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a b s t r a c t

Recent advances in microscale experiments and molecular simulations confirm that slip
of fluid on solid surface occurs at small scale, and thus the traditional no-slip boundary
condition in fluid mechanics cannot be applied to flow in micrometer and nanometer
scale tubes and channels. On the other hand, there is an urgent need to understand fluid
flow in micrometer scale due to the emergence of biochemical lab-on-the-chip system
and micro-electromechanical system fabrication technologies. In this paper, we study the
pressure driven transient flow of an incompressible Newtonian fluid in microtubes with
a Navier slip boundary condition. An exact solution is derived and is shown to include
some existing known results as special cases. Through analysis of the derived solution, it is
found that the influences of boundary slip on the flow behaviour are qualitatively different
for different types of pressure fields driving the flow. For pressure fields with a constant
pressure gradient, the boundary slip does not alter the interior material deformation and
stress field;while, for pressure fieldswith awave formpressure gradient, the boundary slip
causes the change of interior material deformation and consequently the velocity profile
and stress field. We also derive asymptotic expressions for the exact solution through
which a parameter β̄ is identified to dominate the behaviour of the flow driven by thewave
form pressure gradient, and an explicit formulae for the critical slip parameter leading to
the maximum transient flow rate is established.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Within the past decade, one of the important scientific research focusesworldwide has been on the study of the behaviour
of materials at micro and nanoscales. Advances from the research community in this area led to the development of many
biological and engineering devices and systems inmicroscale and nanoscale [12]. Most of these devices and systems involve
fluid flow through microchannels, referred to as microflows [1,9,8,10]. Typical examples include fuel cell devices, drug
delivery systems [23], biological sensing and energy conversion devices [16]. As the behaviour of fluid flow in these systems
determines the functional characteristics of the systems, the study ofmicroflows is attractingmore andmore attention from
the science and engineering communities in order to derive a better understanding of the mechanism of microflows and
develop better models [7].

For the flow of incompressible Newtonian fluids, the governing field equations are the incompressible continuity
equation and the Navier–Stokes equations. In addition, a boundary condition has to be imposed on the field equations.
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Traditionally the so-called no-slip boundary condition is used, namely the fluid velocity relative to the solid is zero on the
fluid–solid interface [22]. However, the no-slip condition is a hypothesis rather than a condition deduced from any principle,
and thus its validity has been continuously debated in the scientific literature. Although many experimental results were
shown to support the no-slip condition including those by Coulomb and Couette, evidences of slip of a fluid on a solid
surface were also reported by many others [18]. Chauveteau [5], Tuinier and Taniguchi [26], and Vargas and Manero [27]
studied the flow of polymer solutions in porous media and showed that the apparent viscosity of the fluids near the wall
is lower than that in the bulk and consequently the fluids can exhibit the phenomenon of apparent slip on the wall. More
recently, experiments in micrometer scale and molecular dynamic simulations were carried out to investigate the nature
of fluid interaction with the solid surface [3]. It has now been established that the interaction of fluid with the solid surface
of microchannels is very different from that in large systems, due to the large ratio of surface area with volume for the
microsystems. The flow of fluids in microsystems is granular and slip can occur [2,24,31,36]. Hence, the no-slip condition is
not acceptable for fluid flows in microchannels although it is applicable to fluid flows in large systems.

To describe the slip characteristics of fluid on the solid surface, Navier introduced a more general boundary condition,
namely the fluid velocity component tangential to the solid surface, relative to the solid surface, is proportional to the shear
stress on the fluid–solid interface. The proportionality is called the slip length which describes the ‘‘slipperiness’’ of the
surface [33,13]. Although Navier’s slip condition was proposed about two hundreds year ago, it attracts significant attention
of the science and engineering communities only very recently for the study of flows in microscale. Recent advances in
the manufacture of microdevices enable experimental investigation of fluid flow in microscale, and many experimental
results have provided evidences to support the Navier slip condition [11,33,18]. Some attempts have also been made to
use nanotechnologies for the surface treatment of microchannels so as to achieve large slip for maximizing the transport
efficiency of fluids through microchannels. Over the last few years, various investigations have also been made to study
various flow problems of Newtonian and non-Newtonian fluids with Navier slip boundary condition [6,14,21,20,17,34,35].
Some attempts have also been made to derive alternative formulae for the determination of the slip length [25].

Although exact and numerical solutions to various flow problems of Newtonian fluids under the no-slip assumption have
been obtained and are available in literature [22,30,28,29], very fewexact solutions for the slip case are available in literature.
Recently, some steady state slip solutions for the flows through a pipe, a channel and an annulus have been obtained [32,
15]. In this paper, we will derive a new exact solution for the transient flow of Newtonian fluids in microtubes with a slip
boundary condition, and then discuss the influence of the slip length on the velocity field as well as the stress field in the
fluid. The rest of the paper is organized as follows. In the following section, we first define the problem and then present its
mathematical formulation. In Section 3, we solve the underlying boundary value problem to derive the exact solution for
the velocity field and show that the solution includes some existing known solutions as special cases. In Section 4, we derive
exact solutions for the flow rate, the rate of deformation tensor and the stress field in the fluid using the exact solution of
velocity field derived in Section 3. In Section 5, an analysis is carried out to study the influence of the slip parameter on the
flow behaviour. Finally a conclusion is given in Section 6.

2. Problem description and mathematical formulation

Consider the transient flow of an incompressible Newtonian fluid through a circular microtube with the z-axis being in
the axial direction. The field equations governing the flow include the continuity equation and the Navier–Stokes equations
as given below

∇ · v = 0, (1)
∂v
∂t

+ (v · ∇)v = f −
1
ρ

∇p +
µ

ρ
∇

2v, (2)

where p and v are respectively the fluid pressure and velocity vector, ∇ and ∇
2 represent the gradient operator and the

Laplace operator respectively, the dot · between two vector quantities represents the scalar product operation, f is the body
force acting on the fluid, ρ and µ are respectively the fluid density and viscosity. The stress field in the fluid is related to the
velocity field by the following constitutive equation

σ = −pI + 2µd, (3)

while the rate of deformation tensor is related to the velocity vector by

d =
1
2
(∇v + (∇v)T), (4)

where σ = (σij) and d = (dij) denote respectively the second-order stress tensor and the rate of deformation tensor, and I
is an identity matrix.

In cylindrical polar coordinates (r, θ, z), v = ervr + eθvθ + ezu and the gradient operator is

∇ = er
∂

∂r
+ eθ

∂

r∂r
+ ez

∂

∂z
, (5)
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where er , eθ and ez are respectively the radial unit vector, the transverse unit vector and the axial unit vector. Thus, the
continuity equation and the Navier–Stokes equation along the axial (z) direction can be written as

1
r

∂

∂r
(rvr) +

1
r

∂vθ

∂θ
+

∂u
∂z

= 0, (6)

ρ

(
∂u
∂t

+ u
∂u
∂z

+ vr
∂u
∂r

+
vθ

r
∂u
∂θ

)
= ρgz −

∂p
∂z

+ µ

(
∂2u
∂z2

+
1
r

∂

∂r

(
r
∂u
∂r

)
+

1
r2

∂2u
∂θ2

)
. (7)

As the flow is axially symmetric, there is no swirling flow and the velocity components in the radial and transverse directions
vanish, namely

vr = 0, vθ = 0. (8)

Substituting the above into the continuity Eq. (6) yields

∂u
∂z

= 0, (9)

which gives rise to u = u(r, θ). Further, gz = 0, as the flow is horizontal, and hence Eq. (7) becomes

µ

ρ

(
∂2u
∂r2

+
1
r

∂u
∂r

)
−

∂u
∂t

=
1
ρ

∂p
∂z

. (10)

In this work, we consider the fluid flow driven by the pressure field with a pressure gradient q̄(t) that can be expressed by
the Fourier series, namely

∂p
∂z

= q̄(t) = a0 +

∞∑
n=1

[an cos(nωt) + bn sin(nωt)]. (11)

Remark 2.1. As awide range of functions can be expressed in terms of Fourier series, the assumption of the form of pressure
gradient (11) will not lose generality. However, it should be addressed here that our work is limited to the cases where the
pressure gradient varies with time only.

Remark 2.2. Flow of fluids driven by non-constant pressure gradient occurs in many natural and industrial processes. A
typical example is the pulsatile blood flow through arteries in which the pressure gradient driving the flow of blood is in
pulsatile form [29]. It should also be addressed here that various methods can be used to generate pulsatile flows, such as
those by using reciprocating pistons, servo valves or air pulsation [4,19].

For convenience in deriving analytical solutions of the field equations, we use complex number to express (11) by
exponential functions, namely

∂p
∂z

= Re

(
∞∑
n=0

cneinωt

)
, (12)

where

cn = an − bni, einωt
= cos(nωt) + i sin(nωt).

To completely define the problem, the field equations must be supplemented by the boundary condition. In this work, we
use the Navier slip boundary condition. That is, on the solid–fluid interface r = R, the axial fluid velocity, relative to the solid
surface, is proportional to the shear stress on the interface. Assume that the rigid microtube moves with an axial velocity
v̄t(t), then the Navier slip condition can be written as

u(R, t) − v̄t(t) = −l
σrz(R, t)

µ
, (13)

whereµ is the fluid viscosity and l is the so-called slip length, the negative sign on the right-hand side of the above equation
is to reflect that the shear stress on the interface is always in the opposite direction of the axial fluid velocity as any tangential
movement of a fluid particle relative to the solid surfacewill always be restricted by a resistance force acting on the opposite
direction of the relative movement, σrz(R, t) is the shear stress on the interface between the fluid and the wall of the
microtube. It should be addressed here that for l = 0, condition (13) reduces to the no-slip boundary condition; while, for
l → ∞, Eq. (13) gives a surface traction condition for a perfectly smooth surface, i.e, σrz(R, t) = 0. For the problem under
consideration here, we assume that the microtube is fixed spatially, i.e. v̄t(t) = 0. Thus by noting that σrz(R, t) = µ ∂u

∂r , we
have from Eq. (13) that

u(R, t) = −l
∂u
∂r

(R, t). (14)
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3. Exact solution for the transient velocity field

As Eq. (10) is a linear equation, we can use the superposition principle for the solution of the equation. That is, if un is the
solution of (10) for ∂p/∂z = cneinωt , then the complete solution of (10) for ∂p

∂z = Re
(∑

∞

n=0 cne
inωt
)
is u =

∑
∞

n=0 Re(un).
To determine un, we solve

µ

ρ

(
∂2un

∂r2
+

1
r

∂un

∂r

)
−

∂un

∂t
=

cn
ρ
einωt , (15)

which admits solutions of the form

un = fn(r)einωt . (16)

Substituting the above equation into (15) yields

µ

ρ

(
∂2fn
∂r2

+
1
r

∂ fn
∂r

)
einωt

− inωfneinωt
=

cn
ρ
einωt . (17)

For n = 0, Eq. (17) becomes

r2
∂2f0
∂r2

+ r
∂ f0
∂r

=
c0
µ
r2, (18)

which has the general solution

f0(r) = (A1 + A2ln r) +
c0
4µ

r2.

As the solution f (r) must be bounded ar r = 0, we require A2 = 0 and hence, we obtain

u0 = f0(r) = A1 +
c0
4µ

r2. (19)

For n ≥ 1, Eq. (17) gives

1
β2
n

∂2fn
∂r2

+
1

β2
n r

∂ fn
∂r

+ fn =
cn

β2
nµ

, (20)

where β2
n = nβ2 in which β2

= −
ρω

µ
i. Let r̄ = βnr , then Eq. (20) becomes

r̄2
∂2fn
∂ r̄2

+ r̄
∂ fn
∂ r̄

+ r̄2fn =
cn

β2
nµ

r̄2. (21)

The associated homogeneous equation of the above equation is the zero-order Bessel equation and thus has the following
solution

fnc = dnJ0(r̄) + enY0(r̄) = dnJ0(βnr) + enY0(βnr), (22)

where dn and en are integration constants, J0 and Y0 denote the zero-order Bessel functions of the first kind and the second
kind respectively. As fnc must be bounded in the computation domain but Y0(βnr) has singularity at r = 0, we require that
en = 0.

To find the particular solution corresponding to the driving force, we let fnc = C , and then by substituting it into (20), we
have C =

cni
ρnω . Hence, the general solution of (20) is

fn = fnc + fnp = dnJ0(βnr) +
cni

ρnω
. (23)

From (16), (19) and (23) and the superposition principle, we have

u = Re

(
A1 +

c0
4µ

r2
)

+

∞∑
n=1

Re

[(
dnJ0(βnr) +

cni
ρnω

)
einωt

]
.

As c0 = a0 − ib0, we have from the above equation that

u = A1 +
a0
4µ

r2 +

∞∑
n=1

Re

[(
dnJ0(βnr) +

cni
ρnω

)
einωt

]
. (24)
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Consequently we obtain

∂u
∂r

=
a0
2µ

r +

∞∑
n=1

Re
(
−dnβnJ1(βnr)einωt) , (25)

where, in the above formulation, we have used the identity

dJ0(x)
dx

= −J1(x).

Substituting (24) and (16) into boundary condition (14) yields(
A1 +

a0
4µ

R2
+ l

a0
2µ

R
)

+

∞∑
n=1

Re

[(
dnJ0(βnR) +

cni
ρnω

− lβndnJ1(βnr)
)
einωt

]
= 0. (26)

For the above equation to hold for any instant of time t , we require that the constant term and the coefficients of einωt all
vanish, namely

A1 +
a0
4µ

R2
+ l

a0
2µ

R = 0

and

dn[J0(βnR) − lβnJ1(βnR)] +
cni

ρnω
= 0,

which give

A1 = −
a0R2

4µ

(
1 +

2l
R

)
, (27)

dn =
−cni

ρnω[J0(βnR) − lβnJ1(βnR)]
. (28)

Hence, by substituting (27) and (28) into (24), we obtain

u = −
a0R2

4µ

[
1 −

( r
R

)2
+

2l
R

]
−

∞∑
n=1

Re

[
cni

ρnω

(
J0(βnr)

J0(βnR) − lβnJ1(βnR)
− 1

)
einωt

]
. (29)

Remark 3.1. If l = 0, solution (29) becomes

u = −
a0R2

4µ

[
1 −

( r
R

)2]
−

∞∑
n=1

Re

[
cni

ρnω

(
J0(βnr)
J0(βnR)

− 1
)
einωt

]
, (30)

which is the solution for the no-slip case.

Remark 3.2. If l � R and is sufficiently large, solution (29) can be approximated by

u ≈ −
a0lR
2µ

+

∞∑
n=1

Re

(
cni

ρnω

(
J0(βnr)

lβnJ1(βnR)
+ 1

)
einωt

)
, (31)

which corresponds to the case in which the fluid–solid interface is very smooth. Obviously, the velocity profile across the
cross-section of the tube tends to be uniform in this case.

Remark 3.3. If a0 = −AεR, cn = 0 for all n ≥ 1, and l = αR/
√
1 − 2β (the α and β here refer to the slip parameters defined

in Ref. [25]), the solution reduces to a recent result in Ref. [15].

From the above remarks, it is clear that our work generalizes the existing solutions and solves a more general problem.
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4. Exact solution of the flow rate and stress field

From the axial velocity solution (29), the flow rate can be determined by

Q (t) =

∫ R

0
2πru(r, t) dr

= −
a0πR3

2µ

(
l +

R
4

)
−

2π
ρω

Re

[
∞∑
n=1

cnieinωt

n

∫ R

0

(
J0(βnr)

J0(βnR) − lβnJ1(βnR)
− 1

)
r dr

]
. (32)

From the identity
d
dx

[xJ1(x)] = xJ0(x),

we have

d
dr

[rJ1(βnr)] = βnrJ0(βnr) (33)

and hence∫ R

0
rJ0(βnr) dr =

1
βn

[rJ1(βnr)]R0 =
1
βn

RJ1(βnR). (34)

Thus, by substituting the above formula into (32), we have

Q (t) = −
a0πR3

2µ

(
l +

R
4

)
−

2π
ρω

Re

{
∞∑
n=1

cnieinωt

n

[
RJ1(βnR)

βn[J0(βnR) − lβnJ1(βnR)]
−

R2

2

]}
. (35)

The total amount of fluid passing through the tube during the time period [0, T ] can thus be calculated as follows

QT =

∫ T

0
Q (t) dt

= −
a0πR3T

2µ

(
l +

R
4

)
−

2π
ρω2

Re

{
∞∑
n=1

cn
n2

(
einωT

− 1
) [ RJ1(βnR)

βn[J0(βnR) − lβnJ1(βnR)]
−

R2

2

]}
. (36)

Remark 4.1. For the constant component (a0) of the pressure gradient, the flow rate increases linearly as the slip length
l increases. However, for the harmonic components (cneinωt) of the pressure gradient, the relation between the flow rate
and the slip length is not immediately clear from the above solution form as it involves a complex parameter and Bessel
functions with complex arguments, and so we will further investigate this in Section 5.

In what follows, we will determine the stress field in the fluid. From v = er0 + eθ0 + ezu(r) and (5), we obtain

∇v =

( 0 0 ∂u/∂r
0 0 0

∂u/∂r 0 0

)
. (37)

From the above formulae and using (4) and (29), we obtain

drr = dθθ = dzz = drθ = dθz = 0,

drz =
a0r
2µ

+

∞∑
n=1

Re

[
cni

ρnω

(
βnJ1(βnr)

J0(βnR) − lβnJ1(βnR)

)
einωt

]
. (38)

Hence from the constitutive equation (3), we obtain

σrr = σθθ = σzz = −p = q̄(t)x + p0(t), σrθ = σθz = 0,

σrz = a0r +
2µ
ρω

∞∑
n=1

Re

[
cni
n

(
βnJ1(βnr)

J0(βnR) − lβnJ1(βnR)

)
einωt

]
, (39)

where q̄(t) is as given in (11) while p0(t) is arbitrary and can be chosen to meet certain pressure conditions.

Remark 4.2. For the constant component (a0) of the pressure gradient, the shear stress in the fluid is independent of the
slip length l; while, for the harmonic components (cneinωt) of the pressure gradient, the shear stress is influenced by the slip
length.
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5. Influence of boundary slip on flow behaviour

With the exact solutions obtained in the previous sections, in this section, we discuss the influences of the slip length on
velocity, flow rate and stresses in the fluid. As the solution for a general pressure field is the superposition of the solution
due to the constant pressure gradient and the solutions due to the sine and cosine wave pressure gradients, without loss of
generality, we consider here two different cases of driving pressure fields. The first case is for a pressure fieldwith a constant
pressure gradient, while the second one is for a pressure field with a cosine wave form pressure gradient.
Case 1: dp/dz = a0.

For this case, cn = 0 for all n ≥ 1 and thus, from (29), (35) and (39), we obtain the following normalized velocity,
normalized flow rate and normalized shear stress

u∗
= −

4µ
a0R2

u =

[
1 −

( r
R

)2
+

2l
R

]
:= u∗

ns + u∗

trans, (40)

Q ∗(t) = −
2µ

a0πR3
Q =

(
l +

R
4

)
, (41)

σ ∗

rz =
1

a0R
σrz =

r
R
. (42)

Remark 5.1. The normalized velocity consists of two components u∗
ns and u∗

trans. The first component u∗
ns = 1− (r/R)2 is the

solution for the problem under the no-slip condition, namely the no-slip solution, which gives a usual paraboloid velocity
profile; while the second component, u∗

trans = 2l/R, represents a rigid body translation in the axial direction. Hence, we
conclude that the slip solution is simply the superposition of the no-slip solution and a rigid body translation. Themagnitude
of the rigid body translation velocity is linearly proportional to the slip parameter l. Of course, a rigid body translation will
not lead to any change in the material deformation state and stress state. This is why the shear stress in the fluid, in this
case, is independent of the slip length and is the same as that predicted by the no-slip condition.

Remark 5.2. The flow rate is linearly propositional to the slip length l. The flow rate - slip length relation (41) can be used to
design simple experiments to determine the slip length by measuring the flow rate for a given set of values of µ, R and a0.

Case 2: dp/dz = a1 cos(ωt).
For this case, a0 = 0, c1 = a1 ∈ R, cn = 0 for all n ≥ 2. For convenience in the discussion, we introduce the following

dimensionless variables

β∗
= βR, r∗

=
r
R

∈ [0, 1], l∗ =
l
R
, t∗ =

ωt
2π

, u∗
= −

ρω

a1
u. (43)

Then, from (29), we obtain

u∗
= Re

[(
J0(β∗r∗)

J0(β∗) − l∗β∗J1(β∗)
− 1

)
ie2π t∗i

]
. (44)

Let

A = A(r∗) = Re

[
J0(β∗r∗)

J0(β∗) − l∗β∗J1(β∗)

]
, B = B(r∗) = Im

[
J0(β∗r∗)

J0(β∗) − l∗β∗J1(β∗)

]
. (45)

Then

u∗
= Re

[
(A + Bi − 1)

(
cos(2π t∗)i − sin(2π t∗)

)]
= −B cos(2π t∗) + (1 − A) sin(2π t∗). (46)

As the A and B in the above solution form are expressed in terms of the complex parameter β∗ and the Bessel functions with
complex arguments, it is not immediately clear from this solution form whether the velocity is linearly proportional to l∗
or inversely linearly proportional to l∗ or is related to l∗ nonlinearly. Thus, we first proceed below to derive a more explicit
formulae relating u∗ and l∗ in the real domain. As β2

= −
ρω

µ
i =

ρω

µ
e−π i/2, we have

β =

√
ρω

2µ
(1 − i) =

β̄

R
(1 − i),

1
β

=
R
2β̄

(1 + i), β∗
= β̄(1 − i), (47)

where β̄ = R
√

ρω

2µ is a dimensionless parameter. Further, we let

J0(β∗) = γ0 + λ0i, J1(β∗) = γ1 + λ1i, J0(β∗r∗) = γ0r + λ0r i, (48)
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then

J0(β∗r∗)

J0(β∗) − l∗β∗J1(β∗)
= [γ0r + λ0r i]

[γ0 − l∗β̄(γ1 + λ1)] − [λ0 − l∗β̄(λ1 − γ1)]i
[γ0 − l∗β̄(γ1 + λ1)]2 + [λ0 − l∗β̄(λ1 − γ1)]2

(49)

A =
γ0r [γ0 − l∗β̄(γ1 + λ1)] + λ0r [λ0 − l∗β̄(λ1 − γ1)]

[γ0 − l∗β̄(γ1 + λ1)]2 + [λ0 − l∗β̄(λ1 − γ1)]2
, (50)

B =
λ0r [γ0 − l∗β̄(γ1 + λ1)] − γ0r [λ0 − l∗β̄(λ1 − γ1)]

[γ0 − l∗β̄(γ1 + λ1)]2 + [λ0 − l∗β̄(λ1 − γ1)]2
. (51)

Note that, for |y| � 1, the following asymptotic formulae, presented in Ref. [35], can be used to approximate Bessel functions

Jn(x + yi) ≈ Jn(x) +
iy
2

[Jn−1(x) − Jn+1(x)], Jn(y) ≈
1
n!

( y
2

)n
. (52)

We thus have, for β̄ � 1, the following approximations

J0(β∗) = J0(β̄ − β̄i) ≈ J0(β̄) − i
β̄

2
[J−1(β̄) − J1(β̄)] = J0(β̄) + iβ̄J1(β̄) ≈ 1 +

β̄2

2
i,

J1(β∗) = J1(β̄ − β̄i) ≈ J1(β̄) − i
β̄

2
[J0(β̄) − J2(β̄)] =

β̄

2
−

β̄

2

[
1 −

β̄2

8

]
i,

J0(β∗r∗) ≈ 1 +
β̄2r∗2

2
i, J1(β∗r∗) =

β̄r∗

2
−

β̄r∗

2

[
1 −

(β̄r∗)2

8

]
i.

From the above formulae and (48), we have

γ0 = 1, λ0 =
β̄2

2
, γ1 =

β̄

2
, λ1 = −

β̄

2
+

β̄3

16
, γ0r = 1, λ0r =

(β̄r∗)2

2
. (53)

Substituting the above into (50) and (51) yields

A =

[
1 − l∗ β̄4

16

]
+

(β̄r∗)2

2

[
β̄2

2 + l∗β̄2
(
1 −

β̄2

16

)]
[
1 − l∗ β̄4

16

]2
+

[
β̄2

2 + l∗β̄2
(
1 −

β̄2

16

)]2 ≈
1 − β̄4l∗(1 − 8r∗2)/16

1 + β̄4l∗
( 7
8 + l∗

) (54)

B =

−
β̄2

2 (1 − r∗2) − l∗β̄2
[
1 −

β̄2

16

(
1 −

(β̄r∗)2

2

)]
[
1 − l∗ β̄4

16

]2
+

[
β̄2

2 + l∗β̄2
(
1 −

β̄2

16

)]2 ≈ −
β̄2(1 − r∗2

+ 2l∗)
2
[
1 + β̄4l∗

( 7
8 + l∗

)] . (55)

Hence we have

u∗
≈

β̄2(1 − r∗2
+ 2l∗)

2
[
1 + β̄4l∗

( 7
8 + l∗

)] cos(2π t∗) +
β̄4l∗(15 − 8r∗2)/16
1 + β̄4l∗

( 7
8 + l∗

) sin(2π t∗). (56)

The above asymptotic expression of the solution clearly shows that the velocity profile at any instant of time is paraboloid
on the cross-section of the tube. Fig. 1 shows the velocity profiles at t∗ = n for various different values of the slip length,
obtained from (56). It is also obvious from the asymptotic expression that the velocity, in this case, is not the simple
superposition of the non-slip solution and a rigid body translation velocity. It also shows that the normalized velocity
depends only on the dimensionless parameter β̄ in addition to the slip parameter l∗.

To demonstrate the influence of l∗ on the velocity field, we consider here the slip velocity on the wall of the tube r∗
= 1

at a typical instant of time t∗ = n (integer). From (56), the slip velocity on r∗
= 1 at t∗ = n is

u∗
s

β̄2
=

l∗

1 + β̄4l∗
( 7
8 + l∗

) (57)

which clearly indicates that the influence of l∗ on the velocity field is nonlinear. From the above formulae, we obtain that,

∂(u∗
s /β̄

2)

∂ l∗
= 0,

∂2(u∗
s /β̄

2)

∂ l∗2
=

−β̄6
( 7
3 + 4l∗

)[
1 + β̄4l∗

( 7
8 + l∗

)]2 < 0, at l∗ =
1
β̄2

. (58)

Hence, it can be concluded that the slip velocity on the wall achieves its maximum value at l∗ = 1/β̄2. Fig. 2 shows the
influence of the slip length on the slip velocity on the wall. It is clear that the asymptotic formulae provide a very accurate
approximation. In the example, we take β̄ = 0.02.
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Fig. 1. Velocity profiles for various different values of slip length l∗ at a typical instant of time t∗ = n, obtained from (56) with β̄ = 0.02.

Fig. 2. Influence of slip length l∗ on slip velocity on the tube wall. The solid line is obtained from the exact solution (44), while the dots are obtained from
the asymptotic solution (57).

Now we consider the flow rate, from (35), we have

Q ∗(t) = −
ρωβ̄

πa1R2
Q (t) =

2β̄
R

Re

{
ie2π t∗i

[
J1(β∗)

β[J0(β∗) − l∗β∗J1(β∗)]
−

R
2

]}
. (59)

Again, as the solution is expressed in terms of the complex parameter β∗ and Bessel functions with complex arguments, it
is not immediately clear from this solution form whether the flow rate is linearly proportional to l∗, or inversely linearly
proportional to l∗ or is related to l∗ nonlinearly. Thus, we first proceed below to derive a more explicit formulae relating Q ∗

and l∗ in the real domain.
Let C = C(1),D = D(1) and

C(r∗) = Re

[
J1(β∗r∗)

J0(β∗) − l∗β∗J1(β∗)

]
, D(r∗) = Im

[
J1(β∗r∗)

J0(β∗) − l∗β∗J1(β∗)

]
. (60)
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Then

Q ∗(t∗) = Re
{[

(1 + i)(C + Di) − β̄
] [

i cos(2π t∗) − sin(2π t∗)
]}

= −(C − D − β̄) sin(2π t∗) − (C + D) cos(2π t∗). (61)

Noting that

J1(β∗)

J0(β∗) − l∗β∗J1(β∗)
= [γ1r + λ1r i]

[
γ0 − l∗β̄(γ1 + λ1)

]
−
[
λ0 − l∗β̄(λ1 − γ1)

]
i[

γ0 − l∗β̄(γ1 + λ1)
]2

+
[
λ0 − l∗β̄(λ1 − γ1)

]2 , (62)

we have, from the definition of C and D, and (60), that

C + D =
(γ1 + λ1)[γ0 − l∗β̄(γ1 + λ1)] + (λ1 − γ1)[λ0 − l∗β̄(λ1 − γ1)]

[γ0 − l∗β̄(γ1 + λ1)]2 + [λ0 − l∗β̄(λ1 − γ1)]2

≈
−β̄3

( 7
16 + l∗

)
1 + β̄4l∗

( 7
8 + l∗

) . (63)

C − D =
(γ1 − λ1)[γ0 − l∗β̄(γ1 + λ1)] + (λ1 + γ1)[λ0 − l∗β̄(λ1 − γ1)]

[γ0 − l∗β̄(γ1 + λ1)]2 + [λ0 − l∗β̄(λ1 − γ1)]2

≈
β̄

1 + β̄4l∗
( 7
8 + l∗

) . (64)

Hence, from the above and (46), we obtain the asymptotic expression of the transient flow rate

Q ∗(t∗) ≈
β̄3
( 7
16 + l∗

)
1 + β̄4l∗

( 7
8 + l∗

) cos(2π t∗) +
β̄5l∗

( 7
8 + l∗

)
1 + β̄4l∗

( 7
8 + l∗

) sin(2π t∗). (65)

Again, it is interesting to see that β̄ is the only parameter dominating the normalized flow rate in addition to the slip
parameter l∗.

To demonstrate the influence of l∗ on the flow rate, we consider a typical instant of time t∗ = n (integer) at which

Q ∗(n)
β̄3

≈

7
16 + l∗

1 + β̄4l∗
( 7
8 + l∗

) , (66)

which clearly indicates that the influence of l∗ on the flow rate is nonlinear. It is easy to show that at l∗ = 1/β̄2
− 7/16,

the first-order derivative of Q ∗(n) vanishes and the second-order derivative is negative. Hence Q ∗(n) achieves its maximum
value at l∗ = 1/β̄2

− 7/16. Fig. 3 shows the variation of the flow rate with l∗ at t∗ = n.
In the following, we consider the stress field in the fluid. From (39), we obtain the normalized stress as follows

σ ∗

rz = −
ρωR

2µa1β̄
σrz = −

R
β̄
Re

[
βJ1(β∗r∗)

J0(β∗) − l∗β∗J1(β∗)
ie2π t∗i

]
= −Re

{
(1 − i)

[
C(r∗) + D(r∗)i

] [
i cos(2π t∗) − sin(2π t∗)

]}
=
[
C(r∗) + D(r∗)

]
sin(2π t∗) +

[
D(r∗) − C(r∗)

]
cos(2π t∗). (67)

To see the influence of l∗ on the flow rate, we consider a typical instant of time t∗ = n+ 1/4 (n is an integer). Following the
same procedure as that used for the flow rate, we obtain

σ̄rz(r∗) = −
σ ∗
rz(r

∗)

β̄3
= −

C(r∗) + D(r∗)

β̄3
≈

r∗(8 − r∗2
+ 16l∗)/16

1 + β̄4l∗
( 7
8 + l∗

) . (68)

Hence the maximum shear stress, which occurs on the wall surface r∗
= 1, is

σ̄rz(1) ≈
(7/16 + l∗)

1 + β̄4l∗
( 7
8 + l∗

) .
Obviously, as discussed before, σ̄rz(1) achieves its maximum value at l∗ = 1/β̄2

− 7/16. The influence of l∗ on the
normalized maximum shear stress σ̄rz(1) on the wall is as that shown in Fig. 3.
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Fig. 3. Influence of slip length l∗ on flow rate. The solid line is obtained from the exact solution (59), while the dots are obtained from the asymptotic
solution (66).

6. Conclusions

In this paper, we derive an exact solution for the transient flow of an incompressible Newtonian fluid in microtubes with
a Navier slip condition on the boundary. Based on the solution derived, we analyse the influence of the slip parameter on
velocity and flow rate as well as stress field in the fluid. The findings from the work and their significance are summarized
as follows.

(i) The study shows that the influences of boundary slip on the flow behaviour are qualitatively different for different
types of pressure fields driving the flow. For pressure fields with a constant pressure gradient, the boundary slip does
not alter the interiormaterial deformation and stress field, as it only causes the addition of an axial rigid body translation
velocity onto the no-slip solution. However, for the pressure field with a wave form pressure gradient, the influence of
boundary slip on the flow is muchmore complex. The boundary slip causes the change of interior material deformation
and consequently the velocity profile and stress field.

(ii) For the case of constant pressure gradient, a simple explicit formula (41) has been derived relating the flow rate with
the slip length, which can be used as a basis for designing simple experiments to determine the slip length.

(iii) For the flow driven by a cosine wave form pressure gradient, by deriving an asymptotic expression for the solution, we
found that the parameter β̄ dominates the normalized velocity and the normalized flow rate as well as the normalized
stress. We also found that the slip velocity attains its maximum value when l∗ = 1/β̄2, while the flow rate at
t∗ = n + 1/4 achieves its maximum value at l∗ = 1/β̄2

− 7/16.
(iv) The exact solutions of the velocity and flow rate as well as stress field provide explicit analytical formulae describing

the flow behaviour, which provides a basis for designing microtubes and driving pressure field to optimally control the
transient velocity profile and flow rate as well as stress field in the fluid. In addition, the exact solutions also provide a
tool for validating numerical methods developed for solving no-slip problems for which no exact solution is available,
as it is always useful to check the numerical method against the exact solution for a solved problem of similar type
before applying the method to study unsolved problems.
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