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Abstract In this paper, a model is presented that describes

the pressure drop of gas–liquid Taylor flow in round capil-

laries with a channel diameter typically less than 1 mm. The

analysis of Bretherton (J Fluid Mech 10:166–188, 1961) for

the pressure drop over a single gas bubble for vanishing

liquid film thickness is extended to include a non-negligible

liquid film thickness using the analysis of Aussillous and

Quéré (Phys Fluids 12(10):2367–2371, 2000). This result is

combined with the Hagen–Poiseuille equation for liquid flow

using a mass balance-based Taylor flow model previously

developed by the authors (Warnier et al. in Chem Eng

J 135S:S153–S158, 2007). The model presented in this paper

includes the effect of the liquid slug length on the pressure

drop similar to the model of Kreutzer et al. (AIChE J

51(9):2428–2440, 2005). Additionally, the gas bubble

velocity is taken into account, thereby increasing the accu-

racy of the pressure drop predictions compared to those of the

model of Kreutzer et al. Experimental data were obtained for

nitrogen–water Taylor flow in a round glass channel with an

inner diameter of 250 lm. The capillary number Cagl varied

between 2.3 9 10-3 and 8.8 9 10-3 and the Reynolds

number Regl varied between 41 and 159. The presented

model describes the experimental results with an accuracy of

±4% of the measured values.

Keywords Taylor flow � Capillary � Micro-channel �
Liquid film � Pressure drop

List of symbols

a Fit parameter (-)

A Area of the channel cross-section (m2)

Ab Area of the gas bubble cross-section (m2)

b Fit parameter (-)

Bo Bond number (-)

Cab Capillary number based on the liquid properties

and the gas bubble velocity (-)

Cagl Capillary number based on the liquid properties

and the sum of the superficial gas and liquid

velocities (-)

Db Gas bubble diameter (m)

Dc Channel diameter (m)

df Liquid film thickness (m)

Fb Frequency of gas bubbles (s-1)

fFanning Fanning friction factor (-)

fs Slug friction factor (-)

g Gravitational constant (m/s2)

Lb Length of a gas bubble (m)

Lnose Length of the nose of a gas bubble (m)

Ls Length of a liquid slug (m)

Ltail Length of the tail of a gas bubble (m)

P Pressure (Pa)

Pexit Pressure at the channel exit (Pa)

Reb Reynolds number based on the liquid properties

and the gas bubble velocity (-)

Regl Reynolds number based on the liquid properties

and the sum of the superficial gas and liquid

velocities (-)
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ub Velocity of a gas bubble (m/s)

uf Average velocity of the liquid in the film based

on the cross-sectional channel area occupied by

the liquid film (m/s)

Ug Superficial gas velocity (m/s)

Ul Superficial liquid velocity (m/s)

Web Weber number based on the liquid properties and

the gas bubble velocity (-)

Wegl Weber number based on the liquid properties and

sum of the superficial gas and liquid velocities

(-)

z Axial position in the channel (m)

Greek symbols

d Correction on the liquid slug length for the amount of

liquid in the slug surrounding the nose and tail of a

gas bubble (m)

lg Viscosity of the gas (Pa s)

ll Viscosity of the liquid (Pa s)

qg Density of the gas (kg/m3)

ql Density of the liquid (kg/m3)

r Surface tension (N/m)

v Lockhart–Martinelli parameter (-)

/l Lockhart–Martinelli parameter (-)

Subscripts

b Gas bubble

c Channel

s Liquid slug

uc Unit cell

Abbreviations

LMC model The model of Lockhart, Martinelli and

Chisholm (Lockhart and Martinelli

1949; Chisholm 1967)

Kreutzer model The model of Kreutzer et al. (2005b)

1 Introduction

A gas–liquid flow moving through one or several small

channels (diameters are typically \1 mm) is often

encountered in micro-reactors and in micro-scaled heat

transfer equipment. An important design parameter for

these types of devices is the pressure drop and not only for

dimensioning of compressors and pumps and operation of

the device. If the pressure drop is a significant fraction

of the channel inlet pressure, then gas phase expansion

along the channel length is not negligible. The values of all

parameters depending on the volumetric gas flow rate, such

as mass and heat transfer coefficients, are therefore also a

function of the axial position in the channel. Therefore, the

pressure profile needs to be known in order to properly

determine the performance of the device.

Most experimental work available in the literature

concerning pressure drop of gas–liquid flows in small

channels covers a span of flow patterns. It should be noted

that, in this context, small channels are defined as channels

in which surface tension forces dominate gravitational

forces (Angeli and Gavriilidis 2008). The pressure drop is

usually described with a flow pattern independent corre-

lation based on either a Lockhart and Martinelli (1949) or a

homogeneous flow type of approach (Triplett et al. 1999;

Kawahara et al. 2002; Chung and Kawaji 2004). The

accuracy with which these correlations predict experi-

mental results is usually not satisfactory and becomes

worse when the correlation found by one author is used to

predict the data of another. One reason for the failure of the

Lockhart–Martinelli and homogeneous flow correlations at

predicting the pressure drop of gas–liquid flows in small

channels is the absence of the effect of surface tension on

the pressure drop. Contrary to larger channels, for which

these correlations were developed, the effect of surface

tension on the pressure drop is not negligible compared to

the influence of inertial and viscous forces. Chen et al.

(2002) therefore developed a homogeneous flow type

correlation for channels with a diameter smaller than

10 mm that includes surface tension effects in the form of

Bond and Weber numbers. They collected 11 data sets

from literature and compared their correlation and several

other homogeneous flow and Lockhart–Martinelli type

correlations to the data sets and none of them was capable

of accurately predicting the pressure drops. The failure of

the Lockhart–Martinelli and homogeneous flow type

models in predicting pressure drops of gas–liquid flows in

small channels, even when including surface tension

effects, suggests that models are needed which take more

details of the hydrodynamics, such as the spatial gas–liquid

distribution and the velocity distribution of both phases,

into account. This also means that there will not be one

correlation or model capable of describing the pressure

drop for all possible flow patterns, but that a detailed

pressure drop model has to be developed for each indi-

vidual flow pattern. In this respect, it should be noted that

Lockhart and Martinelli themselves state that ‘‘slug flow, in

which alternate slugs of liquid and gas move down the

tube, is eliminated from consideration’’ in the development

of their model (Lockhart and Martinelli 1949).

The focus in this work will henceforth be on obtaining a

model for the pressure drop of gas–liquid Taylor flow in

channels with a diameter smaller than 1 mm. The reason

for considering gas–liquid Taylor flow in favor of other

regimes is that it is one of the main flow regimes of interest

for performing gas–liquid and gas–liquid solid reactions in

micro-structured reactors and monoliths (Kreutzer et al.

2005a; Hessel et al. 2005; Günther and Jensen 2006;

Angeli and Gavriilidis 2008). The gas–liquid Taylor flow
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regime consists of an alternating sequence of gas bubbles

and liquid slugs moving through a small channel. The

length of the gas bubbles is larger than the channel diam-

eter and a thin liquid film separates the gas bubbles

from the channel walls. Furthermore, the liquid in the

slugs forms recirculation cells for capillary numbers

(Cab = l1ub/r) smaller than 0.5 (Thulasidas et al. 1997;

Kolb and Cerro 1993). This further improves radial mass

transfer rates compared to those of mass transfer driven

solely by diffusion because of convection of liquid to and

from the channel wall at, respectively, the back and front of

the gas bubbles.

2 Previous work on pressure drop in gas–liquid

Taylor flow

2.1 The pressure drop over a single gas bubble

The thickness of the liquid film surrounding a Taylor gas

bubble is a defining parameter for describing the hydro-

dynamics of gas–liquid Taylor flow. It has been the subject

of study since Fairbrother and Stubbs (1935) first showed

that a single bubble in a small diameter tube moves faster

than the average velocity in the tube. The liquid film

around the gas bubble causes the bubble to move through a

smaller cross-section than that of the channel. Fairbrother

and Stubbs found the excess velocity of the bubble to be a

function of the capillary number.

Bretherton (1961) expanded on this work and analyti-

cally derived an expression for the liquid film thickness in

channels with a circular cross-section as a function of the

capillary number. Bretherton’s analysis is valid for very

small liquid film thickness df and in absence of significant

inertial and gravitational forces, i.e. Cab ? 0 and

Web = qlDhub
2/r � 1, and results in:

df

Dc

¼ 0:67Ca
2
3

b: ð1Þ

In the same work, Bretherton also presented an expression

for the pressure drop over a single Taylor gas bubble

moving through a liquid-filled channel with a circular

cross-section:

DPb ¼ 7:16 3Cabð Þ
2
3
r

Dc

ð2Þ

Several authors making use of finite element

calculations have confirmed the results from Bretherton’s

analysis for both the liquid film thickness and the pressure

drop over a Taylor gas bubble for low capillary numbers

(Cab \ 5 9 10-3). For larger capillary numbers, where the

liquid film occupies a significant portion of the channel

(df [ 0.02Dc), deviations from Bretherton’s equations are

observed, which was already indicated by Bretherton

himself (Bretherton 1961). A few authors have also

considered inertial effects in their finite element

calculations, indeed finding deviations from Bretherton’s

equations as the capillary number increases (Giavedoni and

Saita 1997; Ratulowski and Chang 1989; Westborg and

Hassager 1989; Heil 2001; Fujioka and Grotberg 2005).

However, none of these authors suggests new expressions for

predicting the liquid film thickness and the pressure drop

over a Taylor gas bubble when the liquid film thickness

occupies a significant portion of the channel and/or inertial

effects are significant. Aussillous and Quéré (2000) have

applied a scaling analysis to Bretherton’s result for the liquid

film thickness to account for both effects. They, however, did

not discuss the implications of their work for the pressure

drop over a Taylor gas bubble. They also did not quantify

their results other than the effect of non-negligible liquid film

thickness, for which they fitted the result of their scaling

analysis to Taylor’s data (Taylor 1961) to obtain:

df

Dc

¼ 0:67Ca
2
3

b

1þ 3:34Ca
2
3

b

ð3Þ

This result is consistent with Bretherton’s result, since

Eq. 3 approaches Eq. 1 for Cab ? 0. They found the range

of maximum Cab, for which, Eq. 3 described their exper-

imental results to scale with (Cab/Reb)0.75. Although the

exact values of Cab and Reb for which Eq. 3 can be applied

thus depend on the physical properties of the liquid and the

capillary radius, the equation was capable of describing all

their experimental result for Cab \ 0.01 and Reb \ 150.

2.2 Pressure drop model by Kreutzer et al. (2005b)

Bretherton’s (1961) work is rarely mentioned by authors

who experimentally studied the pressure drop of gas–liquid

flows in small channels, despite its success. On the other

hand, the authors studying the problem using numerical

methods do not compare their simulation results to exper-

imental results, other than those of Bretherton (1961) and

Taylor (1961) for single bubbles.

A notable exception to the former statement is the work

of Kreutzer et al. (2005b), who performed both numerical

calculations including inertial effects as well as experi-

ments on gas–liquid Taylor flow and compared their results

to Bretherton’s work. They identified two sources deter-

mining the pressure drop in a gas–liquid Taylor flow:

(1) frictional pressure drop in the liquid slugs, and (2) the

pressure drop over the gas bubbles due to effects near the

caps of the bubbles, for which the limit for Cab ? 0 was

described by Bretherton. The pressure drop due to fric-

tional losses in the gas bubbles was not taken into account,
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because it is negligible when compared to the frictional

losses in the liquid due to the large difference in viscosity

of gas and liquid. In their experiments, the Bond number

(Bo = qlgDc
2/r) was in the order of 1 and gravity effects

could therefore be neglected (Edvinsson and Irandoust

1996; Hazel and Heil 2002). Kreutzer et al. did not include

gravity effects in their numerical calculations and used a

no-shear boundary condition at the gas–liquid interface.

Due to the absence of gravity effects and shear of the gas

bubble, the liquid film surrounding the gas bubbles is

stagnant and does not contribute to the pressure drop.

Kreutzer et al. consider the liquid flow in the slugs to be

a fully developed Hagen–Poiseuille flow, which is dis-

turbed by the gas bubbles, causing an excess pressure drop.

The pressure drop for a fully developed Hagen–Poiseuille

liquid flow in a pipe is given by:

� dP

dz
¼ fFanning

1

2
qU2

� �
4

Dc
ð4Þ

where the Fanning friction factor fFanning is equal to 16/Re

for pipes with a circular cross section and Re = qDcU/l.

Kreutzer et al. account for effects near the bubble caps by

adding an extra term to the friction factor, which is

inversely proportional to the liquid slug length Ls and

further depends on the physical properties of the liquid and

the channel diameter. Their modified friction factor for the

flow in the liquid slugs fs is of the form:

fs ¼
16

Regl

1þ a
Dc

Ls

Regl

Cagl

� �b
 !

ð5Þ

in which a and b are constants. The Fanning friction factor

fFanning in Eq. 4 is then replaced with the liquid slug friction

factor fs as defined in Eq. 5. The average velocity of the

liquid in the slug is equal to the average cross-sectional

velocity in the channel Ug ? Ul. The equation for the

pressure drop over the liquid slugs then becomes:

� dP

dz

� �
s

¼ fs
1

2
ql Ug þ Ul

� �2

� �
4

Dc

¼
2fsReglll Ug þ Ul

� �
D2

c

ð6Þ

where the Reynolds number is now given by Regl =

qlDc(Ug ? Ul)/ll.
1 It should be noted that fsRegl in the

right-hand term in Eq. 6 is a constant not depending on any

velocity and equals 16 for a fully developed single phase

Hagen–Poiseuille flow in a pipe with a circular cross-

section.

Since only a part of the channel length is occupied by

liquid slugs, the pressure drop over the liquid slugs must be

multiplied with the fraction of channel length occupied by

the slugs, Ls/(Lb ? Ls), to obtain the pressure drop over the

channel (dP/dz)c:

� dP

dz

� �
c

¼ � dP

dz

� �
s

Ls

Lb þ Ls

� �
ð7Þ

Kreutzer et al. performed both numerical calculations at

various flow conditions and experiments at varying gas and

liquid velocities using several liquids. They fitted the

constants a and b in Eq. 5 to both data sets and the results

are given in Table 1. The pressure drop correlation fitted to

their experiments predicts larger pressure drops for a given

Taylor flow than the correlation fitted to their CFD

simulations. They attribute the difference to Marangoni

effects, where impurities in the gas and liquid may cause

the gas–liquid surface to ‘‘harden’’ and the no-shear

boundary condition at the gas–liquid interface should be

replaced by a no-slip boundary condition. Kreutzer’s

experiments were performed for approximately 3 9 10-3

\ Cagl \ 4 9 10-2, 1.5 9 102 \ Regl \ 1.4 9 103, and

1 \ Wegl \ 15. The value of constant a in Eq. 5 is either

0.17 or 0.07 depending on whether impurities are present

or not. For Reynolds numbers close to unity, they suggest

using Eq. 8 for the liquid slug friction factor instead of

Eq. 5, which they obtained from rewriting Eq. 2 and

further using Eqs. 6 and 7.

fs ¼
16

Regl

1þ 7:16Dc 3Cabð Þ
2
3

32LsCab

 !
: ð8Þ

It should be noted that this result is based on Bretherton’s

analysis and is, therefore, only valid for very thin liquid

films and thus for Cab \ 5 9 10-3 and Web � 1.

Kreutzer et al. compared the pressure drop over a single

Taylor gas bubble obtained from numerical calculations

for Regl = 1 to the values predicted using Eq. 2 and found

a good agreement for 2 9 10-3 B Cagl B 4 9 10-2. This

suggests that the applicability of Eq. 8 extends to

Table 1 Values of the constants a and b in Eq. 5 in the model of

Kreutzer et al. (2005b) from both their experiments and numerical

calculations

a b

Numerical 0.07 0.33

Experimental 0.17 0.33

1 Bretherton (1961) and Aussillous and Quéré (2000) base their

Reynolds, Weber and capillary numbers on the bubble velocity ub.

Kreutzer et al. (2005b) base all these dimensionless numbers on the

sum of the superficial gas and liquid velocities Ug ? Ul. For

negligible film thickness, these are equivalent since ub ? Ug ? Ul

for df ? 0. For non-negligible liquid film thickness, the bubble

velocity can be a significant amount larger than Ug ? Ul, and care

must be taken which velocity is used. In this work, the Reynolds,

Weber and capillary numbers based on the bubble velocity are

indicated by the subscript ‘‘b’’ and those based on Ug ? Ul are

indicated by the subscript ‘‘gl’’.
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Cagl B 4 9 10-2, however, no experiments were per-

formed in order to validate this.

3 Motivation and scope of this work

Lockhart and Martinelli (1949) and homogeneous flow

type models fail to accurately predict the pressure drop of

gas–liquid Taylor flow in small channels, because surface

tension effects and/or hydrodynamic details of the flow,

such as the spatial gas–liquid distribution and the velocity

distributions of both phases, are not taken into account.

Kreutzer et al. (2005b) presented a semi-empirical model

that successfully described their data obtained from

experiments for Reb [ 150. Lower Reynolds numbers can

easily be achieved in channels with a diameter in the order

of 100 lm or smaller. For Reynolds numbers in the order

of 1, Kreutzer et al. presented a model for the pressure drop

of gas–liquid Taylor flows based on Bretherton’s (1961)

results for the pressure drop over a single gas bubble.

However, the model was neither compared to experimental

results nor to numerical calculations and no suggestions are

made for a pressure drop model for Reynolds numbers in

the range 1 \ Reb \ 150.

Therefore, in this work, a model is developed for

describing the pressure drop of gas–liquid Taylor flow with

negligible liquid film velocities for Reb \ 150 and

Cab \ 0.01 using the approach of Kreutzer et al. The

extension of Bretherton’s analysis by Aussillous and Quéré

(2000) is used to obtain an expression for the pressure drop

over a single gas bubble accounting for non-negligible

liquid film thickness. A mass balance-based model for gas–

liquid Taylor flow previously developed by the authors

(Warnier et al. 2007) is used to describe the fraction of

channel length occupied by liquid having a non-zero

velocity causing the liquid frictional pressure drop. The

mass balance based model is then also used to obtain the

pressure drop per unit channel length from the liquid

frictional pressure drop and the pressure drop over a single

gas bubble. The pressure drop model is then compared to

data obtained from experiments with nitrogen/water Taylor

flow in a glass capillary with a circular cross-section and a

diameter of 250 lm. The results from these experiments

are also compared to model predictions using the model by

Kreutzer et al. and the Lockhart–Martinelli–Chisholm

(Lockhart and Martinelli 1949; Chisholm 1967) correlation

(the model is described in Appendix A) to determine if the

newly developed model truly is a significant improvement

compared to currently available models and often used

correlations. Even though gas–liquid Taylor flow was not

considered in the development of the Lockhart–Martinelli–

Chisholm model (Lockhart and Martinelli 1949), the model

has been applied to the Taylor flow regime by various

authors and is, therefore, considered in this work. The

values of various hydrodynamic parameters are obtained

from analysis of images of the flows. Since the pressure

drop model is partly based on the mass balance-based

model, the latter is briefly discussed first.

4 Mass balance-based model

Consider a gas–liquid Taylor flow moving through a

channel with a cross-sectional area A. The gas bubbles

have a velocity ub, a length Lb and occupy a fraction of the

cross-sectional area of the channel Ab/A. The liquid slugs

have a length Ls. The flow is divided into unit cells con-

sisting of one gas bubble, its surrounding liquid film, and

one liquid slug and the unit cell length is Lb ? Ls (Fig. 1).

Continuity requires that the overall average velocity

through any cross-section of the channel perpendicular to

the direction of flow is equal to the sum of the superficial

gas Ug and liquid Ul velocities, which are based on the

channel cross-section A. The flow through plane A1 con-

sists of the gas bubble moving with velocity ub through a

cross-section Ab, and the liquid film moving at an average

velocity uf through a cross-section A - Ab, giving:

Ab

A
ub þ 1� Ab

A

� �
uf ¼ Ug þ Ul ð9Þ

The flow through plane A2 consists solely of liquid,

which occupies the whole cross-section of the channel A,

and the average velocity of the liquid in the slug is

therefore equal to Ug ? Ul.

The superficial gas velocity Ug is equal to the bubble

volume times the bubble formation frequency Fb, divided

by the channel cross-sectional area A. If the bubble volume

is taken to be the bubble length Lb times its cross-sectional

area Ab, then it is overestimated because part of the volume

Ab(Lnose ? Ltail) consists of liquid. This liquid volume

depends on the bubble geometry, but can arbitrarily be

written as the bubble cross-sectional area Ab times a length

Fig. 1 Schematic of Taylor flow showing the definitions of the unit

cell, gas bubble length Lb and the liquid slug length Ls. The lengths of

the nose Lnose and tail Ltail sections of the gas bubble are also

indicated
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d. This length d is then a correction on the bubble length to

account for the overestimation of the gas bubble volume if

it were taken to be equal to AbLb. In case of a bubble with a

circular cross-section and hemispherical bubble caps, it can

be shown that d is 1/3 of the bubble diameter Db. The

superficial gas velocity Ug is then given by:

Ug ¼
Ab

A
Fb Lb � dð Þ: ð10Þ

The bubble formation frequency Fb is equal to the number

of unit cells passing a certain location in the channel per

unit of time, which is the reciprocal of the time it takes for

a unit cell to travel a distance equal to its own length:

(Lb ? Ls)/ub. The bubble formation frequency is therefore

given by:

Fb ¼
ub

Lb þ Ls

ð11Þ

If Eqs. 10 and 11 are substituted into Eq. 9, the following

expression is obtained for the superficial liquid velocity Ul:

Ul ¼
Ab

A
FbðLs þ dÞ þ 1� Ab

A

� �
uf ð12Þ

The velocity of the liquid in the film surrounding the bubble

uf is zero for horizontal Taylor flows as used in this work.

5 Pressure drop model

5.1 Model development

Aussillous and Quéré (2000) incorporated the effect of a

non-negligible liquid film thickness in Bretherton’s (1961)

analysis by replacing the term Ca
2
3

b with Ca
2
3

b=

1þ 3:34Ca
2
3

b

� �
: Bretherton’s result for the pressure drop

over a single Taylor gas bubble can similarly be modified to

account for a non-negligible liquid film thickness, giving:

DPb ¼ 7:16
rð3CabÞ

2
3

Dc 1þ 3:34Ca
2
3

b

� � : ð13Þ

The pressure drop over a unit cell, DPuc, is the sum of the

frictional pressure drop of the liquid flowing in the slug,

DPs, and the pressure drop over the Taylor gas bubble,

DPb. The flow of liquid in the slug is assumed to be fully

developed and is therefore given by the Hagen–Poiseuille

equation. The deviations thereof near the bubble caps are

exactly what are accounted for in Bretherton’s analysis and

are thus incorporated by DPb. Continuity requires the

average velocity in the liquid slug to be Ug ? Ul. As

shown in the derivation of the mass balance based model,

to properly account for the total amount of liquid with an

average velocity of Ug ? Ul in one liquid slug, the liquid

slug length is Ls ? d. The frictional pressure loss in one

liquid slug is then given by:

DPs ¼
16

Regl

� �
4

Dc

� �
1

2
ql Ug þ Ul

� �2

� �
ðLs þ dÞ

¼
32ll Ug þ Ul

� �
D2

c

ðLs þ dÞ: ð14Þ

Note that the Reynolds number is based on the average

velocity of the liquid Ug ? Ul and is not equal to the

bubble Reynolds number Reb, which is based on ub. The

pressure drop over a unit cell is then given by:

DPuc ¼ DPs þ DPb

¼
32ll Ug þ Ul

� �
D2

c

ðLs þ dÞ þ 7:16
r 3Cabð Þ

2
3

Dc 1þ 3:34Ca
2
3

b

� � :
ð15Þ

The length of a unit cell is Lb ? Ls and thus the number of

unit cells per unit length of channel is 1/(Lb ? Ls). The

pressure drop over a unit length of channel, -(dP/dz)c, is

therefore given by:

� dP

dz

� �
c

¼ DPuc

Lb þ Ls

¼ 1

Lb þ Ls

32ll Ug þ Ul

� �
D2

c

ðLs þ dÞ
�

þ7:16
r 3Cabð Þ

2
3

Dc 1þ 3:34Ca
2
3

b

� �
1
CA ð16Þ

Equation 16 can be rewritten to:

� dP

dz

� �
c

¼
32ll Ug þ Ul

� �
D2

c

Ls þ dð Þ
Lb þ Lsð Þ

� 1þ 7:16
Dcr 3Cabð Þ

2
3

32ll Ug þ Ul

� �
ðLs þ dÞ 1þ 3:34Ca

2
3

b

� �
0
B@

1
CA

ð17Þ

This result can be interpreted as follows: the term

32 ll(Ug ? Ul)/Dc
2 is the pressure drop per unit length of

liquid for a fully developed Hagen–Poiseuille liquid flow

moving at the average velocity of Ug ? Ul. The term

(Ls ? d)/(Lb ? Ls) is the volumetric fraction of channel, in

which liquid is moving at an average velocity of Ug ? Ul.

Therefore, these two terms combined are the pressure

drop per unit channel length based on a fully developed

Hagen–Poiseuille flow in the liquid slugs. The remaining

term in Eq. 17 accounts for the additional pressure drop over

the gas bubbles per unit channel length.
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It can be shown from the mass balance-based model that

(Ls ? d)/(Lb ? Ls) can be rewritten to Ul/(Ug ? Ul). The

part of Eq. 17 describing the frictional pressure drop over a

unit channel length due to fully developed liquid flow can

then be rewritten as follows:

32ll Ug þ Ul

� �
D2

c

Ls þ dð Þ
Lb þ Lsð Þ ¼

32llUl

D2
c

ð18Þ

This result indicates that any change of the frictional

pressure drop over a unit length of channel due to changing

the liquids average velocity by varying the gas flow rate, is

negated by the change of the volumetric channel fraction

occupied by that liquid. Furthermore, the group r/

(ll(Ug ? Ul)) in the third term on the right hand side of

Eq. 17 is the inverse of the capillary number based on the

average velocity in the channel, Cagl. This can be rewritten

to the inverse of the capillary number based on the bubble

velocity Cab using Eq. 9 for a stagnant liquid film:

r

ll Ug þ Ul

� � ¼ A

Ab

1

Cab

ð19Þ

By substituting Eqs. 18 and 19 into Eq. 17, the following

expression for the frictional pressure drop over a unit

length of channel is obtained:

� dP

dz

� �
c

¼ 32llUl

D2
c

� 1þ 7:16� 3
2
3

32

Dc

Ls þ dð Þ
A

Ab

� �
1

Ca
1
3

b þ 3:34Cab

� �
0
B@

1
CA

ð20Þ

The liquid slug friction factor fs is then given by:

fs ¼
16

Regl

� �

1þ 7:16� 3
2
3

32

Dc

Ls þ dð Þ
A

Ab

� �
1

Ca
1
3

b þ 3:34Cab

� �
0
B@

1
CA

ð21Þ

The cross-sectional area of the bubble Ab directly

depends on the liquid film thickness. The corrected liquid

slug length Ls ? d also depends on the bubble diameter

and thus on the liquid film thickness. Both parameters can

therefore be expressed as a function of the bubble velocity

ub using Aussillous and Quéré’s result given in Eq. 3 and

this can be substituted into Eqs. 20 and 21. At first glance,

this would result in the pressure drop being a complicated

function of the capillary number and thus of the bubble

velocity. However, the term (Ls ? d)-1(A/Ab) in Eqs. 20

and 21 can be rewritten as a function of the superficial

liquid velocity Ul and the bubble frequency Fb using

Eq. 12 for a stagnant liquid film:

1

Ls þ dð Þ
A

Ab

¼ fb

Ul

ð22Þ

Although it is not clear at first glance, the combined term

(Ls ? d) -1(A/Ab) in Eqs. 20 and 21 is not a function of

bubble velocity and thus is not dependent on the pressure

and this simplifies the calculation of the pressure profiles.

Substituting this result into Eqs. 20 and 21 gives:

� dP

dz

� �
c

¼ 32llUl

D2
c

1þ 7:16� 3
2
3

32

Dcfb
Ul

1

Ca
1
3

bþ 3:34Cab

� �
0
B@

1
CA

ð23Þ

and

fs ¼
16

Regl

1þ 7:16� 3
2
3

32

Dcfb
Ul

1

Ca
1
3

b þ 3:34Cab

� �
0
B@

1
CA; ð24Þ

respectively. Note that, apart from the constant 3.34, none

of the other constants in Eqs. 23 and 24 was obtained from

a fitting procedure. The constant 3.34 was obtained by

Aussillous and Quéré (2000) from fitting their equation to

the data of Taylor (1961).

5.2 Comparison with the model of Kreutzer et al.

(2005b)

Kreutzer et al. (2005b) found an expression for the liquid slug

friction factor based on Bretherton’s (1961) analysis as given

in Eq. 8. Bretherton’s analysis is valid for vanishing liquid

film thickness and thus for Cab ? 0. The liquid slug friction

factor obtained in this work as given in Eq. 21 can also be

evaluated for these conditions. For Cab ? 0, the liquid film

thickness approaches zero and the bubble cross-sectional

area Ab approaches the channel cross-sectional area A. Fur-

thermore, Cab
1/3 � 3.34Cab and Eq. 21 then becomes:

fs ¼
16

Re
1þ 7:16� 3

2
3

32

Dc

Ls þ dð Þ
1

Ca
1
3

b

 !
ð25Þ

The only difference between Eqs. 25 and 8 is that in

Kreutzer et al.’s result, using Bretherton’s analysis, the

liquid slug length is given by Ls and in our work it is

defined as Ls ? d. It is not exactly clear how Kreutzer et al.

have defined their slug length. In this work, it is defined as

the shortest distance between the tail section of a gas

bubble and the nose section of the trailing bubble. Kreutzer

et al. take the volumetric fraction of the channel of

liquid moving at an average velocity of Ug ? Ul to be
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Ls/(Lb ? Ls). With our definition of Ls, the amount of

liquid surrounding the nose and tail sections of the bubbles

having a non-zero velocity is not taken into account. As

explained in the description of the mass balanced-based

model, this volume is accounted for when Ls is replaced

with Ls ? d. Applying this correction to Eq. 8 results in it

being identical to Eq. 25 and the model developed in this

work is indeed in accordance with Bretherton’s work as

applied by Kreutzer et al.

The same correction on the liquid slug length is applied

to the model of Kreutzer et al. in order to be able to

properly compare their results with those obtained in this

work. Equations 6 and 7 can be combined and (Ls ? d)/

(Lb ? Ls) is substituted for Ls/(Lb ? Ls), following the

same line of reasoning as in the derivation of Eq. 18, to

give:

� dP

dz

� �
c

¼ 2llUl

D2
c

fsRegl ð26Þ

Replacing Ls with Ls ? d in Eq. 5 then gives the following

result for the slug friction factor fs:

fs ¼
16

Regl

1þ a
Dc

Ls þ d
Regl

Cagl

� �0:33
 !

ð27Þ

These two equations will be used further throughout this

work as the adapted model of Kreutzer et al.

6 Experimental

All experiments were carried out with nitrogen gas and

demineralized water at a temperature of 20 ± 1�C. The gas

flow was regulated by a mass flow controller (Bronkhorst

F-200C) and the superficial gas velocity was varied

between 0.06 and 0.33 m/s (these values are given at a

temperature of 20�C and a pressure of 1 bar). The super-

ficial liquid velocity was varied between 0.10 and 0.34 m/s

using an Isco 100DM syringe pump. The ranges of Rey-

nolds, capillary and Weber numbers used in this work are

given in Table 2.

The liquid flow was split into two equal flows, which

were contacted with the nitrogen flow at an angle of 90�
with respect to the direction of flow of the nitrogen in a

stainless steel cross-mixer (Valco ZX.5) (Fig. 2). The inner

diameter of the channels in the cross-mixer was 250 lm.

A differential pressure sensor (Honeywell 26PC 05 KD,

response time of 1 ms), measuring the pressure difference

with ambient pressure, was connected at a distance of

13 cm downstream from the cross-mixer to ensure a fully

developed Taylor flow passing the sensor. The flow then

entered the glass capillary 3 cm downstream from the

pressure sensor and exited the capillary under ambient

conditions (T = 293 K and Pexit = 1.03 9 105 Pa). The

transparent, glass capillary had a length of 1 m and a cir-

cular cross-section with an inner diameter of 250 lm. All

of the connectors and tubing had an inner diameter of

250 lm.

The recording time for each of the studied 45 combi-

nations of gas and liquid velocities was 2 s and the

recording of the pressure signal was synchronized with the

recording of the images. A Redlake MotionPro CCD

camera connected to a Zeiss Axiovert 200 MAT inverted

microscope was used to record images of the Taylor flows

at a frame rate of 2,500 frames per second. An exposure

time of 20 ls was used, which was sufficiently short for

preventing any significant motion blur. The length of one

pixel represented 3.8 lm of channel length. A channel

length of 3.04 mm was captured in the images of which the

center point was located 29.5 cm downstream from the

pressure sensor.

The gas bubbles in all the movies had a length shorter

than the channel length captured in the images. The frame

rate of 2,500 frames per second was sufficiently short to

ensure that no gas bubble travelled a distance greater than

the unit cell length between the recordings of two con-

secutive images so that the individual bubbles could be

tracked. For every movie, the length of every individual

bubble was averaged over all frames in which it was

completely visible. These values were then averaged to

obtain the average bubble length Lb for that movie. The

bubble frequency Fb is the number of tracked bubbles in

one movie divided by the measurement time. The average

Table 2 Superficial gas Ug and liquid Ul velocities used in this work.

The capillary, Reynolds and Weber numbers covered in the experi-

ments are also given. These numbers are based on the average

velocity at the channel exit

Min Max

Ug (m/s) 0.06 0.33

Ul (m/s) 0.10 0.34

Ul/(Ug ? Ul) (-) 0.33 0.84

Cagl (-) 2.3 9 10-3 8.8 9 10-3

Regl (-) 41 159

Wegl (-) 0.09 1.41

Fig. 2 Schematic drawing of the cross-mixer. The liquid flow is split

into two equal flows and contacted with the gas flow at an angle of

90�. All channels in the cross-mixer have a diameter of 250 lm
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velocity of a single bubble was obtained by dividing the

distance travelled by its centre of mass in the movie by the

time that the bubble was present in that movie. The bubble

velocity was first determined for every single bubble and

then averaged over all bubbles in one movie to give the

average bubble velocity ub. For each movie, the standard

deviation of the bubble velocity was less than 0.5% of the

average value, indicating that velocity fluctuations within

the time of recording of one movie are negligible. The

same procedure was followed for the liquid slugs for those

movies in which the length of the liquid slugs was smaller

than the channel length captured by the images. For those

movies, in which the liquid slugs were not completely

visible in one frame, Eq. 11 was used to calculate the slug

length, since the bubble velocity, the bubble formation

frequency, and the bubble length were known.

7 Results and discussion

In this section, for the sake of legibility, the adapted model

of Kreutzer et al. (2005b) and that of Lockhart, Martinelli

and Chisholm (Lockhart and Martinelli 1949; Chisholm

1967) will be referred to as, respectively, the ‘‘Kreutzer

model’’ and the ‘‘LMC model’’.

A summary of the values obtained for the various

hydrodynamic parameters from image analysis is given in

Table 3.

The pressure difference with ambient conditions mea-

sured at the sensor location varied between 0.93 9 105 and

2.34 9 105 Pa. Since the pressure at the channel exit

equals 1.03 9 105 Pa, the volumetric gas flow rate at the

pressure sensor was between 0.53 and 0.31 times that at the

channel exit, assuming ideal isothermal expansion.

Expansion of the gas phase between the two locations is,

therefore, significant and the superficial gas velocity and

the gas bubble velocity are not constant over the channel

length. This is especially important for the LMC model

(see Appendix A) and the model developed in this work

(see Eqs. 23, 24) since the pressure drop depends on,

respectively, the superficial gas velocity and the gas bubble

velocity. For these models, the pressure drop is a function

of the axial position in the channel and the pressure is

therefore not a linear function of the channel length. The

pressure drop in the Kreutzer model, as described by

Eqs. 26 and 27, does not directly depend on the superficial

gas or on the bubble velocity. However, the correction on

the liquid slug length d is equal to Db/3 for gas bubbles

with hemispherical caps, which is a valid assumption in

this work, and therefore depends on the liquid film thick-

ness. The liquid film thickness is a function of the bubble

velocity as given in Eq. 3, and so Eq. 27 is a function of

the bubble velocity.

In order to be able to properly compare experimental

results and model predictions, the pressure difference

between the sensor location and the channel exit is calcu-

lated and compared to the measurement of the differential

pressure sensor. This procedure requires calculation of the

pressure profiles rather than the pressure drop. The pressure

profiles are calculated numerically using the assumptions

that:

• the gas phase obeys the ideal gas law,

• gas expansion is isothermal,

• absorption of the gas phase into the liquid has a

negligible effect on the volumetric gas flow rate,

• the liquid phase is incompressible.

The boundary condition for all models is that the pres-

sure at the exit of the channel equals 1.03 9 105 Pa. The

superficial gas velocity at the exit conditions is, therefore,

also known. For the LMC model the calculations are then

straightforward, since the pressure drop depends on the

local superficial gas velocity Ug (Appendix A), which can

easily be related to the pressure using the ideal gas law.

Calculating the pressure profile from the model presented

in this work as well as from the Kreutzer model requires an

additional step since the pressure drop depends on the

bubble velocity ub and not directly on Ug. The bubble

velocity is related to the superficial gas velocity and the

cross-sectional area of the gas bubble Ab as described in

Eq. 9 and thus depends on the liquid film thickness. The

liquid film thickness depends on the bubble velocity as

described by Aussillous and Quéré (Eq. 3). Therefore, the

bubble velocity and the liquid film thickness are calculated

by an iteration of Eqs. 9 and 3 for every axial position in

the channel while calculating the pressure profile.

Kreutzer et al. (2005b) found two values for the constant

a in Eq. 27: 0.17 and 0.07 based on, respectively, their

experimental and numerical data. They explain the differ-

ence to be caused by impurities in the gas and/or liquid

phases during the experiments. The experimental results

obtained in this work are compared to the Kreutzer model

for both values of a and the results are given in Fig. 3. The

Kreutzer model was developed for Regl [ 150 and indeed

fails to describe the experimental data for Regl \ 150 using

Table 3 Summary of the minimum and maximum values obtained

for the various hydrodynamic parameters from image analysis

Min Max

Ls/Dh (-) 3 23.95

Lb/Dh (-) 1.77 3.56

Ls/(Lb ? Ls) (-) 0.46 0.93

ub (m/s) 0.15 0.47

Fb (s-1) 61 243
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either value for a. The model consistently over predicts the

experimental results for a = 0.17 and under predicts them

for a = 0.07. The accuracy of the model predictions is

expected to increase when Regl approaches and exceeds

150. The opposite trend is observed for a = 0.17, e.g. for

increasing Regl the deviation of the model predictions from

the experimental values becomes larger. The expected

trend is observed for a = 0.07, but the scatter is large.

Therefore, the constant a was fitted to the data in this work

in order to improve the performance of the model. The best

agreement between the Kreutzer model and the experi-

mental data is obtained for a = 0.10. Henceforth, this

value of parameter a is used when comparing the Kreutzer

model to the experimental data and the other two models.

Figure 4 shows the calculated pressure difference

between the sensor location and the channel exit versus the

measured pressure difference for all three models. Figure 5

shows the same data, but then plotted as the ratio of the

model predictions and the measured data versus Regl in

order to better visualize the differences between model and

measured values.

The LMC model under predicts the measured data at the

smallest measured pressure differences, while it over pre-

dicts the data at the largest measured pressure differences.

With increasing measured pressure difference, the accuracy

of the model first increases until the model predicts larger

values than the measured data. The accuracy of the model

then decreases with increasing measured pressure

difference. The LMC model predicts values of -14 to

?10% of the measured value. The Kreutzer model is more

accurate than the LMC model and its predictions vary

between -15 and ?4% of the measured values. Contrary to

the predictions of the LMC model, the accuracy of the

predictions by the Kreutzer model increases with increasing

Fig. 3 The pressure difference between the channel exit and the

sensor location, as calculated with the model by Kreutzer et al.

(2005b) divided by the measured pressure difference is plotted as a

function of the Reynolds number Regl for three values of the constant

a. The capillary number Cagl varied between 2.3 9 10-3 and

8.8 9 10-3

Fig. 4 The pressure difference between the channel exit and the

sensor location as calculated with the three models versus the

measured pressure difference

Fig. 5 The ratio between the pressure difference between the channel

exit and the sensor location as calculated with the three models and

the measured pressure difference versus Regl. The capillary number

Cagl varied between 2.3 9 10-3 and 8.8 9 10-3
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Regl, as expected. The model developed in this work pre-

dicts the pressure drop within a range of -4 to ?3% of the

experimental data, which is a significantly smaller range

than those of both the Kreutzer and LMC models.

The inability of the LMC model to accurately describe

the experimental results obtained in this work confirms that

both surface tension and hydrodynamic properties of the

two phase flow, such as the spatial gas–liquid distribution

and the velocity distributions of both phases, have to be

considered when developing a model for the pressure drop

of gas–liquid Taylor flows in small channels. The Kreutzer

model does include surface tension effects and considers

hydrodynamic properties in the form of the liquid slug

length Ls, but it does not include the local velocities of the

phases. Furthermore, it is a semi-empirical model and apart

from the two values of the fitting parameter a reported by

Kreutzer et al. themselves, a different value for a was

found in this work. Kreutzer et al. state that they expect

impurities in the gas and/or liquid phases in their experi-

ments to be the cause of finding a different value for a than

the value obtained from their numerical calculations. The

value found for a in this work is in between the limiting

values obtained by Kreutzer et al. If impurities are indeed

the cause of these differences, then the value of a obtained

in this work implies some concentration of impurities

present in our experiments as well. These effects should

then also be of significance on the accuracy of the model

developed in this work. However, without considering

possible impurities, the model developed in this work

describes the experimental data within an error of ±4%.

This suggests that no significant concentration of impuri-

ties was present during our experiments and Marangoni

effects therefore cannot explain the different value of the

fitting parameter a obtained in this work. It should be noted

that the introduction of the group a(Re/Ca)0.33 in the

Kreutzer model is based on their experimental observa-

tions, but physical interpretation of the group a(Re/Ca)0.33

is lacking. The parameter a may very well be a function of

other hydrodynamic parameters causing the differences in

values observed for a. In order to understand the nature of

the fitting parameter a, the model developed in this work is

compared in more detail with the Kreutzer model.

An expression for a is obtained from combining the

expression for the liquid slug friction factor fs obtained by

Kreutzer et al. as given in Eq. 27 with the expression for fs
derived in this work as given in Eq. 21:

a ¼ 7:16� 3
2
3

32

A

Ab

� �
Cagl

Regl

� �1
3

Ca
1
3

b þ 3:34Cab

� ��1

ð28Þ

The parameter a thus depends on the liquid properties and

is velocity dependent. A/Ab is a function of the liquid film

thickness and thus of the bubble velocity following the

equation of Aussillous and Quéré (Eq. 3). The values of a

can be calculated for all experiments performed in this

work using the bubble velocities obtained from image

analysis and the local superficial gas velocities at the

imaging location. The latter is known from the pressure

profiles and the ideal gas law. Note that these values of a

are estimates, since a is a function of the axial position in

the channel and only the values at the imaging location are

used. The result is shown in Fig. 6. When fitting the

Kreutzer model to a data set, one value of a is obtained. It

was already shown that the Kreutzer model described our

experimental data best for a = 0.10. The data displayed in

Fig. 6 are averaged in order to be able to make the com-

parison with the one value obtained in the fitting procedure.

When doing so, a = 0.11 is obtained and this is, as

expected, close to the value resulting from fitting the model

to the experimental data. This result confirms that param-

eter a as described by Eq. 28 is a lumped parameter con-

taining all velocity effects not explicitly taken into account

in the Kreutzer model. The value found for a upon fitting

the model to a data set depends on the exact combination of

velocities covered in the experiments and the liquid prop-

erties and this can explain the differences between the

value of a found in this work and the values found by

Kreutzer et al. Furthermore, the variation of parameter a

with varying bubble velocity decreases with increasing

bubble velocity and thus with increasing Reynolds and

capillary numbers. Although the capillary numbers used in

this work are within the range of those used by Kreutzer

et al., the Reynolds numbers used in their experiments are

Fig. 6 Parameter a in the model of Kreutzer et al. (2005b) is

calculated using Eq. 28 and plotted as a function of Regl. The

capillary number Cagl varied between 2.3 9 10-3 and 8.8 9 10-3

Microfluid Nanofluid

123



larger than those in this work and the influence of the

bubble velocity on the value of parameter a is less in their

experiments. This may be the reason why Kreutzer et al.

observed no or little influence of the bubble velocity on the

value of parameter a. However, for Regl \ 150 the effect of

the bubble velocity on the additional pressure drop caused

by the presence of the gas bubbles has to be taken into

account.

8 Conclusions

In this paper, a model has been developed to describe the

pressure drop of gas–liquid Taylor flows in small round

channels (diameter typically smaller than 1 mm). The

model takes two sources of pressure drop into account:

(1) frictional pressure drop caused by laminar flow in the

liquid slugs, and (ii) an additional pressure drop over a

single gas bubble due to the bubble disturbing the other-

wise parabolic velocity profile in the liquid slugs. The

pressure drop over a single gas bubble is described by the

classical theory of Bretherton (1961), of which, the appli-

cability is extended up to a capillary number Cagl of 0.01

and Reynolds numbers Regl in the order of 102 using the

scaling analysis of Aussillous and Quéré (2000). The

pressure drop per unit channel length is obtained by com-

bining the contributions of both sources using a mass

balance based Taylor flow model previously developed by

the authors (Warnier et al. 2007). The model shows that

(1) the additional pressure drop caused by the presence of

the gas bubbles depends on the bubble frequency and the

bubble velocity, and (2) its contribution to the overall

pressure drop relative to that of the frictional pressure drop

in the liquid phase decreases with increasing gas bubble

velocity.

The model is compared to experimental data obtained

for nitrogen–water Taylor flow in a glass channel with a

circular cross-section and an inner diameter of 250 lm.

The Reynolds number Regl is varied between 41 and 159

and the capillary number Cagl varied between 2.3 9 10-3

and 8.8 9 10-3. The model developed in this work

describes the experimental data within an accuracy of ±4%

without fitting any of the constants to the data obtained in

this work.

Both the model and the experimental data are compared

to the Lockhart–Martinelli–Chisholm model (Lockhart and

Martinelli 1949; Chisholm 1967) and the model of Kreut-

zer et al. (2005b). The model of Kreutzer et al. is a semi-

empirical model and is fitted to the experimental data

obtained in this work and the fitted model predicts the

measured pressure drop with increasing accuracy as the

Reynolds number increases to 150. The Lockhart–Marti-

nelli–Chisholm model was not developed for gas–liquid

Taylor flow, which was explicitly indicated by the authors

themselves (Lockhart and Martinelli 1949). Their model is,

therefore, not expected to accurately describe the pressure

drop in gas–liquid Taylor flow, yet it has been applied to

this flow regime by other authors and was therefore,

included in this work. Contrary to the other two models, it

takes neither surface tension nor any hydrodynamic prop-

erties of gas–liquid Taylor flow into account and, as

expected, the values of the pressure drop predicted by the

Lockhart–Martinelli–Chisholm model deviate more from

the measured values than the predictions of the other two

models.

The model of Kreutzer et al. has been specifically

developed for gas–liquid Taylor flow for Reynolds num-

bers larger than 150 and considers the same two sources of

pressure drop as the model developed in this work. Fur-

thermore, both models similarly take the spatial gas–liquid

distribution into account in the form of, respectively, the

liquid slug length and the gas bubble frequency. The main

difference between the two models is that the dependence

of the pressure drop on the gas bubble velocity is not

incorporated in the model of Kreutzer et al. while it is

included in the model developed in this work. The

decreasing accuracy of the model of Kreutzer et al. with

decreasing Reynolds number, and thus with decreasing gas

bubble velocity, is shown to be due to the model not taking

the effect of the gas bubble velocity on the pressure drop

into account. This result, therefore, shows that other than

the spatial distribution of the gas and liquid phases, the

velocity distribution of the gas and liquid phases needs to

be included when describing the pressure drop of gas–

liquid Taylor flow in small channels.

The model developed in this work is valid for gas–liquid

Taylor flow in round channels for Cab \ 0.01, Reb \ 150

and negligible velocity of the liquid in the film surrounding

the gas bubbles. When these conditions are met, the

expression for the pressure drop over a single Taylor gas

bubble is known from combining the analysis of Bretherton

and that of Aussillous and Quéré, as shown in this work.

Unfortunately, such an expression is not available when

either the channel is not axisymetric, the liquid flow is not

laminar, inertial effects are significant, or the liquid film

surrounding the Taylor gas bubbles is not stagnant. Efforts

to describe the pressure drop of gas–liquid Taylor taking

one or more of these effects into account have been made,

such as the semi-empirical model of Kreutzer et al., which

includes inertial effects, but the understanding is still far

from complete.
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Appendix A

The Lockhart–Martinelli–Chisholm (Lockhart and Marti-

nelli 1949; Chisholm 1967) approach is based on corre-

lating the gas and liquid single-phase pressure drops to give

the two-phase pressure drop. For the gas phase, the single-

phase pressure drop is given by:

� dP

dz

� �
g

¼
32lgUg

D2
h

ðA1Þ

For the liquid phase, the single-phase pressure drop is

given by:

� dP

dz

� �
l

¼ 32llUl

D2
h

ðA2Þ

The Lockhart–Martinelli parameter v is given by:

v2 ¼
dp
dz

� �
l

dp

dz

� �
g

ðA3Þ

Chisholm (1967) suggested the following equation for the

Lockhart–Martinelli parameter /l
2:

/2
l ¼ 1þ C

v
þ 1

v2
ðA4Þ

in which, C = 5 when the flow in both the gas and liquid

phases are laminar, as is the case in this work. The two-

phase pressure drop can then be calculated by:

� dP

dz

� �
c

¼ �/2
l

dP

dz

� �
l

ðA5Þ
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