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The influence of the cross-section shape on pressure driven viscous flow through a uni-
form channel is assessed by presenting analytical flow solutions of velocity distribution,
volume flow rate and shear stress for different cross-section shapes. Next, a simplified
flow model through a non-uniform constricted channel is formulated which accounts for
flow inertia, viscosity and cross-section shape. The model outcome is quantified for dif-
ferent fluids, flows and geometrical properties relevant to physiological flows. It is seen
that a commonly applied quasi-one-dimensional (1D) model is not accurate indicating
the need to account for the cross-section shape.
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1. Introduction

Pressure driven channel flow is associated with physiological flows for which con-

stricted channel portions occur either naturally or due to a pathology. Well-

known examples are airflow through the human airways (human speech production,

asthma, obstructive sleep apnea) or blood flow through a stenosis.

Consequently, efforts are made to model pressure driven flow through constricted

channels in order to understand the mechanisms involved and to develop aiding

tools for healthcare workers such as surgeons, medical doctors, speech therapists,

prosthesis designers (dental or glottal), aerosol spray designers, etc. Due to the com-

plexity of the human respiratory and cardiovascular system, most studies severely

simplify the physiological reality in order to come up with a configuration depending

on a limited number of meaningful physiological and physical parameters [Lucero

et al., 2000]. Such a simplification enhances understanding of the ongoing physical
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phenomena and facilitates experimental validation of the models accuracy [Shapiro,

1977; Pedley and Luo, 1998; Cisonni et al., 2008; Lorthois et al., 2009 and Stewart

et al., 2010].

In general, simplifications of the flow model through portions of the respiratory

or cardiovasculars system are based on a non-dimensional analysis of the governing

Navier–Stokes equations [Batchelor, 2000]. Accounting for typical values of phys-

iological, geometrical and flow characteristics result in non-dimensional numbers

(Mach number, Reynolds number, Strouhal number and mean aspect ratio) which

allows one to assume the flow as incompressible, laminar, quasi-1D or 2D and quasi-

steady. As an example typical Reynolds numbers Re are Re < 103 for blood flow

and Re < 104 for respiratory airflow. Therefore, quasi-1D or 2D flow models derived

from the boundary layer theory have proven to be extremely useful to capture the

underlying physics and are applied to mimic and predict ongoing phenomena using

few computational resources while allowing experimental validation on replicas with

a different degree of complexity [Van Hirtum et al., 2009; Cisonni et al., 2010; Chouly

and Lagrée, 2012].

Nevertheless, the assumption of a 1D or 2D geometry implies that details of the

cross-section shape perpendicular to the streamwise flow direction x are neglected.

Viscous effects, which will dominate flow development at low Reynolds numbers,

are known to depend on the cross-section shape [Batchelor, 2000]. The aim of the

present paper is, therefore, to propose a flow model capable to account for flow

inertia, viscosity as well as for the cross-section shape.

In the following, assessed cross-section shapes are described in Sec. 2. The influ-

ence of the cross-section shape on pressure driven viscous flow through uniform

channels with different cross-section shapes is assessed analytically in Sec. 3.1. Next,

a simplified flow model is presented accounting for flow through a constricted chan-

nel with different cross-section shape (Sec. 3.2). Finally, model results are presented

and discussed in Sec. 4.

2. Channel Cross-Section Shapes

The channel geometry is fully defined by the cross-section shape and area variation

along the streamwise flow direction x. In order to use the cross-section shape in

quasi-analytical models, only shapes for which the geometry can be expressed ana-

lytically using one or two geometrical parameters are assessed: circle (cl), rectangle

(re), ellipse (el), eccentric annulus (ea), concentric annulus (ca), half-moon (hm),

circular segment (cs), equilateral triangle (tr) and limacon (lm). Different cross-

section shapes and associated geometrical parameters are illustrated in Fig. 1 with

y denoting the spanwise and z the transverse direction.

The chosen shapes have, although a severe idealization, some relevance to

describe the channel cross-section shape in the case of normal as well as patho-

logical geometrical conditions of the human respiratory and cardiovascular systems.

The circular, rectangular and elliptical cross-section shapes are idealized shapes
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Fig. 1. Cross-section shapes with parameters (a, b) in the (y, z) plane. Note that for a circular
segment, b indicates an angle.

assuming a perfect symmetry of the channel or the constricted portion with respect

to the spanwise y and transverse z directions. The eccentric annulus, half-moon and

limacon are crude approximations to an asymmetrical shape due to e.g., the pres-

ence of a polyp, a tumor, an asymmetrical stenosis or a vocal tract articulator. The

circular segment and the equilateral triangle are approximations of asymmetrical

cross-section shapes occurring e.g., at the glottis during normal respiration. Com-

parison between different geometries is made by imposing either area A or hydraulic

diameter D. Cross-section shapes which are defined using two instead of one geo-

metrical parameter require an additional condition. Expressions for A, D and total

width ytot as function of geometrical parameters (a, b) are given in Appendix A.

3. Analytical Flow Model

The flow model and underlying assumptions for pressure driven flow through a

uniform and constricted channel portion is outlined in Secs. 3.1 and 3.2, respectively.

Within the context of physiological fluids both air and blood are considered for

which characteristic fluid properties are summarized in Table 1.

Table 1. Overview fluid properties.

Dynamic viscosity, µ [Pa.s] Density, ρ [kg/m3]

Blood 3.5 × 10−3 1060
Air 1.8 × 10−5 1.2
Ratioa 194 883

aRatio of blood property to air property.
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3.1. Viscous flow: Cross-section shape

For a given fluid with dynamic viscosity µ and under the assumptions of lami-

nar, incompressible, parallel and steady viscous flow through a uniform channel

with arbitrary but constant cross-section shape, the streamwise component of the

momentum equation expressed in Cartesian coordinates (x, y, z) reduces to the fol-

lowing Poisson equation [White, 1991; Batchelor, 2000]:

1

ρ

dP

dx
= ν

(

∂2u

∂y2
+

∂2u

∂z2

)

, (1)

with driving pressure gradient dP/dx, velocity u(y, z) and kinematic viscosity ν =

µ/ρ. The spanwise and transverse components of the momentum equation become:

∂P

∂y
= 0,

∂P

∂z
= 0 (2)

and the continuity equation yields:

∂u

∂x
= 0. (3)

For uniform geometries and applying the no-slip boundary condition u = 0

on the channel walls, Eq. (1) can be rewritten as a classical Dirichlet problem

which can be solved analytically for simple geometries using e.g., separation of vari-

ables or conformal mapping [Berker, 1963; Shah and London, 1978; Milne-Thomson,

1996; Gutmark and Grinstein, 1999; Lekner, 2007]. Therefore exact solutions can be

obtained for: local velocity u(y, z), local pressure P (x), wall shear stress τ(x) and

derived quantities such as volume flow rate Q. In the following analytical solutions

are given of which some are validated by expressions reported in literature [Papanas-

tasiou et al., 2000; White, 1991; Macdonald, 1893; Piercy et al., 1933; Haslam and

Zamir, 1998; Berker, 1963].

Analytical solutions for the volume flow rate can be generally described by an

expression of the form

Q = βq(a, b)
1

µ

(

−
dp

dx

)

, (4)

for which βq, given in Table 2, depends on the cross-section shape and its parameters

(a, b). It is seen that for all cross-section shapes the resulting volume flow rate is

proportional to the ratio of the driving pressure gradient dP/dx to the dynamic

viscosity µ. Expression (4) also holds in the case of a quasi-1D flow model approach

[Cisonni et al., 2008] for which the viscous contribution to the pressure drop is

accounted for by a Poiseuille term assuming a rectangular cross-section with fixed

width w and height h.

It is easily seen that besides the volume flow rate, Q is also the velocity distri-

bution, u(y, z) is proportional to the ratio of the driving pressure gradient dP/dx
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Table 2. βq(a, b) of Eq. (4) for volume flow rate Q [Papanastasiou et al., 2000; White,
1991; Piercy et al., 1933; Berker, 1963].

Shape βq(a, b)

Circle
πa4

8

Ellipse
π

4

a3b3

a2 + b2

Rectanglea
4a3

3

2

4b − 192a

π5

∞
X

n=1,3,...

tanh(nπb/2a)

n5

3

5

Equilateral triangle

√
3a4

320

Circular segmenta
a4

4

2

4

tan b − b

4
− 32b4

π5

∞
X

n=1,3...

1

n2(n + 2b/π)2(n − 2b/π)

3

5

Eccentric annulusa,b π

8

"

a4 − b4 − 4c2M2

β − γ
− 8c2M2

∞
X

n=1

ne−n(β+γ)

sinh(nβ − nγ)

#

0 < c ≤ a − b, F =
a2 − b2 + c2

2c

M =
√

F 2 − a2

γ =
1

2
ln

F + M

F − M
, β =

1

2
ln

F − c + M

F − c − M

Concentric annulus
π

8

2

6

4

a4 − b4 − (a2 − b2)2

ln
a

b

3

7

5

Half-moon
1

4

»„

2a3b +
21

12
ab3
«

sin(θ1) +

„

a4 − b4

2
− 2a2b2

«

θ1

–

θ1 = arccos(b/2a)

Limacon
π

8
a4
`

1 + 4b2 − 2b4
´

Poiseuillec
wh3

12

aInfinite sum is limited to n ≤ 60.
bc yields the distance between inner and outer circle centers.
cQuasi-1D approach: height h and fixed width w.

and the dynamic viscosity µ so that the following holds using Eq. (4):

u = βu(a, b)
1

µ

(

−
dp

dx

)

or u = Q
βu(a, b)

βq(a, b)
, (5)

in which βu(a, b) gathers the influence of the cross-section shape on the velocity

distribution.

The wall shear stress,

τ = βt(a, b)

(

dp

dx

)

, (6)
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depends on the driving pressure gradient dP/dx and the cross-section shape βt(a, b).

Expressions βu(a, b) for the associated velocity distribution and βt(a, b) for the

associated wall shear stress τ are given in Appendix B.

From expression (4), it follows that the viscous contribution to the pressure

drop is:

∆Pvisc(x) = −µQ

∫ x

x0

dx

βq(a, b)
, (7)

with x0 denoting the channel onset and x > x0. Consequently, ∆Pvisc varies linearly

with volume flow rate Q and dynamic viscosity µ and is inversed proportional to

the cross-section shape factor βq.

3.2. Flow acceleration: Varying streamwise area

For pressure driven flow through a channel with varying streamwise area A(x)

involving a constricted portion, flow inertia cannot be neglected [White, 1991;

Batchelor, 2000]. Therefore, the streamwise component of the momentum equation

is approximated as:

−
Q2

A3

dA

dx
+

1

ρ

dP

dx
= ν

(

∂2u

∂y2
+

∂2u

∂z2

)

, (8)

using dQ/dx = 0, whereas the spanwise and transverse components of the momen-

tum equation are described by (2). It is easily seen that for a uniform channel

dA/dx = 0 holds so that (8) reduces to purely viscous flow described by (1). Neglect-

ing viscosity, i.e., ν = 0, is seen to reduce (8) to the inviscid Euler equation for which

the contribution to the pressure drop is:

∆Pber(x) =
ρ

2
Q2

(

1

A(x)2
−

1

A2
0

)

, (9)

with A0 denoting the unconstricted channel area at the inlet.

The right-hand side of (8) still contains the spanwise and transverse component

and adds therefore a 3D aspect to the model. Classical simplified flow models either

make a 2D assumption by neglecting the spanwise dimension [Van Hirtum et al.,

2009; Cisonni et al., 2010; Chouly and Lagrée, 2012] or fully reduce the problem to

a 1D model for which the right-hand side of (8) is reduced to a flow resistance term

characterized by a constant [Shapiro, 1977; Pedley and Luo, 1998; Stewart et al.,

2010].

In the following, a constricted channel with a smooth or an abrupt diverging area

portion is accounted for, as depicted in Fig. 2. For an abrupt expansion characterized

by a sharp trailing edge, the streamwise position of flow separation xs is fixed and

coincides with the trailing end of the constriction, so that xs = x3 as depicted in

Fig. 2(b). In the case of a smooth expansion, the flow separation position depends

on the channel geometry as well as on the imposed driving pressure gradient dP/dx,
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(a) Smooth expansion (b) Abrupt expansion

Fig. 2. Flow within a converging diverging geometry with upstream area A0 and minimum area
Amin for (a) a smooth and (b) an abrupt expansion.

so that x3 ≤ xs ≤ x4 as illustrated in Fig. 2(a) and the position of flow separation

needs to be determined.

The separation position x = xs corresponds to the position along the diverging

portion where the area yields A(xs) = cs×Amin with cs = 1.2. This ad hoc criterion

is commonly used and validated for a quasi-1D flow model approach [Van Hirtum

et al., 2009; Cisonni et al, 2010; Lucero et al., 2009]. The pressure downstream from

the flow separation point is assumed to be zero so that Pd = 0 holds for x ≥ xs

and the model outcome remains constant for x ≥ xs. Consequently, imposing the

upstream pressure Pup = P0 yields a total driving pressure gradient dP/dx = P0.

Therefore, the same way as for a quasi-1D flow model [Cisonni et al., 2008;

Van Hirtum et al., 2009], firstly, the volume flow rate Q can be estimated from

the imposed pressure gradient using (8). Next, the streamwise distribution of other

quantities such as the pressure distribution up to flow separation can be derived

since from (8), it is easily seen that,

Pup − Pd = ∆Pvisc + ∆Pber, (10)

holds with ∆Pvisc and ∆Pber as defined in (7) and (9).

4. Results

In the following, the influence of the cross-section shape on the model outcome is

assessed for a uniform channel (Sec. 4.1) and for a varying converging diverging

area (Sec. 4.2).

The comparison between different cross-section shapes is assessed by imposing

either area A or hydraulic diameter D. As mentioned in Sec. 2, the circle and equi-

lateral triangle cross-section shapes are fully described by one parameter, acl and

atr, whose value follows immediately from the imposed A or D. For the remaining

cross-section shapes, an additional condition is necessary in order to obtain the

geometrical parameter set {a, b} illustrated in Fig. 1. Two different types of addi-

tional conditions are considered. Firstly, an explicit condition requiring a parameter

αshape is introduced scaling the cross-section shape as: are = αreacl, ael = αelacl,
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Fig. 3. Illustration of the influence of geometrical parameter α on normalized maximum velocity,
umax/ucl

max, for different cross-section shapes and imposed area A = 79 mm2. Vertical lines indicate
values corresponding to parameter set 1 (α1) and parameter set 2 (α2) for which umax/ucl

max ≈ 1
and umax/ucl

max ≪ 1, respectively.

bea = αeaaea, bcs = αcs, bhm = αhmahm and blm = αlm. Secondly, the required

additional condition is obtained by imposing, besides area A or hydraulic diameter

D, a fixed width w.

4.1. Velocity distribution: Uniform channel

The ratio of maximum velocity umax and maximum velocity for a circular cross-

section shape ucl
max is assessed for an imposed area A = 79 mm2 in order to estimate

the influence of the cross-section shape. The ratio umax/ucl
max is constant for a circle

(= 1) and equilateral triangle (= 0.8) since their shapes do not depend on the

parameter α. For all other cross-section shapes, the choice of the parameter α does

influence to some extent the velocity distribution as shown in Fig. 3 by considering

the deviation of umax/ucl
max from 1.

It is seen that varying the cross-section shape by increasing α from 0 (correspond-

ing to a circle) to 0.95 reduces the maximum velocity within 40% for a half-moon

and within 5% for a limacon cross-section shape. Varying the cross-section shape by

increasing α from
√

π/4 (corresponding to a square) for a rectangular and from 1

(corresponding to a circle) for an ellipse to 8 reduces the maximum velocity with

97%. For a circular segment, increasing the angle α from 0◦, at first increases the

maximum velocity until αcs ≃ 85◦. Further increasing the angle causes the maxi-

mum velocity to decrease again. Consequently, Fig. 3 shows that for a constant area

A and cross-section shape, the scaling parameter α influences the effect of viscos-

ity on the flow development since the variation of the ratio umax/ucl
max with α is

significant for all cross-section shapes.

In order to evaluate the impact of the cross-section shape in more detail, two

sets of parameters α are selected, parameter set 1 (α1) and parameter set 2 (α2),

resulting in umax/ucl
max ≈ 1 and umax/ucl

max ≪ 1, respectively. Parameter set 1 (α1)

is defined as: are = 1acl, ael = 1.2acl, bea = 0.2aea, bcs = π/3, bhm = 0.2ahm and

blm = 0.2. Parameter set 2 (α2) yields: are = 5acl, ael = 5acl, bea = 0.6aea, bcs = π/6,

bhm = 0.6ahm and blm = 0.6. Both parameter sets are indicated in Fig. 3.

Three different cross-section shapes are obtained by imposing area A together

with parameter set 1 (α1), parameter set 2 (α2) or fixed width w. The resulting
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(a) Circle (b) Half-moon (c) Equilateral triangle

(d) Limacon (e) Ellipse (f) Eccentric annulus

(g) Rectangle (h) Circular segment

Fig. 4. Velocity distribution u(y/acl, z/acl) for A = 79mm2 and dP/dx = 75 Pa for airflow and
geometrical parameter set 1 (α1).

velocity distribution u(y/acl, z/acl) for a uniform channel with imposed area A =

79 mm2 and pressure gradient dP/dx = 75 Pa is illustrated in Fig. 4 for parameter

set 1 (α1) and in Fig. 5 for parameter set 2 (α2) and fixed width, (w).

From Fig. 4, obtained by using parameter set 1 (α1), it is seen that in accordance

with Fig. 3 the maximum velocity for all cross-section shapes varies between values

observed for a circular and an equilateral triangle cross-section shape so that the

maximum velocity reduction compared to a circular cross-section yields 20%. From

Fig. 5 it is seen that using parameter set 2 (α2) or imposing a fixed width (w)

reduces the velocity more (20% up to 98%).

The influence of the cross-section shape on the maximum velocity is further

quantified in Fig. 6 by imposing either area A = 79 mm2 or the corresponding

hydraulic diameter D = 10 mm in combination with parameter set 1 (α1), parameter

set 2 (α2) or fixed width (w).
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(a) Ellipse (b) Eccentric annulus (c) Half-moon

(d) Circular segment (e) Ellipse (f) Eccentric annulus

(g) Rectangle (h) Circular segment

Fig. 5. Velocity distribution u(y/acl , z/acl) for A = 79mm2 and dP/dx = 75 Pa for airflow:
(a)–(d) geometrical parameter set 2 (α2) and (e)–(h) fixed width (w) with w = 4 × acl.

Figure 6(a) shows the maximum velocity normalized with respect to the max-

imum velocity of a rectangular cross-section shape. As before, the variation from

ure
max for parameter set 1 (α1) is small, yielding less than 5% when imposing A and

less than 15% when imposing D. For fixed area A, the variation from ure
max increases

to 60% in the case of a fixed width w and to more than 300% when parameter set

2 (α2) is used. Imposing the hydraulic diameter D instead of area A limits the

velocity variation to 60% for both parameter set 2 (α2) and fixed width w.

Figure 6(b) illustrates for each cross-section shape the ratio of the maximum

velocity of parameter set 1 (α1) to the maximum velocity obtained using parameter

set 2 (α2) or a fixed width (w). The relative difference between different parameter

sets is limited to 40% when the hydraulic diameter D is imposed. In the case where

area A is imposed, the velocity ratio varies from 40% up to >100%.
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parameter set 2 (α2) and fixed width (w)) for imposed area A = 79mm2 or hydraulic diameter
D = 10mm on the maximum velocity: (a) with respect to maximum velocities associated with a
rectangular cross-section and (b) with respect to maximum velocities associated with parameter

set 1. The dashed line corresponds to uparam1
max /umax = 1.
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Fig. 7. Normalized wall shear stress τ(dP/dx, A).

The mean wall shear stress on the boundary of the cross-section shape as function

of driving pressure gradient dP/dx is illustrated in Fig. 7. The wall shear stress

increases as driving pressure gradient dP/dx decreases or as area A decreases.

4.2. Pressure distribution: Varying streamwise area

The pressure distribution in a constricted channel with varying streamwise area

for different cross-section shapes is assessed using parameter set 1 (α1), parameter

set 2 (α2) and fixed width, (w), defined in Sec. 4.1, for different flow, fluid and

geometrical configurations.

Figure 8 illustrates the pressure distribution for a smooth and abrupt expansion

when the area A = 79 mm2 is imposed using parameter set 1 and P0 = 75 Pa. In
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Fig. 8. Illustration of pressure distribution for airflow and imposing area A = 79 mm2, P0 = 75
Pa, Rc = 30% and Lc = 6 for different cross-section shapes obtained using (a), (b) parameter
set 1, (c) parameter set 2, and (d) fixed width. For completeness also, the pressure distribution
associated with a quasi-1D Poiseuille model outcome as well as inviscid fluid are indicated. The
geometry is indicated in gray shade and the streamwise direction is normalized xN . The legend
denotes assessed configurations from high to low P/P0 within the constriction.

accordance with the findings outlined in Sec. 4.1, the influence of the cross-section

shape on the model outcome is less pronounced using parameter set 1 than using

parameter set 2 or fixed width. Pressure distributions obtained for all cross-section

shapes using parameter set 1 approximate the distribution of an ideal fluid for

which ∆Pvisc = 0 so that the quasi-1D Poiseuille approximation results in a severe

underestimation of the pressure drop along the constricted portion. On the other

hand, it is seen that for parameter set 2 and fixed width, the magnitude of the

pressure drop varies significantly so that, depending on the cross-section shape,

the quasi-1D approximation results in an overestimation, an underestimation or

an accurate estimation of the pressure drop within the constriction. Note that a

rectangular cross-section yields the smallest pressure drop using parameter set 2

and an annulus using fixed width. Moreover, it is observed that imposing a fixed

width results in a match between the quasi-1D Poiseuille approximation and the

pressure distribution obtained using a rectangular cross-section.
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The influence of flow, fluid and geometrical variables — cross-section shape,

constriction geometry, dynamic viscosity, upstream pressure and imposed parameter

(A or D) — on the pressure distribution is quantified by considering ζ, defined as

the ratio of the slope of the normalized pressure drop within the constriction and

the slope obtained assuming a quasi-1D Poiseuille model:

ζ =
|Pmin − P (x2)|

|Pmin − P (x2)|Poiseuille

, (11)

where Pmin denotes the minimum pressure. The value ζ = 1 indicates that the

quasi-1D Poiseuille model provides an accurate estimate of viscous effects, ζ = 0

corresponds to an inviscid fluid, ζ < 1 indicates an overestimation of viscous effects

and ζ > 1 shows that the quasi-1D Poiseuille model results in an underestimation of

viscous effects. Values of ζ using parameter set 1, parameter set 2 and fixed width

are illustrated in Fig. 9. Different configurations for constriction ratio Rc (30% or
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R
c
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(a) A = 79mm2, P0 = 75Pa, smooth (b) A = 79 mm2, P0 = 75 Pa, abrupt
expansion expansion
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Fig. 9. Illustration of ζ for parameter set 1 (+), parameter set 2 (⊲), fixed width (◦) for different
geometrical, fluid and flow configurations. For subplots in (b), (d) and (c) values of Rc, Lc and µ
are as indicated in Fig. 9(a).
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6%), constriction length Lc (6 or 30), dynamic viscosity µ (air or blood), expansion

geometry (smooth or abrupt), upstream pressure P0 (75 Pa or 1000 Pa) and imposed

variable (area A = 79 mm2 or hydraulic diameter D = 10 mm) are assessed.

Figure 9(a) shows that when the area A of a smooth expansion is imposed, the

quasi-1D Poiseuille model results in either an overestimation (such as parameter

set 1) or underestimation (such as parameter set 2) for a rectangular, elliptical and

concentric or eccentric annulus cross-section. The magnitude of the over- and, in par-

ticular, the underestimation depends on the configuration. In general, it is observed

that the underestimation reduces and even disappears for configurations favoring

viscous effects such as increasing constriction length Lc (Lc = 30), decreasing con-

striction ratio Rc (Rc = 6%) or yet increasing dynamic viscosity µ (µ = µblood).

The overestimation appears to be less sensitive to the exact configuration, including

the cross-section shape as observed for parameter set 1. This is also observed using

a circular segment or limacon cross-section shape, which is in accordance with pre-

vious findings illustrated in Figs. 3 or 8. Imposing the area A of an abrupt instead

of a smooth expansion does not alter the observations with respect to the lack of

accuracy of the quasi-1D Poiseuille model as illustrated in Fig. 9(b).

Increasing upstream pressure P0 reduces the impact of viscosity on the flow,

so that in accordance with the previous findings, applying the quasi-1D Poiseuille

model results in an overestimation or a severe underestimation (600%) of the viscous

flow effects. This is illustrated in Fig. 9(c). Results shown in Fig. 9(a) confirm that

the underestimation with the quasi-1D Poiseuille model reduces as the geometrical

or fluid parameters are altered so that the contribution of viscosity to the pressure

distribution within the constriction increases. Moreover, it is seen from Figs. 9(a)–

9(c) that the quasi-1D Poiseuille model matches the outcome obtained in the case

of a rectangular cross-section shape.

When the hydraulic diameter D is imposed, Fig. 9(d) illustrates that the quasi-

1D Poiseuille model overestimates viscous effects, for all assessed configurations.

Moreover, the variation of the model outcome for different configurations is small

compared to the variation obtained when the area A is imposed.

5. Conclusion

The present paper firstly considers analytical solutions for volume flow rate, velocity

distribution and wall shear stress of purely viscous flow through uniform channels

with different cross-section shapes. Next, a simplified flow model is proposed for

flow through constricted channels which accounts for flow inertia, viscosity as well

as cross-section shape. The model outcome is quantified and compared with respect

to a quasi-1D model approach accounting for flow inertia and viscosity, which is com-

monly used to model physiological flow phenomena. The quasi-1D model approach

is shown to be inaccurate and the inaccuracy increases for flow and geometrical con-

figurations which are not completely dominated by viscosity. Consequently, present

results suggest that when physiological applications are aimed, accounting for the
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cross-section shape improves the model accuracy. Shown results for a limited number

of cross-section shapes can be used as particular cases to validate numerical solu-

tions for an arbitrary cross-section shape.
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Appendix

A. Cross-Sections Shapes: Geometrical Parameters

Expressions for area A, hydraulic diameter D and total width ytot for the cross-

section shapes depicted in Fig. 1 are given in Table A.1.

Table A.1. Area A, hydraulic diameter D and total width ytot for cross-section shapes shown
in Fig. 1 [Blevins, 1992].

Shape A D ytot

Circle πa2 a 2a

Ellipsea πab
4ab

(a + b)

„

1 +
h

4
+

h2

64
+

h3

256

«

2a

Rectangle 4ab
4ab

a + b
2a

Equilateral
triangle

√
3

4
a2

√
3

3
a

√
3

2
a

Circular
segment

a2

2
b

2ab

2 + b
a

Eccentric
annulus

π(a2 − b2) 2(a − b) 2a

Concentric
annulus

Half-
moonb

a2

„

π − θ2 +
1

2
sin(2θ2)

«

4A

(π − θ2)(2a + b)
a + a cos(θ2)

− b2

2
(π − θ2 − sin θ2)

Limacon πa2

„

1 +
b2

2

«

4a
b2 + 2

b2 + 4
a(1 + b) +

„

1

4b2
− a

2b

«

ah =
(a−b)2

(a+b)2
.

bθ2 = 2arcsin( b
2a

).
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Table A.2. βu(a, b) of Eq. (5) for velocity distribution u [Papanastasiou et al., 2000; White,
1991; Piercy et al., 1933; Macdonald, 1893; Berker, 1963].

Shape βu(a, b)

Circle
1

4
(a2 − r2)

Ellipse
1

2

a2b2

a2 + b2

„

1 − y2

a2
− z2

b2

«

Rectanglea
1

2

2

6

4

b2 − z2 − 32b2

π3

∞
X

n=1,3,...

(−1)
n−1

2

cosh
“nπy

2b

”

cosh
“nπa

2b

”

cos
“nπz

2b

”

n3

3

7

5

Equilateral
triangle

1

4
√

3

1

a
(3y2 − z2)(2z −

√
3a)

Circular
segmenta

−1

4

2

4r2

„

1 − cos 2θ

cos b

«

− 16a2b2

π3

∞
X

n=1,3...

(−1)
n+1

2

“ r

a

”

nπ

b cos (nπθ/b)

n(n + 2b/π)(n − 2b/π)

3

5

Eccentric
annulusa,b,c

M2

»

∞
P

n=1
(−1)n

e−nβ coth β sinh (n(η − γ)) − e−nγ coth γ sinh (n(η − β))

sinh (n(β − γ))

· cos (nξ) +
coth γ − coth β

2(γ − β)
η +

β(1 − 2 coth γ) − γ(1 − 2 coth β)

4(γ − β)

− cosh η − cos ξ

4(cosh η + cos ξ)

–

0 < c ≤ a − b, F =
a2 − b2 + c2

2c
, M =

p

F 2 − a2

γ =
1

2
ln

F + M

F − M
, β =

1

2
ln

F − c + M

F − c − M

Concentric
annulus

1

4

»

a2 − r2 + (a2 − b2)
ln(a/r)

ln(b/a)

–

Half-moon
1

4

`

r2 − b2
´

„

2a cos θ

r
− 1

«

Limacond a2

4

ˆ

1 + 2bξ + b2 − (ξ + b(ξ2 − η2))2 − (η + 2bξη)2
˜

Poiseuillee −1

2
(y2 − hy)

aInfinite sum is limited to n ≤ 60.
bc yields the distance between inner and outer circle centers.

cThe mapping is y + iz = M tanh
1

2
(ξ + iη) with 0 ≤ ξ ≤ 2π, γ ≤ η ≤ β.

dThe mapping is (y, z) = (a(ξ + b(ξ2 − η2)), a(η + 2bξη)) on the circle (ξ2 + η2) ≤ 1.
eQuasi-1D approach: height h, 0 ≤ y ≤ h.

1350002-16



Flow in Constricted Channels of Different Cross-Section Shapes

B. Pressure Driven Viscous Flow Solutions

An overview of terms βu(a, b) of Eq. (5) describing velocity distributions u(y, z) for

different cross-section shapes is given in Table A.2. Table A.3 lists the corresponding

term βt(a, b) of Eq. (6) yielding wall shear stress τ .

Table A.3. βt(a, b) of Eq. (6) for wall shear stress τ [Haslam and Zamir, 1998; Berker, 1963].

Shape βt(a, b)

Circle
a

2
, (r = a)

Ellipse − a2b2

a2 + b2

s

y2

a4
+

z2

b4
,

„

y2

a2
+

z2

b2
= 1

«

Rectanglea
8a

π2

∞
X

n=1,3,...

(−1)
n−1

2

i2

2

6

6

4

1 −
cosh

“nπz

2a

”

cosh

„

nπb

2a

«

3

7

7

5

, (y = ±a)

8a

π2

∞
X

i=1,3,...

(−1)
n−1

2 tanh

„

nπb

2a

« cos
“nπy

2a

”

n2
, (z = ±b)

Equilateral
triangle

− 1

a
z

 

z −
√

3

2
a

!

,

 

y = ±
√

3

3
z

!

√
3

2a

„

y2 − a2

4

«

,

 

z =

√
3a

2

!

Circular
segmenta

−

2

6

6

4

r2

4
(1 + 2 tan α) +

4a2α

π2

∞
X

n=1,3...

“ r

a

”

nπ

α

„

n +
2α

π

«„

n − 2α

π

«

3

7

7

5

,
“

θ = ±α

2

”

− a

2

2

6

6

4

„

1 − cos 2θ

cos α

«

− 8α

π2

∞
X

n=1,3...

(−1)
n+1

2
cos (nπθ/α)

„

n +
2α

π

«„

n − 2α

π

«

3

7

7

5

, (r = a)

Eccentrica,b,c

annulus
−M2

»

∞
P

n=1
(−1)n

e−nβ coth β cosh (n(η − γ)) − e−nγ coth γ cosh (n(η − β))

sinh (n(β − γ))

·n cos (nξ) +
coth γ − coth β

2(γ − β)
− sinh η cos ξ

2(cosh η + cos ξ)2

–

, (η = γ, β)

0 < c ≤ a − b, F =
a2 − b2 + c2

2c
, M =

p

F 2 − a2

γ =
1

2
ln

F + M

F − M
, β =

1

2
ln

F − c + M

F − c − M

Concentric
annulus

1

4

»

2b +
a2 − b2

b ln(b/a)

–

, (r = b)

−1

4

»

2a +
a2 − b2

a ln(b/a)

–

, (r = a)

(Continued )
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Table A.3. (Continued )

Shape βt(a, b)

Half-moon
1

4
(4a cos θ − 2b), (r = b)

−1

4

„

b2

2a cos θ
− 2a cos θ

«

, (r = 2a cos θ)

Limacon −a2

2
(1 + 2b cos θ + 2b2) cos θ, (0 ≤ θ ≤ 2π)

Poiseuilled y − h

2
, (y = 0, h)

aInfinite sum is limited to n ≤ 60.
bc yields the distance between inner and outer circle centers.

cThe mapping is y + iz = M tanh
1

2
(ξ + iη) with 0 ≤ ξ ≤ 2π, γ ≤ η ≤ β.

dQuasi-1D approach: Height h, 0 ≤ y ≤ h.
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