003; Dennis et al., 2005). These studies

showed the existence of dynamic basin-wide aquifer conditions

with flow directed towards the Step Graben and northern part

of the Dutch Central Graben. Cross plots of pressure versus

depth in the Chalk in the northern part of the Dutch Central

Graben (e.g. in A blocks) showed a change of pressure with

depth that follows the hydrostatic gradient. This indicates that

the pressures are able to equilibrate vertically and that the

Chalk in these locations acts as an aquifer, at least in the

vertical direction. The Chalk Group in the UK, Norwegian and

Danish sectors of the North Sea include important oil fields.

Most of these Chalk fields produce from the uppermost part of
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the Chalk, while its lower part, and the lower Cretaceous mud -

stones act as a regional seal restricting fluid flow (Winefield et

al., 2005; Swarbrick et al., 2010).

The observed overpressure distribution seems to be in

accordance with the undercompacted nature of the Chalk

Group relative to its burial depth in the northern offshore

(undercompaction was identified by Van der Molen, 2004;

Verweij, 2006). The undercompacted nature of the Chalk Group

and the observed overpressures indicate that the Chalk Group

is not able to dewater rapidly enough through the overlying

Cenozoic mudstones to keep pace with recent sedimentary

loading, i.e. the Cenozoic mudstones act as a hydraulic seal.

Figure 13 shows that the overpressures clearly reduce towards

the inverted centre of the Broad Fourteens Basin, where the

Chalk Group is missing by erosion and the thickness of the

Lower North Sea Group is greatly reduced.

An important mechanism influencing the development of

overpressure and fluid flow in the Chalk Group is sedimentary

loading distribution after deposition of the Chalk. The current

total thickness of Cenozoic sediments illustrates that the total

sedimentary load imposed during the Cenozoic increases

northward (Fig. 5). Long-time sedimentation rates varied during

the Cenozoic and generally did not exceed 50 m/My, except

during the last few million years (Fig. 4). The Quaternary part

of the Upper North Sea Group (Fig. 5) also increases northward

in thickness and reaches magnitudes exceeding 900 m in the

northern part of the Dutch Central Graben and Step Graben

corresponding to sedimentation rates of more than 400 m/My. 

2D basin modelling studies in the southern part of the

Dutch Central Graben showed that the present-day pressure

conditions in the Chalk and underlying Jurassic reservoirs,

could indeed be related to rapidly increasing rates of

sedimentary loading during Pliocene and Quaternary times

(Nelskamp et al., this issue).

Pressure distribution and fluid dynamics in the

Rijnland Group

The sandstone units of the Rijnland Group occur mainly in the

southern half of the area (for example in the southern offshore

and to the northeast of Broad Fourteens Basin; onshore in West

Netherlands Basin, Lower Saxony Basin, Friesland Platform). In
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these areas the fluids are normally pressured to only slightly

overpressured. For example, the pore water overpressures

decrease from 2.5 MPa along the north-eastern sand limit located

to the northeast of the Broad Fourteens Basin to 0.2 MPa

towards its inverted basin centre (where Rijnland and Chalk

groups are missing by erosion). In the West Netherlands Basin

the fluid overpressures vary between 0.3 and 2.7 MPa. In the

Lower Saxony Basin the fluid pressures are less than 2 MPa

(note that these fluid overpressures may also include gas

pressures). 

Pressure distribution and fluid flow in the Upper

Jurassic Schieland/Scruff/Niedersachsen groups

The present-day distribution of the Upper Jurassic sediments is

restricted to the basin and graben areas. The pressure-depth

plots (Figs 8 and 9) and cross-sections (Figs 10, 11, 14 and 15)

show that the Upper Jurassic is overpressured in the northern

basins. This is in contrast to the southern basins where normal

pressures to only minor overpressures prevail. The maximum

fluid overpressures occur in the southern and northern part of

the Dutch Central Graben and in the Terschelling Basin.

Assuming that late sedimentary loading is the main

pressure generating mechanism for the Jurassic sediments, one

would expect that the overpressure distribution in the Upper

Jurassic sediments would reflect the northward increasing

sedimentation rates in the same way as observed in the Chalk

Group. However, the overpressures do not show this relationship

in the Terschelling Basin and Dutch Central Graben. Instead, it

seems that in the competition between pressure generation

through sedimentary loading and pressure dissipation by fluid

flow, the permeability framework has overprinted a dominant

influence on the current distribution of overpressure variations

in the Upper Jurassic. The Upper Jurassic sediments contain

multiple sand-dominated units that have continuous lateral

distributions of variable extent and are intercalated with low

permeability mudstone intervals. Lateral dewatering of the

Upper Jurassic sediments is influenced by basin boundary faults

and large salt structures that may form hydraulic barriers and

locally creates vertical pathways for fluids. 

The vertical dewatering of the sandy Jurassic units is largely

controlled by the hydraulic characteristics and thickness of

the overburden. The overpressure variations in the northern

offshore show a strong relation with the lateral variation in the

thickness and hydraulic characteristics of the overburden.

Figure 11 reveals this spatial relation between differences in fluid

overpressure in the Upper Jurassic Group in the Dutch Central

Graben, thickness, and composition of the low permeable units

overlying the Upper Jurassic reservoirs. The pore water over -

pressures exceed 10 MPa in the Upper Jurassic in the southern

L5 block (Figs 11 and 15) and 9 MPa in the northern F2/F3

blocks in the Central Graben (Fig. 14). These overpressures 

are maintained in the Upper Jurassic sandy units by the low

permeability mudstones of the Upper Jurassic Group, Rijnland

Group, Chalk Group and the mudstones of the Lower North Sea

Group. In contrast the pore water overpressures in the Upper

Jurassic decrease to magnitudes of approximately 6 MPa in the

inverted centre of the graben (e.g. block F17). The Chalk Group

is absent through erosion in the inverted centre and its

thickness reaches 300 m over most of the graben area. In the

southernmost part of the Dutch Central Graben, away from the

inverted centre, its thickness increases rapidly. The total

thick ness of low permeable units capping the Upper Jurassic

reservoir in the inverted part of the graben is reduced due to

erosion of the Chalk and Rijnland Groups, and reduced deposi -

tional thicknesses of the Lower North Sea Group (Fig. 11),

allowing overpressures to dissipate more rapidly. 

The overpressures in the Upper Jurassic, especially in the

southern part of the graben, are significantly higher than those

observed in the overlying Chalk Group (Figs 10, 11 and 13). This

suggests that there is no rapid vertical hydraulic equilibration

of overpressures between these units in that area. This is in

accordance with previous hydrodynamic analyses of the

pressures and mudweights in and below the Chalk Group in the

Dutch offshore revealing a lack of hydraulic communication

between pre-Cretaceous units and the upper part of the Chalk

Group (Verweij, 2006). Similar findings are described for the

Central North Sea area (Winefield et al., 2005; Swarbrick et al.,

2010).

The overpressures in the Upper Jurassic reservoirs (dominated

by the Terschelling Sandstone Member of large areal extent) in

the Terschelling Basin do not show the same regional variations

as observed in the Dutch Central Graben (Figs 10 and 11): the

overpressures all exceed 10 MPa and are comparable in magni -

tude to those observed in southern part of the Dutch Central

Graben. The overpressures are likewise maintained by overlying

low permeability mudstones of the Upper Jurassic and Rijnland

groups, Chalk Group and mudstones of the Lower North Sea

Group. Similar magnitudes of overpressure in the Terschelling

Sandstone Formation suggest that overpressures are laterally

equilibrated and that there exists lateral hydraulic continuity

in these sandstones of large lateral extent. 

Locally the pore water overpressure distributions are

indicative of vertical communication between Upper Jurassic

and Chalk, such as in the northern part of the Dutch Central

Graben (block F3). Here the pore water overpressures in both

units have similar magnitudes. In addition, the overpressures

in the Upper Jurassic decrease towards a salt structure

indicating lateral dewatering direction towards the salt

structure, and vertically upwards along the salt structure into

the Chalk Group (Fig. 14).
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Pressure distribution and fluid dynamics in the

Germanic Trias groups

Severe overpressures occur in sediments of the Germanic Trias

groups in the northern offshore and north-eastern onshore

(Figs 8, 10 and 11). The highest pore water overpressures 

were observed in Triassic sandstones in the Terschelling Basin

(Pexcess, w = 35.9 MPa in block M1, Pexcess = 39.5 MPa in block

G16) and Dutch Central Graben (Pexcess, w = 31.7 MPa in block

F15; Pexcess, w = 28.9 MPa in block L2; Pexcess, w = 20.3 MPa in

block B14). Pore water overpressures reach values of more than

12 MPa on the offshore Schill Grund Platform, while over -

pressures do not exceed 8 MPa on the platforms and highs to

the west of the Dutch Central Graben. The pore water overpres -

sures decrease away from the Dutch Central Graben: from east

to west on the Cleaverbank Platform, and from NE to SW towards

the Broad Fourteens Basin and southern part Central Offshore

Platform. The pore water overpressures reach magnitudes of

11-12 MPa in the Lower Saxony Basin. The pore waters in the

southernmost basins are only slightly overpressured with

Pexcess, w < 2.8 MPa in Broad Fourteens Basin, and <1.6 MPa in

West Netherlands Basin. The pressure-depth plots (Figs 8 and

9) show a large lateral variation in overpressure for the same

depth of measurement, especially in the Terschelling Basin and

Dutch Central Graben.

The thickest package of Lower and Upper Germanic Trias

sediments is present in the Step Graben, Dutch Central Graben,

Terschelling Basin and Lower Saxony Basin, and also in the

southern basins. The Triassic was variably eroded during the

Late Jurassic from across the platform and structural highs. It

is completely absent on the Texel-IJsselmeer High, on large

parts of the Friesland and Cleaverbank Platforms, and on parts

of the Schill Grund Platform (Duin et al., 2006).

Comparing the overpressure distribution with the geological

framework reveals some interesting relations (Figs 10 and 11).

Maximum overpressures occur in Triassic sandstone units that

overly Zechstein salt, are laterally hydraulically restricted by

Zechstein salt structures, and are capped by evaporite/salt units

of the Upper Germanic Trias Group. This situation occurs in the

Terschelling Basin, Dutch Central Graben, and Lower Saxony

Basin. Hence the most important low permeable units controlling

the preservation of overpressure in the Triassic sandstones are

the Zechstein salt deposits and structures and the evaporites

of the Upper Germanic Trias Group. 

In those parts of the subsurface where Zechstein salts are

present, and Upper Triassic evaporites are missing or do not

form a laterally continuous hydraulic seal, the Lower Germanic

Trias is still overpressured, but less extreme. Overpressure

values approach those observed in Upper Jurassic units (for

example in the south-eastern part of the Terschelling Basin,

block M4). Figures 10 and 15 illustrate this influence of the

distribution of the Upper Triassic evaporites on the overpressure

distribution in the Lower Triassic sandstones. The cross-section

through the Terschelling Basin (Fig. 10) indicates that the

Upper Triassic Group (including the low permeable evaporites)

thins out towards the east. As a consequence, the Upper

Triassic evaporite seal is missing in the eastern part of the basin

allowing lateral dewatering of formation water through the

Lower Triassic sandstones into overlying Jurassic units and at

least partial dissipation of overpressures. The Lower Cretaceous

mudstones and the low permeability part of the Chalk Group

acts as a top seal for fluids in both Triassic and Jurassic units.

A similar situation is depicted in Fig. 15 for the southern part

of the Dutch Central Graben.

Pressure distribution and fluid flow in the Upper

Rotliegend Group

The distribution of fluid overpressures in Permian Rotliegend

sandstone reservoirs in offshore and north-eastern onshore

parts of the Netherlands is described in detail by Verweij et al.

(2011). The overpressure distribution is characterised by a

general regional trend of decreasing fluid overpressures from

northeast towards the south (Figs 8 and 9). The fluid overpres -

sure values vary between severe overpressures in the southern

part of the Dutch Central Graben (Pexcess > 40 MPa in block L2) and

in the northern part of the Lauwerszee Trough (Pexcess > 20 MPa)

and near hydrostatic pressures in southern offshore and onshore

(e.g. Pexcess < 1.5 MPa in West Netherlands Basin). The highest

overpressures occur in a zone following the northern limit of

the Permian Rotliegend reservoirs, where Zechstein evaporites

restrict vertical bleed off of pressures (Verweij et al., 2011).

The rather abrupt changes in overpressure along the northern

sandstone limit (Fig. 16) are probably related to fault-related

restricted lateral continuity of the Rotliegend reservoir in

combination with its decreasing thickness and permeability

close to the northern sand limit (Verweij et al., 2011). Fault

sealing on a geological timescale was identified to play a major

role in explaining present-day location and hydrocarbon

column heights of numerous fault-bounded gas fields in the

Upper Rotliegend gas play in the Netherlands (Tabor et al.,

2003; Corona, 2005, 2010; Van Hulten, 2010).

Pressure distribution and fluid flow in the Limburg

Group

The pressure data for the Limburg Group are relatively sparse and

scattered over the area. Most data are from the platform areas

in the north-western offshore. The highest pore water over -

pressures were observed in the northernmost offshore in the

Step Graben (Pexcess,w ≈ 23 MPa in block A11; Pexcess, w ≈ 34 MPa

in block F7). The pore water overpressures on the adjacent

plat form areas (D and E quadrants) are much lower (Pexcess, w ≈

6-7 MPa). The large difference in overpressure between the

graben (block F7) and the platform clearly indicates that a

permeability barrier (probably related with the basin boundary
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fault zone) severely hinders equilibration of the overpressures.

South of the D and E quadrants the pore water overpressures

decrease towards values of approximately 4 MPa in the northern

part of the Broad Fourteens Basin. The limited number of data for

the onshore Netherlands indicate that the highest magnitudes of

all fluid overpressures occur in the northeast (Pexcess ≈ 16 MPa at

4 km depth on the eastern part of Groningen High; Pexcess ≈ 6 MPa

at 3300 m in the Lower Saxony Basin). On the Friesland Platform

the observed magnitudes are less than 3.8 MPa. On the Texel-

IJsselmeer High, where the Zechstein salt seal is missing and

the Limburg Group is at relatively shallow depth, the fluid

overpressure varies between 3.5 (at ~2600 m depth) and 5 MPa. 

Pressure distribution and fluid dynamics in the

Carboniferous Limestone Group

Current information on the pressure condition in the

Carboniferous Limestone Group of Dinantian age is restricted

to data from 1 well located on the south-eastern part of the

Texel-IJsselmeer High. The pore water overpressure reaches a

magnitude of 15 MPa at 4600 m. Irrespective of the mechanism

that created this high overpressure, the permeability framework

largely controls its preservation. There is a difference of 11.5 MPa

in overpressure between the Limburg Group at ~2600 m and the

Limestone Group at 4600 m depth. Vertical dissipation of

overpressure from the Dinantian limestones towards shallower

depths is hindered by a 2000 m thick package of predominantly

low permeable shale with sandstone intercalations.

Conclusions

The regional distribution of fluid overpressure in the Dutch

subsurface shows great spatial variations in magnitude on

different scales, both horizontally and vertically. On a regional

scale, the observed fluid pressures and leak-off pressures

demonstrate a clear difference between fluid overpressure

conditions in the southern and those in the north and north-

eastern part of the study area. In the southern area, close to

normal fluid pressures exist and are well below measured leak-

off pressures. In the north, formation fluids are overpressured

and approach the measured leak-off pressures in the Step

Graben, Dutch Central Graben, Terschelling Basin, Schill Grund

Platform and Friesland Platform. The regional differences in

fluid overpressure can in large part be explained by a combi -

nation of the differences in geological framework and burial

history: 

–   The permeability framework of the northern and north-eastern

area is significantly affected by horizontal and vertical

permeability barriers created by Zechstein and Triassic salt

deposits and structures. These permeability barriers severely

restrict fluid flow and dissipation of overpressures. The highest

overpressures occur in salt-related hydraulically restricted

parts of the subsurface (for example, Pexcess > 40 MPa within

the Zechstein Group; Pexcess > 30 MPa in Lower Germanic

Trias Group in Terschelling Basin and Dutch Central Graben;

Pexcess > 40 MPa in Upper Rotliegend Group in Dutch Central

Graben).

–   In the north, the pressure systems in Cenozoic mudstones,

Cretaceous Chalk and Rijnland Group, and Jurassic units can

largely be explained by a balance of differential, relatively

rapid Late Cenozoic - Quaternary sedimentary loading which

increased the pore pressure, and the dissipation of that

pressure controlled by the permeability framework. The

distribution and sealing character of the laterally extensive

Lower Cenozoic mudstones, the Lower part of the Chalk

Group and the mudstones of the Cretaceous Rijnland

Formation directly influence the pressure distribution in

underlying units by retarding the vertical dissipation of

overpressures. This is in accordance with findings concerning

the origin of overpressures in the North Sea outside the

Dutch territory (e.g. Gaarenstroom et al., 1993; Moss et al.,

2003; Winefield et al., 2005). 

-    In the south the absence of Zechstein and Triassic salt, the

relatively low rates of sedimentary loading, and relatively

permeable sedimentary units resulted in largely normally

pressured conditions. 

It is clear that the identified great spatial variations in

magnitude of fluid overpressures in the Dutch subsurface

requires detailed understanding of the pressure system to ensure

a responsible multiple use of the subsurface and safe and cost

effective drilling. The regional characterisation of the pressure

system presented here, including the identified close link with

the geologic framework, provides the regional framework for

such understanding.
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